Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber
Abstract
:1. Introduction
2. Results and Discussion
2.1. Photopolymerizing Compositions Based on Di(meth)acrylates and FCPI
2.1.1. Kinetics of Photopolymerization
2.1.2. Properties of Photo-Cured Compositions
2.2. Formation and Thermal Stability of New Photo-Curable Coatings of Silica Optical Fiber
3. Materials and Methods
3.1. Materials
3.2. Experimental
3.2.1. Synthesis and Characterization of FCPI
3.2.2. Kinetics of Radical Photopolymerization
3.2.3. Polymer Films Preparation
3.2.4. Fiber Coatings Fabrication
3.3. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fouassier, J.-P. Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications; Hanser Publishers: Munich, Germany, 1995; 275p. [Google Scholar]
- Kaur, M.; Srivastava, A. Photopolymerization: A review. J. Macromol. Sci. Part C Polym. Rev. 2002, 42, 481–512. [Google Scholar] [CrossRef]
- Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules 2010, 43, 6245–6260. [Google Scholar] [CrossRef]
- Pagac, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Layani, M.; Wang, X.; Magdassi, S. Novel materials for 3D printing by photopolymerization. Adv. Mater. 2018, 30, 1706344. [Google Scholar] [CrossRef] [PubMed]
- Shaukat, U.; Rossegger, E.; Schlögl, S. A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers 2022, 14, 2449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhu, L.; Li, Z.; Wang, S.; Shi, J.; Tang, W.; Li, N.; Yang, J. The recent development of vat photopolymerization: A review. Addit. Manuf. 2021, 48, 102423. [Google Scholar] [CrossRef]
- Kantaros, A. 3D Printing in Regenerative Medicine: Technologies and Resources Utilized. Int. J. Mol. Sci. 2022, 23, 14621. [Google Scholar] [CrossRef] [PubMed]
- Kudłacik-Kramarczyk, S.; Krzan, M.; Jamroży, M.; Przybyłowicz, A.; Drabczyk, A. Exploring the Potential of Royal-Jelly-Incorporated Hydrogel Dressings as Innovative Wound Care Materials. Int. J. Mol. Sci. 2023, 24, 8738. [Google Scholar] [CrossRef] [PubMed]
- Paun, I.A.; Popescu, R.C.; Calin, B.S.; Mustaciosu, C.C.; Dinescu, M.; Luculescu, C.R. 3D biomimetic magnetic structures for static magnetic field stimulation of osteogenesis. Int. J. Mol. Sci. 2018, 19, 495. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, P.; Gerasimov, J.Y.; van de Lagemaat, M.; Grotenhuis, A.; Rustema-Abbing, M.; van der Mei, H.C.; Busscher, H.J.; Herrmann, A.; Ren, Y. 3D-printable antimicrobial composite resins. Adv. Funct. Mater. 2015, 25, 6756–6767. [Google Scholar] [CrossRef]
- Breloy, L.; Brezova, V.; Barbierikova, Z.; Ito, Y.; Akimoto, J.; Chiappone, A.; Abbad-Andaloussi, S.; Malval, J.-P.; Versace, D.-L. Methacrylated quinizarin derivatives for visible-light mediated photopolymerization: Promising applications in 3D-printing biosourced materials under LED@ 405 nm. ACS Appl. Polym. Mater. 2021, 4, 210–228. [Google Scholar] [CrossRef]
- Cosola, A.; Sangermano, M.; Terenziani, D.; Conti, R.; Messori, M.; Grützmacher, H.; Pirri, C.F.; Chiappone, A. DLP 3D–printing of shape memory polymers stabilized by thermoreversible hydrogen bonding interactions. Appl. Mater. Today 2021, 23, 101060. [Google Scholar] [CrossRef]
- Grachev, D.I.; Chizhmakov, E.A.; Stepanov, D.Y.; Buslovich, D.G.; Khulaev, I.V.; Deshev, A.V.; Kirakosyan, L.G.; Arutyunov, A.S.; Kardanova, S.Y.; Panin, K.S. Dental material selection for the additive manufacturing of removable complete dentures (RCD). Int. J. Mol. Sci. 2023, 24, 6432. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef] [PubMed]
- Generalova, A.N.; Demina, P.A.; Akasov, R.A.; Khaydukov, E.V. Photopolymerization in 3D printing of tissue-engineered constructs for regenerative medicine. Russ. Chem. Rev. 2023, 92, RCR5068. [Google Scholar] [CrossRef]
- Lakkala, P.; Munnangi, S.R.; Bandari, S.; Repka, M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int. J. Pharm. X 2023, 5, 100159. [Google Scholar] [CrossRef]
- Pereira, R.F.; Bártolo, P.J. 3D photo-fabrication for tissue engineering and drug delivery. Engineering 2015, 1, 90–112. [Google Scholar] [CrossRef]
- Xu, X.; Awad, A.; Robles-Martinez, P.; Gaisford, S.; Goyanes, A.; Basit, A.W. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J. Control. Release 2021, 329, 743–757. [Google Scholar] [CrossRef]
- Zamboulis, A.; Michailidou, G.; Koumentakou, I.; Bikiaris, D.N. Polysaccharide 3D printing for drug delivery applications. Pharmaceutics 2022, 14, 145. [Google Scholar] [CrossRef]
- West, J.L.; Hubbell, J.A. Photopolymerized hydrogel materials for drug delivery applications. React. Polym. 1995, 25, 139–147. [Google Scholar] [CrossRef]
- Janani, R.; Majumder, D.; Scrimshire, A.; Stone, A.; Wakelin, E.; Jones, A.; Wheeler, N.; Brooks, W.; Bingham, P. From acrylates to silicones: A review of common optical fibre coatings used for normal to harsh environments. Prog. Org. Coat. 2023, 180, 107557. [Google Scholar] [CrossRef]
- Khudyakov, I.V. Fast photopolymerization of acrylate coatings: Achievements and problems. Prog. Org. Coat. 2018, 121, 151–159. [Google Scholar] [CrossRef]
- Kraśkiewicz, A.; Kowalczyk, A.; Kowalczyk, K.; Schmidt, B. Novel solvent-free UV-photocurable varnish coatings based on acrylic telomers–Synthesis and properties. Prog. Org. Coat. 2023, 175, 107365. [Google Scholar] [CrossRef]
- Ligon-Auer, S.C.; Schwentenwein, M.; Gorsche, C.; Stampfl, J.; Liska, R. Toughening of photo-curable polymer networks: A review. Polym. Chem. 2016, 7, 257–286. [Google Scholar] [CrossRef]
- Stolov, A.A.; Wrubel, J.A.; Simoff, D.A.; Lago, R.J. Acrylate-based specialty optical fiber coatings for harsh environments. Int. Wire Cable Symp. 2016, 27, 27–34. [Google Scholar]
- Gouzman, I.; Grossman, E.; Verker, R.; Atar, N.; Bolker, A.; Eliaz, N. Advances in polyimide-based materials for space applications. Adv. Mater. 2019, 31, 1807738. [Google Scholar] [CrossRef] [PubMed]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Dong, Z.; He, Q.; Shen, D.; Gong, Z.; Zhang, D.; Zhang, W.; Ono, T.; Jiang, Y. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications. Microsyst. Nanoeng. 2023, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, X.; Wang, R.; Lu, C.; Wen, X.; Tu, G. Research progress and application of polyimide-based nanocomposites. Nanomaterials 2023, