Molecular Chaperonin HSP60: Current Understanding and Future Prospects
Abstract
:1. Introduction
2. HSP60 Structure and Functions
2.1. HSP60 Molecular Characteristics and Regulation
2.2. HSP60 Transcript Variants and Subcellular Localization
3. HSP60’s Role in Development and Differentiation
4. HSP60’s Role in Various Human Diseases
4.1. Role of HSP60 in Metabolic Diseases
4.2. Role of HSP60 in Infectious Diseases
4.3. Role of HSP60 in Cardiovascular Diseases and Atherosclerosis
4.4. Role of HSP60 in Inflammatory Diseases
4.5. Role of HSP60 in Various Cancers
4.6. Role of HSP60 in Neurodegeneration
4.7. Chemical Inhibitors and Modulators of HSP60
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Cpn60 | Chaperonin 60 |
HSP60 | Heat Shock Protein 60 |
HSP70 | Heat Shock Protein 70 |
HSP90 | Heat Shock Protein 90 |
CCT | Chaperonin-Containing TCP-1 |
TRIC | TCP-1 Ring Complex |
TCP1 | Tailless Complex Polypeptide-1 |
ROS | Reactive Oxygen Species |
mtHSP60 | Mitochondrial Chaperone, 60 kDa |
ER | Endoplasmic Reticulum |
FBs | Fat Bodies |
MTs | Malpighian Tubules |
SG | Salivary Gland |
IKK | IκB Kinase |
ERKs | Extracellular Signal-Regulated Kinases |
TLRs | Toll-Like Receptors |
VSMCs | Venous Smooth Muscle Cells |
ETC | Electron Transport Chain |
PDH | Pyruvate Dehydrogenase |
RA | Rheumatoid Arthritis |
JNKs | c-Jun N-Terminal Kinases |
AD | Alzheimer’s Disease |
PD | Parkinson’s Disease |
ESC | Embryonic Stem Cell |
EB | Embryoid Body |
MM | Multiple Myeloma |
PCs | Plasma Cells |
TCGA | The Cancer Genome Atlas |
M cells | Microfold cells |
NPC | Nasopharyngeal Carcinoma |
References
- Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 2011, 475, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3, e161. [Google Scholar] [CrossRef] [PubMed]
- Bie, A.S.; Cömert, C.; Körner, R.; Corydon, T.J.; Palmfeldt, J.; Hipp, M.S.; Hartl, F.U.; Bross, P. An inventory of interactors of the human hsp60/hsp10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones 2020, 25, 407–416. [Google Scholar] [CrossRef]
- Radford, S.E. Groel: More than just a folding cage. Cell 2006, 125, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Shin, Y.; Ju, S.; Han, S.; Choe, W.; Yoon, K.-S.; Kim, S.S.; Kang, I. Heat shock response and heat shock proteins: Current understanding and future opportunities in human diseases. Int. J. Mol. Sci. 2024, 25, 4209. [Google Scholar] [CrossRef] [PubMed]
- Bhutani, N.; Udgaonkar, J.B. Chaperonins as protein-folding machines. Curr. Sci. 2002, 83, 1337–1351. [Google Scholar]
- Toursel, C.; Dzierszinski, F.; Bernigaud, A.; Mortuaire, M.; Tomavo, S. Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone hsp60 in Toxoplasma gondii. Mol. Biochem. Parasitol. 2000, 111, 319–332. [Google Scholar] [CrossRef]
- Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Kim, S.-C.; Wang, Y.; Gupta, S.; Davis, B.; Simon, S.I.; Torre-Amione, G.; Knowlton, A.A. Hsp60 in heart failure: Abnormal distribution and role in cardiac myocyte apoptosis. Am. J. Physiol.-Heart Circ. Physiol. 2007, 293, H2238–H2247. [Google Scholar] [CrossRef]
- Tikhomirova, T.S.; Matyunin, M.A.; Lobanov, M.Y.; Galzitskaya, O.V. In-depth analysis of amino acid and nucleotide sequences of hsp60: How conserved is this protein? Proteins Struct. Funct. Bioinform. 2021, 90, 1119–1141. [Google Scholar] [CrossRef]
- Kubota, H. Function and regulation of cytosolic molecular chaperone cct. Vitam. Horm. 2002, 65, 313–331. [Google Scholar] [PubMed]
- Grantham, J. The molecular chaperone cct/tric: An essential component of proteostasis and a potential modulator of protein aggregation. Front. Genet. 2020, 11, 506143. [Google Scholar] [CrossRef]
- Bigotti, M.G.; Clarke, A.R.; Burston, S.G. The hsp60 chaperonins from prokaryotes and eukaryotes. Chaperones 2006, 6, 251–283. [Google Scholar]
- Maeder, D.L.; Macario, A.J.; de Macario, E.C. Novel chaperonins in a prokaryote. J. Mol. Evol. 2005, 60, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Ghozlan, H.; Cox, A.; Nierenberg, D.; King, S.; Khaled, A.R. The tricky business of protein folding in health and disease. Front. Cell Dev. Biol. 2022, 10, 906530. [Google Scholar] [CrossRef]
- Smith, T.M.; Willardson, B.M. Mechanistic insights into protein folding by the eukaryotic chaperonin complex cct. Biochem. Soc. Trans. 2022, 50, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
- Caruso Bavisotto, C.; Provenzano, A.; Passantino, R.; Marino Gammazza, A.; Cappello, F.; San Biagio, P.L.; Bulone, D. Oligomeric state and holding activity of hsp60. Int. J. Mol. Sci. 2023, 24, 7847. [Google Scholar] [CrossRef] [PubMed]
- Rye, H.S.; Roseman, A.M.; Chen, S.; Furtak, K.; Fenton, W.A.; Saibil, H.R.; Horwich, A.L. GroEl-GroEs cycling: Atp and nonnative polypeptide direct alternation of folding-active rings. Cell 1999, 97, 325–338. [Google Scholar] [CrossRef] [PubMed]
- Mistry, A.C.; Chowdhury, D.; Chakraborty, S.; Haldar, S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem. Sci. 2023, 49, 38–51. [Google Scholar] [CrossRef]
- Vilasi, S.; Bulone, D.; Caruso Bavisotto, C.; Campanella, C.; Marino Gammazza, A.; San Biagio, P.L.; Cappello, F.; Conway de Macario, E.; Macario, A.J. Chaperonin of group i: Oligomeric spectrum and biochemical and biological implications. Front. Mol. Biosci. 2018, 4, 99. [Google Scholar] [CrossRef]
- Pérez-Arnaiz, P.; Dattani, A.; Smith, V.; Allers, T. Haloferax volcanii—A model archaeon for studying DNA replication and repair. Open Biol. 2020, 10, 200293. [Google Scholar] [CrossRef] [PubMed]
- Inobe, T.; Takahashi, K.; Maki, K.; Enoki, S.; Kamagata, K.; Kadooka, A.; Arai, M.; Kuwajima, K. Asymmetry of the GroEl-GroEs complex under physiological conditions as revealed by small-angle x-ray scattering. Biophys. J. 2008, 94, 1392–1402. [Google Scholar] [CrossRef]
- Ishida, R.; Okamoto, T.; Motojima, F.; Kubota, H.; Takahashi, H.; Tanabe, M.; Oka, T.; Kitamura, A.; Kinjo, M.; Yoshida, M.; et al. Physicochemical properties of the mammalian molecular chaperone hsp60. Int. J. Mol. Sci. 2018, 19, 489. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.-Y.; Chen, L. Structural basis for the structural dynamics of human mitochondrial chaperonin mhsp60. Sci. Rep. 2021, 11, 14809. [Google Scholar] [CrossRef]
- Grantham, J.; Brackley, K.I.; Willison, K.R. Substantial cct activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp. Cell Res. 2006, 312, 2309–2324. [Google Scholar] [CrossRef] [PubMed]
- Brackley, K.I.; Grantham, J. Subunits of the chaperonin cct interact with F-actin and influence cell shape and cytoskeletal assembly. Exp. Cell Res. 2010, 316, 543–553. [Google Scholar] [CrossRef]
- Saegusa, K.; Sato, M.; Sato, K.; Nakajima-Shimada, J.; Harada, A.; Sato, K. Caenorhabditis elegans chaperonin cct/tric is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Mol. Biol. Cell 2014, 25, 3095–3104. [Google Scholar] [CrossRef]
- Zheng, L.; Chen, X.; Zhang, L.; Qin, N.; An, J.; Zhu, J.; Jin, H.; Tuo, B. A potential tumor marker: Chaperonin containing tcp-1 controls the development of malignant tumors. Int. J. Oncol. 2023, 63, 106. [Google Scholar] [CrossRef] [PubMed]
- Lechuga, S.; Marino-Melendez, A.; Naydenov, N.G.; Zafar, A.; Braga-Neto, M.B.; Ivanov, A.I. Regulation of epithelial and endothelial barriers by molecular chaperones. Cells 2024, 13, 370. [Google Scholar] [CrossRef]
- Wang, G.; Fan, Y.; Cao, P.; Tan, K. Insight into the mitochondrial unfolded protein response and cancer: Opportunities and challenges. Cell Biosci. 2022, 12, 18. [Google Scholar] [CrossRef]
- Tan, K.; Fujimoto, M.; Takii, R.; Takaki, E.; Hayashida, N.; Nakai, A. Mitochondrial ssbp1 protects cells from proteotoxic stresses by potentiating stress-induced hsf1 transcriptional activity. Nat. Commun. 2015, 6, 6580. [Google Scholar] [CrossRef]
- Kim, S.W.; Lee, J.K. No-induced downregulation of hsp10 and hsp60 expression in the postischemic brain. J. Neurosci. Res. 2007, 85, 1252–1259. [Google Scholar] [CrossRef]
- Shan, Z.-X.; Lin, Q.-X.; Deng, C.-Y.; Zhu, J.-N.; Mai, L.-P.; Liu, J.-L.; Fu, Y.-H.; Liu, X.-Y.; Li, Y.-X.; Zhang, Y.-Y.; et al. Mir-1/mir-206 regulate hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010, 584, 3592–3600. [Google Scholar] [CrossRef]
- Wang, L.; Dong, J.; An, B.; Liang, J.; Cai, K.; Jin, Z.; Jin, H.; Hu, J. Has-mir-17 increases the malignancy of gastric lymphoma by hsp60/tnfr2 pathway. J. Biol. Regul. Homeost. Agents 2020, 34, 1317–1324. [Google Scholar]
- Caruso Bavisotto, C.; Alberti, G.; Vitale, A.M.; Paladino, L.; Campanella, C.; Rappa, F.; Gorska, M.; Conway de Macario, E.; Cappello, F.; Macario, A.J.; et al. Hsp60 post-translational modifications: Functional and pathological consequences. Front. Mol. Biosci. 2020, 7, 95. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Vitale, A.M.; Fucarino, A.; Scalia, F.; Vergilio, G.; Conway de Macario, E.; Macario, A.J.; Caruso Bavisotto, C.; Pitruzzella, A. The challenging riddle about the janus-type role of hsp60 and related extracellular vesicles and mirnas in carcinogenesis and the promises of its solution. Appl. Sci. 2021, 11, 1175. [Google Scholar] [CrossRef]
- Leung, W.-H.; Vong, Q.P.; Lin, W.; Bouck, D.; Wendt, S.; Sullivan, E.; Li, Y.; Bari, R.; Chen, T.; Leung, W. Prl-3 mediates the protein maturation of ulbp2 by regulating the tyrosine phosphorylation of hsp60. J. Immunol. 2015, 194, 2930–2941. [Google Scholar] [CrossRef]
- Li, N.; Li, N.; Wen, S.; Li, B.; Zhang, Y.; Liu, Q.; Zheng, S.; Yang, J.; Shen, L.; Xing, L. Hsp60 regulates lipid metabolism in human ovarian cancer. Oxidative Med. Cell. Longev. 2021, 2021, 6610529. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.D.; Celniker, S.E.; Holt, R.A.; Evans, C.A.; Gocayne, J.D.; Amanatides, P.G.; Scherer, S.E.; Li, P.W.; Hoskins, R.A.; Galle, R.F.; et al. The genome sequence of Drosophila melanogaster. Science 2000, 287, 2185–2195. [Google Scholar] [CrossRef]
- Rubin, G.M.; Yandell, M.D.; Wortman, J.R.; Gabor, G.L.; Miklos; Nelson, C.R.; Hariharan, I.K.; Fortini, M.E.; Li, P.W.; Apweiler, R.; et al. Comparative genomics of the eukaryotes. Science 2000, 287, 2204–2215. [Google Scholar] [CrossRef]
- Kozlova, T.; Perezgasga, L.; Reynaud, E.; Zurita, M. The Drosophila melanogaster homologue of the hsp60 gene is encoded by the essential locus l(1)10ac and is differentially expressed during fly development. Dev. Genes Evol. 1997, 207, 253–263. [Google Scholar] [CrossRef]
- Baena-López, L.A.; Alonso, J.; Rodriguez, J.; Santarén, J.F. The expression of heat shock protein hsp60a reveals a dynamic mitochondrial pattern in Drosophila melanogaster embryos. J. Proteome Res. 2008, 7, 2780–2788. [Google Scholar] [CrossRef] [PubMed]
- Choresh, O.; Ron, E.; Loya, Y. The 60-kda heat shock protein (hsp60) of the sea anemone Anemonia viridis: A potential early warning system for environmental changes. Mar. Biotechnol. 2001, 3, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Reddy, P.; Rohilla, M.S.; Tiwari, P. Expression of hsp60 homologue in sheep blowfly Lucilia cuprina during development and heat stress. J. Therm. Biol. 2006, 31, 546–555. [Google Scholar] [CrossRef]
- Sharma, S.; Rohilla, M.S.; Tiwari, P.K. Developmental and hyperthermia-induced expression of the heat shock proteins hsp60 and hsp70 in tissues of the housefly Musca domestica: An in vitro study. Genet. Mol. Biol. 2007, 30, 159–168. [Google Scholar] [CrossRef]
- Singh, M.K.; Reddy, P.J.; Sreedhar, A.; Tiwari, P. Molecular characterization and expression analysis of hsp60 gene homologue of sheep blowfly, Lucilia cuprina. J. Therm. Biol. 2015, 52, 24–37. [Google Scholar] [CrossRef]
- Binder, R.; Vatner, R.; Srivastava, P. The heat-shock protein receptors: Some answers and more questions. Tissue Antigens 2004, 64, 442–451. [Google Scholar] [CrossRef]
- Timakov, B.; Zhang, P. The hsp60b gene of drosophila melanogaster is essential for the spermatid individualization process. Cell Stress Chaperones 2001, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Asquith, K.L.; Harman, A.J.; McLaughlin, E.A.; Nixon, B.; Aitken, R.J. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol. Reprod. 2005, 72, 328–337. [Google Scholar] [CrossRef]
- Lachance, C.; Fortier, M.; Thimon, V.; Sullivan, R.; Bailey, J.L.; Leclerc, P. Localization of hsp60 and grp78 in the human testis, epididymis and mature spermatozoa. Int. J. Androl. 2010, 33, 33–44. [Google Scholar] [CrossRef]
- Sarkar, S.; Lakhotia, S.C. The hsp60c gene in the 25f cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J. Genet. 2005, 84, 265–281. [Google Scholar] [CrossRef]
- Arya, R.; Lakhotia, S. Hsp60d is essential for caspase-mediated induced apoptosis in Drosophila melanogaster. Cell Stress Chaperones 2008, 13, 509–526. [Google Scholar] [CrossRef]
- Chandra, D.; Choy, G.; Tang, D.G. Cytosolic accumulation of hsp60 during apoptosis with or without apparent mitochondrial release: Evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J. Biol. Chem. 2007, 282, 31289–31301. [Google Scholar] [CrossRef] [PubMed]
- Sarangi, U.; Singh, M.K.; Abhijnya, K.V.V.; Reddy, L.P.A.; Prasad, B.S.; Pitke, V.V.; Paithankar, K.; Sreedhar, A.S. Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 2013, 7, 35–51. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Campanella, C.; Zummo, G.; Cappello, F. Mitochondrial chaperones in cancer: From molecular biology to clinical diagnostics. Cancer Biol. Ther. 2006, 5, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Zeng, Y.; Graner, M.W.; Likhacheva, A.; Katsanis, E. Exogenous stress proteins enhance the immunogenicity of apoptotic tumor cells and stimulate antitumor immunity. Blood J. Am. Soc. Hematol. 2003, 101, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Laad, A.D.; Thomas, M.L.; Fakih, A.R.; Chiplunkar, S.V. Human gamma delta t cells recognize heat shock protein-60 on oral tumor cells. Int. J. Cancer 1999, 80, 709–714. [Google Scholar] [CrossRef]
- Cappello, F.; Conway de Macario, E.; Marasà, L.; Zummo, G.; Macario, A.J. Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol. Ther. 2008, 7, 801–809. [Google Scholar] [CrossRef]
- Fontaine, B.; Davoine, C.-S.; Dürr, A.; Paternotte, C.; Feki, I.; Weissenbach, J.; Hazan, J.; Brice, A. A new locus for autosomal dominant pure spastic paraplegia, on chromosome 2q24-q34. Am. J. Hum. Genet. 2000, 66, 702–707. [Google Scholar] [CrossRef]
- Hansen, J.; Svenstrup, K.; Ang, D.; Nielsen, M.N.; Christensen, J.H.; Gregersen, N.; Nielsen, J.E.; Georgopoulos, C.; Bross, P. A novel mutation in the hspd1 gene in a patient with hereditary spastic paraplegia. J. Neurol. 2007, 254, 897–900. [Google Scholar] [CrossRef]
- Hansen, J.J.; Dürr, A.; Cournu-Rebeix, I.; Georgopoulos, C.; Ang, D.; Nielsen, M.N.; Davoine, C.-S.; Brice, A.; Fontaine, B.; Gregersen, N.; et al. Hereditary spastic paraplegia spg13 is associated with a mutation in the gene encoding the mitochondrial chaperonin hsp60. Am. J. Hum. Genet. 2002, 70, 1328–1332. [Google Scholar] [CrossRef]
- Kusk, M.S.; Damgaard, B.; Risom, L.; Hansen, B.; Ostergaard, E. Hypomyelinating leukodystrophy due to hspd1 mutations: A new patient. Neuropediatrics 2016, 47, 332–335. [Google Scholar] [CrossRef]
- Magen, D.; Georgopoulos, C.; Bross, P.; Ang, D.; Segev, Y.; Goldsher, D.; Nemirovski, A.; Shahar, E.; Ravid, S.; Luder, A.; et al. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy. Am. J. Hum. Genet. 2008, 83, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.M.; Conway de Macario, E.; Alessandro, R.; Cappello, F.; Macario, A.J.; Marino Gammazza, A. Missense mutations of human hsp60: A computational analysis to unveil their pathological significance. Front. Genet. 2020, 11, 559939. [Google Scholar] [CrossRef]
- Fais, S.; Logozzi, M.; Alberti, G.; Campanella, C. Exosomal hsp60: A tumor biomarker? In Heat Shock Protein 60 in Human Diseases and Disorders; Springer: Berlin/Heidelberg, Germany, 2019; pp. 107–116. [Google Scholar]
- Cechetto, J.D.; Soltys, B.J.; Gupta, R.S. Localization of mitochondrial 60-kd heat shock chaperonin protein (hsp60) in pituitary growth hormone secretory granules and pancreatic zymogen granules. J. Histochem. Cytochem. 2000, 48, 45–56. [Google Scholar] [CrossRef]
- Takada, M.; Otaka, M.; Takahashi, T.; Izumi, Y.; Tamaki, K.; Shibuya, T.; Sakamoto, N.; Osada, T.; Yamamoto, S.; Ishida, R.; et al. Overexpression of a 60-kda heat shock protein enhances cytoprotective function of small intestinal epithelial cells. Life Sci. 2010, 86, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-P.; Yang, M.-H.; Huang, C.-H.; Chang, S.-Y.; Chen, P.-M.; Liu, C.-J.; Teng, S.-C.; Wu, K.-J. Interaction between hsp60 and β-catenin promotes metastasis. Carcinogenesis 2009, 30, 1049–1057. [Google Scholar] [CrossRef] [PubMed]
- Colinet, H.; Lee, S.F.; Hoffmann, A. Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 2010, 277, 174–185. [Google Scholar] [CrossRef]
- Jing, X.-H.; Le, K. Seasonal changes in the cold tolerance of eggs of the migratory locust, Locusta migratoria L. (orthoptera: Acrididae). Environ. Entomol. 2004, 33, 113–118. [Google Scholar] [CrossRef]
- Qin, W.; Tyshenko, M.G.; Wu, B.S.; Walker, V.K.; Robertson, R.M. Cloning and characterization of a member of the hsp70 gene family from Locusta migratoria, a highly thermotolerant insect. Cell Stress Chaperones 2003, 8, 144. [Google Scholar] [CrossRef]
- Wang, X.-H.; Kang, L. Differences in egg thermotolerance between tropical and temperate populations of the migratory locust Locusta migratoria (orthoptera: Acridiidae). J. Insect Physiol. 2005, 51, 1277–1285. [Google Scholar] [CrossRef] [PubMed]
- Goyal, G.; Fell, B.; Sarin, A.; Youle, R.J.; Sriram, V. Role of mitochondrial remodeling in programmed cell death in Drosophila melanogaster. Dev. Cell 2007, 12, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Rath, E.; Yuan, D.; Waldschmitt, N.; Khaloian, S.; Allgäuer, M.; Staszewski, O.; Lobner, E.M.; Schöttl, T.; Giesbertz, P.; et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun. 2016, 7, 13171. [Google Scholar] [CrossRef] [PubMed]
- Khaloian, S.; Rath, E.; Hammoudi, N.; Gleisinger, E.; Blutke, A.; Giesbertz, P.; Berger, E.; Metwaly, A.; Waldschmitt, N.; Allez, M.; et al. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional paneth cells predicting crohn’s disease recurrence. Gut 2020, 69, 1939–1951. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Von Salzen, D.; Holguin, B.A.; Bernal, R.A. Complex destabilization in the mitochondrial chaperonin hsp60 leads to disease. Front. Mol. Biosci. 2020, 7, 159. [Google Scholar] [CrossRef] [PubMed]
- Seo, N.-H.; Lee, E.-H.; Seo, J.-H.; Song, H.-R.; Han, M.-K. Hsp60 is required for stemness and proper differentiation of mouse embryonic stem cells. Exp. Mol. Med. 2018, 50, e459. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Lee, H.M.; Kim, M.K.; Ryu, C.J. Role of heat shock protein 60 in primed and naïve states of human pluripotent stem cells. PLoS ONE 2022, 17, e0269547. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Guo, J.; Chen, Y.; Liu, X.; Yang, G.; Wu, Y.; Tian, Y.; Liu, N.; Yang, L.; Wei, S.; et al. The 60-kda heat shock protein regulates energy rearrangement and protein synthesis to promote proliferation of multiple myeloma cells. Br. J. Haematol. 2020, 190, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Cappello, F.; David, S.; Rappa, F.; Bucchieri, F.; Marasà, L.; Bartolotta, T.E.; Farina, F.; Zummo, G. The expression of hsp60 and hsp10 in large bowel carcinomas with lymph node metastase. BMC Cancer 2005, 5, 139. [Google Scholar] [CrossRef]
- Sun, B.; Li, G.; Yu, Q.; Liu, D.; Tang, X. Hsp60 in cancer: A promising biomarker for diagnosis and a potentially useful target for treatment. J. Drug Target. 2022, 30, 31–45. [Google Scholar] [CrossRef]
- Huang, L.-H.; Chen, B.; Kang, L. Impact of mild temperature hardening on thermotolerance, fecundity, and hsp gene expression in Liriomyza huidobrensis. J. Insect Physiol. 2007, 53, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Calderwood, S.K.; Mambula, S.S.; Gray, P.J., Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann. N. Y. Acad. Sci. 2007, 1113, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.N.; Choi, B.; Lee, K.W.; Lee, D.J.; Kang, D.H.; Lee, J.Y.; Song, I.S.; Kim, H.I.; Lee, S.-H.; Kim, H.S.; et al. Cytosolic hsp60 is involved in the nf-κb-dependent survival of cancer cells via ikk regulation. PLoS ONE 2010, 5, e9422. [Google Scholar] [CrossRef] [PubMed]
- Sigala, J.L.D.; Bottero, V.; Young, D.B.; Shevchenko, A.; Mercurio, F.; Verma, I.M. Activation of transcription factor nf-κb requires elks, an iκb kinase regulatory subunit. Science 2004, 304, 1963–1967. [Google Scholar] [CrossRef] [PubMed]
- Fersht, A.R.; Daggett, V. Protein folding and unfolding at atomic resolution. Cell 2002, 108, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Garrido, C.; Gurbuxani, S.; Ravagnan, L.; Kroemer, G. Heat shock proteins: Endogenous modulators of apoptotic cell death. Biochem. Biophys. Res. Commun. 2001, 286, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Pelech, S.; Uitto, V.-J. Bacterial groel-like heat shock protein 60 protects epithelial cells from stress-induced death through activation of erk and inhibition of caspase 3. Exp. Cell Res. 2004, 292, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Grundtman, C.; Kreutmayer, S.B.; Almanzar, G.; Wick, M.C.; Wick, G. Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, C.; Cornut, E.; Poirier, F.; Pons, S.; Beaulieu, C.; Charrier, J.P.; Haïdous, H.; Cotte, E.; Lambert, C.; Piard, F.; et al. Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J. 2011, 278, 4845–4859. [Google Scholar] [CrossRef]
- Rizzo, M.; Macario, A.J.L.; Conway de Macario, E.; Gouni-Berthold, I.; Berthold, H.K.; Battista Rini, G.; Zummo, G.; Cappello, F. Heat shock protein-60 and risk for cardiovascular disease. Curr. Pharm. Des. 2011, 17, 3662–3668. [Google Scholar] [CrossRef]
- Xu, Q.; Schett, G.; Perschinka, H.; Mayr, M.; Egger, G.; Oberhollenzer, F.; Willeit, J.; Kiechl, S.; Wick, G. Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 2000, 102, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Franklin, J.L.; Keeton, A.B.; Bortoff, K.D.; Messina, J.L. Insulin dependant gene expression of heat shock protein 60 in h4iie hepatoma cells. Int. J. Clin. Exp. Med. 2008, 1, 89. [Google Scholar]
- De La Monte, S.M. Insulin resistance and Alzheimer’s disease. BMB Rep. 2009, 42, 475. [Google Scholar] [CrossRef] [PubMed]
- Juwono, J.; Martinus, R.D. Does hsp60 provide a link between mitochondrial stress and inflammation in diabetes mellitus? J. Diabetes Res. 2016, 2016, 8017571. [Google Scholar] [CrossRef]
- Zimbone, S.; Di Rosa, M.C.; Chiechio, S.; Giuffrida, M.L. Exploring the role of hsp60 in Alzheimer’s disease and type 2 diabetes: Suggestion for common drug targeting. Int. J. Mol. Sci. 2023, 24, 12456. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Q.; Fan, S.; Lu, Y.; Huang, Q.; Liu, X.; Peng, X. Glutamine sustains energy metabolism and alleviates liver injury in burn sepsis by promoting the assembly of mitochondrial hsp60-hsp10 complex via sirt4 dependent protein deacetylation. Redox Rep. 2024, 29, 2312320. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Wang, Z.; Zhang, Z.; Hou, Z.; Han, X.; Yang, F.; Liu, H. Resveratrol regulates hsp60 in hek 293t cells during activation of sirt1 revealed by nascent protein labeling strategy. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef]
- Slot, M.C.; Theunissen, R.; Van Paassen, P.; Damoiseaux, J.G.; Cohen Tervaert, J.W. Evaluation of antibodies against human hsp60 in patients with mpo-anca associated glomerulonephritis: A cohort study. J. Autoimmune Dis. 2006, 3, 4. [Google Scholar] [CrossRef]
- Alard, J.-E.; Dueymes, M.; Youinou, P.; Jamin, C. Hsp60 and anti-hsp60 antibodies in vasculitis: They are two of a kind. Clin. Rev. Allergy Immunol. 2008, 35, 66–71. [Google Scholar] [CrossRef]
- Pitruzzella, A.; Burgio, S.; Lo Presti, P.; Ingrao, S.; Fucarino, A.; Bucchieri, F.; Cabibi, D.; Cappello, F.; Conway de Macario, E.; Macario, A.J.; et al. Hsp60 quantification in human gastric mucosa shows differences between pathologies with various degrees of proliferation and malignancy grade. Appl. Sci. 2021, 11, 3582. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Qiu, D.; Wang, N.; Wang, Y.; Wen, T.; Wang, J.; Zhu, H. The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in helicobacter pylori infection. Cancer Cell Int. 2023, 23, 272. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Abdullah, S.W.; Li, P.; Wu, J.e.; Pei, C.; Mu, S.; Wang, Y.; Sun, S.; Guo, H. Heat shock protein 60 is involved in viral replication complex formation and facilitates foot and mouth virus replication by stabilizing viral nonstructural proteins 3a and 2c. Mbio 2022, 13, e01434-22. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.r.K.; Libby, P.; Schönbeck, U.; Yan, Z.-Q. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ. Res. 2002, 91, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Hollestelle, S.C.; De Vries, M.R.; Van Keulen, J.K.; Schoneveld, A.H.; Vink, A.; Strijder, C.F.; Van Middelaar, B.J.; Pasterkamp, G.; Quax, P.H.; De Kleijn, D.P. Toll-like receptor 4 is involved in outward arterial remodeling. Circulation 2004, 109, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Duan, Y.; Yang, F.; Trexler, C.; Wang, H.; Huang, L.; Li, Y.; Tang, H.; Wang, G.; Fang, X.; et al. Deletion of heat shock protein 60 in adult mouse cardiomyocytes perturbs mitochondrial protein homeostasis and causes heart failure. Cell Death Differ. 2020, 27, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Radojevic, N.; Vukcevic, B.; Jovovic, A.; Vukmirovic, F. Hsp60, sp110 and tnf-α expression in Chlamydia pneumoniae-positive versus Chlamydia pneumoniae-negative atherosclerotic plaques. Pol. J. Pathol. 2021, 72, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Foteinos, G.; Afzal, A.R.; Mandal, K.; Jahangiri, M.; Xu, Q. Anti–heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein e–deficient mice via endothelial damage. Circulation 2005, 112, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Horta, M.d.C.; Serrano-Díaz, A.; Hernández-Cedeño, M.; Martínez-Donato, G.; Guillén-Nieto, G. A peptide derived from hsp60 reduces proinflammatory cytokines and soluble mediators: A therapeutic approach to inflammation. Front. Immunol. 2023, 14, 1162739. [Google Scholar] [CrossRef]
- Qiu, T.; Shi, J.-X.; Cheng, C.; Jiang, H.; Ruan, H.-N.; Li, J.; Liu, C.-M. Hepatoprotective effect of avicularin on lead-induced steatosis, oxidative stress, and inflammation in mice associated with the mapk/hsp60/nlrp3 and srebp1c pathway. Toxicol. Res. 2023, 12, 417–424. [Google Scholar] [CrossRef]
- Lorenzo, N.; Altruda, F.; Silengo, L.; del Carmen Dominguez, M. Apl-1, an altered peptide ligand derived from heat-shock protein, alone or combined with methotrexate attenuates murine collagen-induced arthritis. Clin. Exp. Med. 2017, 17, 209–216. [Google Scholar] [CrossRef]
- Hu, F.; Guo, Q.; Wei, M.; Huang, Z.; Shi, L.; Sheng, Y.; Ji, L. Chlorogenic acid alleviates acetaminophen-induced liver injury in mice via regulating nrf2-mediated hsp60-initiated liver inflammation. Eur. J. Pharmacol. 2020, 883, 173286. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.-R.; Zhao, Y.; Ren, H.-R.; Jiang, F.-W.; Liu, S.; Lou, M.; Huang, Y.-F.; Chen, M.-S.; Wang, J.-X.; Li, J.-L. Phthalate drives splenic inflammatory response via activating hsp60/tlr4/nlrp3 signaling axis-dependent pyroptosis. Environ. Pollut. 2024, 346, 123610. [Google Scholar] [CrossRef]
- Vercoulen, Y.; van Teijlingen, N.H.; de Kleer, I.M.; Kamphuis, S.; Albani, S.; Prakken, B.J. Heat shock protein 60 reactive t cells in juvenile idiopathic arthritis: What is new? Arthritis Res. Ther. 2009, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Fouani, M.; Basset, C.A.; Mangano, G.D.; Leone, L.G.; Lawand, N.B.; Leone, A.; Barone, R. Heat shock proteins alterations in rheumatoid arthritis. Int. J. Mol. Sci. 2022, 23, 2806. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Ryu, J.; Kim, J.-E. Ccar2/dbc1 and hsp60 positively regulate expression of survivin in neuroblastoma cells. Int. J. Mol. Sci. 2019, 20, 131. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, S.; Deng, H.; Xu, R. Hsp60-knockdown suppresses proliferation in colorectal cancer cells via activating the adenine/ampk/mtor signaling pathway. Oncol. Lett. 2021, 22, 630. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, A.K.; Woytash, J.; Inigo, J.R.; Gokhale, A.A.; Bshara, W.; Attwood, K.; Wang, J.; Spernyak, J.A.; Rath, E.; et al. A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via hsp60. J. Clin. Investig. 2022, 132, e149906. [Google Scholar] [CrossRef]
- Kang, M.; Jeong, S.; An, J.; Park, S.; Nam, S.; Kwon, K.A.; Sahoo, D.; Ghosh, P.; Kim, J.H. Clinicopathologic significance of heat shock protein 60 as a survival predictor in colorectal cancer. Cancers 2023, 15, 4052. [Google Scholar] [CrossRef]
- Kirchhoff, S.; Gupta, S.; Knowlton, A.A. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002, 105, 2899–2904. [Google Scholar] [CrossRef]
- Mandal, J.P.; Shiue, C.-N.; Chen, Y.-C.; Lee, M.-C.; Yang, H.-H.; Chang, H.-H.; Hu, C.-T.; Liao, P.-C.; Hui, L.-C.; You, R.-I.; et al. Pkcδ mediates mitochondrial ros generation and oxidation of hsp60 to relieve rkip inhibition on mapk pathway for hcc progression. Free. Radic. Biol. Med. 2021, 163, 69–87. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, K.; Chen, Q.; Yang, T.; Lu, F.; Lin, C.; Zhan, J.; Ma, W.; Zhou, T.; Huang, Y. Pqr309, a dual pi3k/mtor inhibitor, synergizes with gemcitabine by impairing the gsk-3β and stat3/hsp60 signaling pathways to treat nasopharyngeal carcinoma. Cell Death Dis. 2024, 15, 237. [Google Scholar] [CrossRef]
- Duan, Y.; Yu, J.; Chen, M.; Lu, Q.; Ning, F.; Gan, X.; Liu, H.; Ye, Y.; Lu, S.; Lash, G.E. Knockdown of heat shock protein family d member 1 (hspd1) promotes proliferation and migration of ovarian cancer cells via disrupting the stability of mitochondrial 3-oxoacyl-acp synthase (oxsm). J. Ovarian Res. 2023, 16, 81. [Google Scholar] [CrossRef]
- Rufo, N.; Korovesis, D.; Van Eygen, S.; Derua, R.; Garg, A.D.; Finotello, F.; Vara-Perez, M.; Rožanc, J.; Dewaele, M.; de Witte, P.A.; et al. Stress-induced inflammation evoked by immunogenic cell death is blunted by the ire1α kinase inhibitor kira6 through hsp60 targeting. Cell Death Differ. 2022, 29, 230–245. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, J.; Xu, Y.; Zhang, X. Paraquat-induced inflammatory response of microglia through hsp60/tlr4 signaling. Hum. Exp. Toxicol. 2018, 37, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Mangione, M.R.; Vilasi, S.; Marino, C.; Librizzi, F.; Canale, C.; Spigolon, D.; Bucchieri, F.; Fucarino, A.; Passantino, R.; Cappello, F.; et al. Hsp60, amateur chaperone in amyloid-beta fibrillogenesis. Biochim. Biophys. Acta BBA-Gen. Subj. 2016, 1860, 2474–2483. [Google Scholar] [CrossRef] [PubMed]
- Marino, C.; Krishnan, B.; Cappello, F.; Taglialatela, G. Hsp60 protects against amyloid β oligomer synaptic toxicity via modification of toxic oligomer conformation. ACS Chem. Neurosci. 2019, 10, 2858–2867. [Google Scholar] [CrossRef]
- Beck, J.S.; Mufson, E.J.; Counts, S.E. Evidence for mitochondrial upr gene activation in familial and sporadic Alzheimer’s disease. Curr. Alzheimer Res. 2016, 13, 610–614. [Google Scholar] [CrossRef]
- Marino Gammazza, A.; Bucchieri, F.; Grimaldi, L.M.; Benigno, A.; Conway de Macario, E.; Macario, A.J.; Zummo, G.; Cappello, F. The molecular anatomy of human hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis. Cell. Mol. Neurobiol. 2012, 32, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Govinda, B.; Kim, J.C.; Kim, T.I.; Lee, N.H.; Lee, J.C.; Yi, H.K.; Jhee, E.C. Oxidative stress resistance through blocking hsp60 translocation followed by sapk/jnk inhibition in aged human diploid fibroblasts. Cell Biochem. Funct. Cell. Biochem. Its Modul. Act. Agents Dis. 2009, 27, 35–39. [Google Scholar] [CrossRef]
- Anraku, I.; Rajasuriar, R.; Dobbin, C.; Brown, R.; Lewin, S.R.; Suhrbier, A. Circulating heat shock protein 60 levels are elevated in hiv patients and are reduced by anti-retroviral therapy. PLoS ONE 2012, 7, e45291. [Google Scholar] [CrossRef]
- Hessel, T.; Dhital, S.; Plank, R.; Dean, D. Immune response to chlamydial 60-kilodalton heat shock protein in tears from nepali trachoma patients. Infect. Immun. 2001, 69, 4996–5000. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, R.; Kloppenburg, G.; Kitslaar, P.J.; Bruggeman, C.A.; Stassen, F. Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through toll-like receptors 2 and 4. Microbes Infect. 2006, 8, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.M.; Gwyer Findlay, E.; McFarlane, A.J.; Fitch, P.M.; Böttcher, B.; Colegrave, N.; Paras, A.; Jozwik, A.; Chiu, C.; Schwarze, J.; et al. Cathelicidins have direct antiviral activity against respiratory syncytial virus in vitro and protective function in vivo in mice and humans. J. Immunol. 2016, 196, 2699–2710. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, C.; Hui, L.; Song, Y.; Fu, Y.; Li, M.; Yang, H.; Wu, J.; Sun, J.; Xu, W.; et al. Cathelicidins target hsp60 to restrict cvb3 transmission via disrupting the exosome and reducing cardiomyocyte apoptosis. J. Virol. 2023, 97, e01433-22. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q. Role of heat shock proteins in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1547–1559. [Google Scholar] [CrossRef] [PubMed]
- Mosorin, M.; Surcel, H.-M.; Laurila, A.; Lehtinen, M.; Karttunen, R.; Juvonen, J.; Paavonen, J.; Morrison, R.P.; Saikku, P.; Juvonen, T. Detection of Chlamydia pneumoniae—Reactive T lymphocytes in human atherosclerotic plaques of carotid artery. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Mossman, K.; Austin, R.C. Fatal attractions that trigger inflammation and drive atherosclerotic disease. Eur. J. Clin. Investig. 2024, 54, e14169. [Google Scholar] [CrossRef] [PubMed]
- Stefano, L.; Racchetti, G.; Bianco, F.; Passini, N.; Gupta, R.S.; Bordignon, P.P.; Meldolesi, J. The surface-exposed chaperone, hsp60, is an agonist of the microglial trem2 receptor. J. Neurochem. 2009, 110, 284–294. [Google Scholar] [CrossRef]
- Merendino, A.M.; Bucchieri, F.; Campanella, C.; Marcianò, V.; Ribbene, A.; David, S.; Zummo, G.; Burgio, G.; Corona, D.F.; de Macario, E.C.; et al. Hsp60 is actively secreted by human tumor cells. PLoS ONE 2010, 5, e9247. [Google Scholar] [CrossRef]
- Quintana, F.J.; Cohen, I.R. The hsp60 immune system network. Trends Immunol. 2011, 32, 89–95. [Google Scholar] [CrossRef]
- Gammazza, A.M.; Rizzo, M.; Citarrella, R.; Rappa, F.; Campanella, C.; Bucchieri, F.; Patti, A.; Nikolic, D.; Cabibi, D.; Amico, G.; et al. Elevated blood hsp60, its structural similarities and cross-reactivity with thyroid molecules, and its presence on the plasma membrane of oncocytes point to the chaperonin as an immunopathogenic factor in hashimoto’s thyroiditis. Cell Stress Chaperones 2014, 19, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Zanin-Zhorov, A.; Cahalon, L.; Tal, G.; Margalit, R.; Lider, O.; Cohen, I.R. Heat shock protein 60 enhances cd4+ cd25+ regulatory t cell function via innate tlr2 signaling. J. Clin. Investig. 2006, 116, 2022–2032. [Google Scholar] [CrossRef] [PubMed]
- Märker, T.; Sell, H.; Zilleßen, P.; Glöde, A.; Kriebel, J.; Ouwens, D.M.; Pattyn, P.; Ruige, J.; Famulla, S.; Roden, M.; et al. Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance. Diabetes 2012, 61, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, Y.; Miyashita, T.; Nejishima, H.; Takeda, Y.; Imai, K.; Ogawa, H. Anti-inflammatory effects of olive-derived hydroxytyrosol on lipopolysaccharide-induced inflammation in raw264. 7 cells. J. Vet. Med. Sci. 2018, 80, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Parra-Perez, A.M.; Pérez-Jiménez, A.; Gris-Cárdenas, I.; Bonel-Pérez, G.C.; Carrasco-Díaz, L.M.; Mokhtari, K.; García-Salguero, L.; Lupiáñez, J.A.; Rufino-Palomares, E.E. Involvement of the pi3k/akt intracellular signaling pathway in the anticancer activity of hydroxytyrosol, a polyphenol from olea europaea, in hematological cells and implication of hsp60 levels in its anti-inflammatory activity. Int. J. Mol. Sci. 2022, 23, 7053. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-H.; Shu, C.-W.; Chao, J.-K.; Lee, C.-H.; Fu, T.-Y.; Liou, H.-H.; Ger, L.-P.; Liu, P.-F. Hspd1 repressed e-cadherin expression to promote cell invasion and migration for poor prognosis in oral squamous cell carcinoma. Sci. Rep. 2019, 9, 8932. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhou, Y.; Fan, S.; Wen, Q. The multiple roles and therapeutic potential of hsp60 in cancer. Biochem. Pharmacol. 2022, 201, 115096. [Google Scholar] [CrossRef] [PubMed]
- Altieri, D.C. The case for survivin as a regulator of microtubule dynamics and cell-death decisions. Curr. Opin. Cell Biol. 2006, 18, 609–615. [Google Scholar] [CrossRef] [PubMed]
- Cappello, F.; Di Stefano, A.; D’Anna, S.E.; Donner, C.F.; Zummo, G. Immunopositivity of heat shock protein 60 as a biomarker of bronchial carcinogenesis. Lancet Oncol. 2005, 6, 816. [Google Scholar] [CrossRef]
- He, Q.; Zhang, M.; Zhang, J.; Chen, Y.; He, J.; Shen, J.; Liu, Y.; Zhong, S.; Jiang, L.; Yang, C.; et al. Correlation between epidermal growth factor receptor mutations and nuclear expression of female hormone receptors in non-small cell lung cancer: A meta-analysis. J. Thorac. Dis. 2015, 7, 1588–1594. [Google Scholar]
- Caruso Bavisotto, C.; Cipolla, C.; Graceffa, G.; Barone, R.; Bucchieri, F.; Bulone, D.; Cabibi, D.; Campanella, C.; Marino Gammazza, A.; Pitruzzella, A.; et al. Immunomorphological pattern of molecular chaperones in normal and pathological thyroid tissues and circulating exosomes: Potential use in clinics. Int. J. Mol. Sci. 2019, 20, 4496. [Google Scholar] [CrossRef] [PubMed]
- Campanella, C.; Rappa, F.; Sciumè, C.; Marino Gammazza, A.; Barone, R.; Bucchieri, F.; David, S.; Curcurù, G.; Caruso Bavisotto, C.; Pitruzzella, A.; et al. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 2015, 121, 3230–3239. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.F.; Machado, C.M.L.; Lomba, A.L.O.; Otake, A.H.; Rangel, M.C. Heat shock proteins mediate intercellular communications within the tumor microenvironment through extracellular vesicles. Appl. Biosci. 2024, 3, 45–58. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Yeh, C.-T. Functional compartmentalization of hsp60-survivin interaction between mitochondria and cytosol in cancer cells. Cells 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Duan, N.; Zhang, C.; Zhang, W. Survivin and tumorigenesis: Molecular mechanisms and therapeutic strategies. J. Cancer 2016, 7, 314. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hu, C.; Li, H. Survivin as a novel target protein for reducing the proliferation of cancer cells. Biomed. Rep. 2018, 8, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, H.; Ip, T.K.-Y.; Cheung, Y.F.; Koohi-Moghadam, M.; Wang, H.; Yang, X.; Tritton, D.N.; Wang, Y.; Wang, Y.; et al. Arsenic trioxide targets hsp60, triggering degradation of p53 and survivin. Chem. Sci. 2021, 12, 10893–10900. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vázquez, M.; Muñiz-Lino, M.A.; Shibayama, M.; Cruz-Tapia, R.O.; Portilla-Robertson, J.; Ortiz-García, J.Z.; Martínez-Ricardez, A.L.; Licéaga-Escalera, C.; Rodríguez, M.A. Overexpression and extra-mitochondrial localization of the chaperonin hsp60 in ameloblastoma. J. Oral Biosci. 2021, 63, 271–277. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Lin, K.-H.; Lai, M.-W.; Yeh, C.-T. Mifepristone inhibits hepatoma growth by enhancing the gr-hsp60-survivin interaction to facilitate survivin degradation. J. Cancer 2023, 14, 3066. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, Y.; Luo, J.; Yang, Y.; Zang, H.; Ma, J.; Fan, S.; Wen, Q. High expression of hsp60 and survivin predicts poor prognosis for oral squamous cell carcinoma patients. BMC Oral Health 2023, 23, 629. [Google Scholar] [CrossRef]
- Yan, M.H.; Wang, X.; Zhu, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free. Radic. Biol. Med. 2013, 62, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Walls, K.C.; Coskun, P.; Gallegos-Perez, J.L.; Zadourian, N.; Freude, K.; Rasool, S.; Blurton-Jones, M.; Green, K.N.; LaFerla, F.M. Swedish Alzheimer mutation induces mitochondrial dysfunction mediated by hsp60 mislocalization of amyloid precursor protein (app) and beta-amyloid. J. Biol. Chem. 2012, 287, 30317–30327. [Google Scholar] [CrossRef] [PubMed]
- Alberti, G.; Paladino, L.; Vitale, A.M.; Caruso Bavisotto, C.; Conway de Macario, E.; Campanella, C.; Macario, A.J.; Marino Gammazza, A. Functions and therapeutic potential of extracellular hsp60, hsp70, and hsp90 in neuroinflammatory disorders. Appl. Sci. 2021, 11, 736. [Google Scholar] [CrossRef]
- Veereshwarayya, V.; Kumar, P.; Rosen, K.M.; Mestril, R.; Querfurth, H.W. Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular β-amyloid-induced inhibition of complex iv and limit apoptosis. J. Biol. Chem. 2006, 281, 29468–29478. [Google Scholar] [CrossRef] [PubMed]
- Campanella, C.; Pace, A.; Caruso Bavisotto, C.; Marzullo, P.; Marino Gammazza, A.; Buscemi, S.; Palumbo Piccionello, A. Heat shock proteins in Alzheimer’s disease: Role and targeting. Int. J. Mol. Sci. 2018, 19, 2603. [Google Scholar] [CrossRef] [PubMed]
- Vilasi, S.; Carrotta, R.; Ricci, C.; Rappa, G.C.; Librizzi, F.; Martorana, V.; Ortore, M.G.; Mangione, M.R. Inhibition of aβ1–42 fibrillation by chaperonins: Human hsp60 is a stronger inhibitor than its bacterial homologue groel. ACS Chem. Neurosci. 2019, 10, 3565–3574. [Google Scholar] [CrossRef] [PubMed]
- Itoh, H.; Komatsuda, A.; Wakui, H.; Miura, A.B.; Tashima, Y. Mammalian hsp60 is a major target for an immunosuppressant mizoribine. J. Biol. Chem. 1999, 274, 35147–35151. [Google Scholar] [CrossRef] [PubMed]
- Wiechmann, K.; Müller, H.; König, S.; Wielsch, N.; Svatoš, A.; Jauch, J.; Werz, O. Mitochondrial chaperonin hsp60 is the apoptosis-related target for myrtucommulone. Cell Chem. Biol. 2017, 24, 614–623.e6. [Google Scholar] [CrossRef] [PubMed]
- Chapman, E.; Farr, G.W.; Furtak, K.; Horwich, A.L. A small molecule inhibitor selective for a variant atp-binding site of the chaperonin groel. Biorgan. Med. Chem. Lett. 2009, 19, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.M.; Sharif, O.; Mak, P.A.; Wang, H.-T.; Engels, I.H.; Brinker, A.; Schultz, P.G.; Horwich, A.L.; Chapman, E. A biochemical screen for groel/groes inhibitors. Biorgan. Med. Chem. Lett. 2014, 24, 786–789. [Google Scholar] [CrossRef]
- Nagumo, Y.; Kakeya, H.; Shoji, M.; Hayashi, Y.; Dohmae, N.; Osada, H. Epolactaene binds human hsp60 cys442 resulting in the inhibition of chaperone activity. Biochem. J. 2005, 387, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Wulff, J.E.; Herzon, S.B.; Siegrist, R.; Myers, A.G. Evidence for the rapid conversion of stephacidin b into the electrophilic monomer avrainvillamide in cell culture. J. Am. Chem. Soc. 2007, 129, 4898–4899. [Google Scholar] [CrossRef] [PubMed]
- Cassiano, C.; Monti, M.C.; Festa, C.; Zampella, A.; Riccio, R.; Casapullo, A. Chemical proteomics reveals heat shock protein 60 to be the main cellular target of the marine bioactive sesterterpene suvanine. ChemBioChem 2012, 13, 1953–1958. [Google Scholar] [CrossRef]
- Hu, D.; Liu, Y.; Lai, Y.T.; Tong, K.C.; Fung, Y.M.; Lok, C.N.; Che, C.M. Anticancer gold (iii) porphyrins target mitochondrial chaperone hsp60. Angew. Chem. Int. Ed. 2016, 55, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- Ban, H.S.; Shimizu, K.; Minegishi, H.; Nakamura, H. Identification of hsp60 as a primary target of o-carboranylphenoxyacetanilide, an hif-1α inhibitor. J. Am. Chem. Soc. 2010, 132, 11870–11871. [Google Scholar] [CrossRef]
- Wang, J.; Jin, L.; Li, X.; Deng, H.; Chen, Y.; Lian, Q.; Ge, R.; Deng, H. Gossypol induces apoptosis in ovarian cancer cells through oxidative stress. Mol. BioSystems 2013, 9, 1489–1497. [Google Scholar] [CrossRef]
- Rather, R.A.; Malik, V.S.; Trikha, D.; Bhat, O.; Dhawan, V. Aqueous terminalia arjuna extract modulates expression of key atherosclerosis-related proteins in a hypercholesterolemic rabbit: A proteomic-based study. PROTEOMICS–Clin. Appl. 2016, 10, 750–759. [Google Scholar] [CrossRef]
- Ding, F.; Li, Y.; Hou, X.; Zhang, R.; Hu, S.; Wang, Y. Oxymatrine inhibits microglia activation via hsp60-tlr4 signaling. Biomed. Rep. 2016, 5, 623–628. [Google Scholar] [CrossRef]
- Younis, N.S.; Mohamed, M.E. Β-caryophyllene as a potential protective agent against myocardial injury: The role of toll-like receptors. Molecules 2019, 24, 1929. [Google Scholar] [CrossRef]
- Mulati, S.; Jiang, R.; Wang, J.; Tao, Y.; Zhang, W. 6-shogaol exhibits a promoting effect with tax via binding hsp60 in non-small-cell lung cancer. Cells 2022, 11, 3678. [Google Scholar] [CrossRef]
- Krishnan-Sivadoss, I.; Mijares-Rojas, I.A.; Villarreal-Leal, R.A.; Torre-Amione, G.; Knowlton, A.A.; Guerrero-Beltrán, C.E. Heat shock protein 60 and cardiovascular diseases: An intricate love-hate story. Med. Res. Rev. 2021, 41, 29–71. [Google Scholar] [CrossRef] [PubMed]
- Polson, E.S.; Kuchler, V.B.; Abbosh, C.; Ross, E.M.; Mathew, R.K.; Beard, H.A.; da Silva, B.; Holding, A.N.; Ballereau, S.; Chuntharpursat-Bon, E.; et al. Khs101 disrupts energy metabolism in human glioblastoma cells and reduces tumor growth in mice. Sci. Transl. Med. 2018, 10, eaar2718. [Google Scholar] [CrossRef] [PubMed]
- Chitre, S.; Ray, A.-M.; Stevens, M.; Doud, E.H.; Liechty, H.; Washburn, A.; Tepper, K.; Sivinski, J.; O’Hagan, H.M.; Georgiadis, M.M.; et al. Bis-aryl-α, β-unsaturated ketone (abk) chaperonin inhibitors exhibit selective cytotoxicity to colorectal cancer cells that correlates with levels of aberrant hsp60 in the cytosol. Biorgan. Med. Chem. 2022, 75, 117072. [Google Scholar] [CrossRef] [PubMed]
- Gammazza, A.M.; Campanella, C.; Barone, R.; Bavisotto, C.C.; Gorska, M.; Wozniak, M.; Carini, F.; Cappello, F.; D’Anneo, A.; Lauricella, M.; et al. Doxorubicin anti-tumor mechanisms include hsp60 post-translational modifications leading to the hsp60/p53 complex dissociation and instauration of replicative senescence. Cancer Lett. 2017, 385, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Campanella, C.; D’Anneo, A.; Gammazza, A.M.; Bavisotto, C.C.; Barone, R.; Emanuele, S.; Cascio, F.L.; Mocciaro, E.; Fais, S.; De Macario, E.C.; et al. The histone deacetylase inhibitor saha induces hsp60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 2016, 7, 28849. [Google Scholar] [CrossRef] [PubMed]
- Caruso Bavisotto, C.; Marino Gammazza, A.; Lo Cascio, F.; Mocciaro, E.; Vitale, A.M.; Vergilio, G.; Pace, A.; Cappello, F.; Campanella, C.; Palumbo Piccionello, A. Curcumin affects hsp60 folding activity and levels in neuroblastoma cells. Int. J. Mol. Sci. 2020, 21, 661. [Google Scholar] [CrossRef] [PubMed]
- Richter, K.; Haslbeck, M.; Buchner, J. The heat shock response: Life on the verge of death. Mol. Cell 2010, 40, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Le-Dao, H.-A.; Dinh, T.-T.; Tran, T.L.; Lee, V.S.; Tran-Van, H. Molecular dynamics simulations reveal novel interacting regions of human prion protein to brucella abortus hsp60 protein. Mol. Biotechnol. 2023, 66, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Arciga, U.; Olvera-Sánchez, S.; Ménde, S.T.; Martinez, F. Characterization of mitochondrial heat shock protein 60 variants in hek293 cells transformed into steroidogenic. Med. Res. Arch. 2023, 11, 9. [Google Scholar]
- Nakano, K.; Iwama, G.K. The 70-kda heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi: Relationship of hsp70 and thermal tolerance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 133, 79–94. [Google Scholar] [CrossRef]
- Tomanek, L.; Sanford, E. Heat-shock protein 70 (hsp70) as a biochemical stress indicator: An experimental field test in two congeneric intertidal gastropods (genus: Tegula). Biol. Bull. 2003, 205, 276–284. [Google Scholar] [CrossRef] [PubMed]
Groups | Chaperonins | Organisms | Localization | Characteristics |
---|---|---|---|---|
Group I | GroEL/GroEs HSP60/HSP10, Cpn60, HSPD1/E | Prokaryotes, Eukaryotes | Cytoplasm, Mitochondria, Nucleus, and Chloroplast | Homo-oligomeric, GroES/HSP10-dependent, seven subunits per ring, assist folding |
Group II | TRiC/CCT, TCP1, | Archaea, Eukaryotes cytosol | Cytosol | Hetero-oligomeric, GroES/HSP10-independent, eight to nine subunits per ring, binds to actin and stabilizes the cytoskeleton |
Stress Protein | Types of Disease | Role of HSP60 | References |
---|---|---|---|
Molecular chaperonin HSP60/cpn60 | Metabolic diseases Diabetes | Inhibition of MEK/ERK induces HSP60 levels in insulin resistance | [93] |
Reducing HSP60 promotes hyperglycemia in the brain and mitochondrial dysfunctions | [94] | ||
Interaction with Sirt and mitochondria energy metabolism | [97,98] | ||
Infectious diseases Gastrointestinal diseases, Takayasu’s arteritis | Cell surface expression of HSP60 in bacterial disease | [99,100] | |
Induced HSp60 in gastric dysplasia and gastric cancer | [101,102] | ||
Regulate viral RNA replication in foot-and-mouth disease | [103] | ||
Cardiovascular diseases and atherosclerosis | Activation of TLR2 and TLR4 pathways | [104,105] | |
Mitochondrial dysfunctions and apoptosis in cardiomyocytes | [106] | ||
Induced expression of inflammatory cytokines and TNF-α secretion | [107,108] | ||
Inflammatory diseases | HSP60 triggers Cytokine signaling and their release | [109] | |
Hepatocyte activation of p38 MAPK and IκB and NF-κB in response to oxidative stress in mitochondria | [110] | ||
Interaction with MHC-II, reducing pro-inflammatory cytokines | [111] | ||
Activates NF-κB and NLRP3 signaling pathways | [112,113] | ||
In RA, it promotes secretion of IL-4 and IL-10 | [114,115] | ||
Cancers almost all types of cancer | Interact with survivin and stabilize it in neuroblastoma | [116] | |
Disruption of mitochondrial protein homeostasis in colorectal cancer and prostate cancer promotes cell growth | [117,118,119] | ||
Interact of HSP60 with cytochrome C and DAXX; linked with its pro- and anti-apoptotic functions | [120] | ||
Regulate the cell cycle and mitoROS in HCC | [121] | ||
STAT3 dependent role in NPC | [122] | ||
Regulation of lipogenesis in OC | [123] | ||
Suppresses pro-inflammatory response in cancer via IKKβ-mediated activation of Nf-kB | [124] | ||
Neurodegenerative diseases | Pro-inflammatory cytokines IL-1β, IL-6, and TNF-α bind to Aβ oligomers | [125] | |
Regulate the LTP and synaptic plasticity in the frontal cortex | [126,127] | ||
Maintaining the complex IV and PDH | [92] | ||
Regulate the expression of UPR genes | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, M.K.; Shin, Y.; Han, S.; Ha, J.; Tiwari, P.K.; Kim, S.S.; Kang, I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int. J. Mol. Sci. 2024, 25, 5483. https://doi.org/10.3390/ijms25105483
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. International Journal of Molecular Sciences. 2024; 25(10):5483. https://doi.org/10.3390/ijms25105483
Chicago/Turabian StyleSingh, Manish Kumar, Yoonhwa Shin, Sunhee Han, Joohun Ha, Pramod K. Tiwari, Sung Soo Kim, and Insug Kang. 2024. "Molecular Chaperonin HSP60: Current Understanding and Future Prospects" International Journal of Molecular Sciences 25, no. 10: 5483. https://doi.org/10.3390/ijms25105483
APA StyleSingh, M. K., Shin, Y., Han, S., Ha, J., Tiwari, P. K., Kim, S. S., & Kang, I. (2024). Molecular Chaperonin HSP60: Current Understanding and Future Prospects. International Journal of Molecular Sciences, 25(10), 5483. https://doi.org/10.3390/ijms25105483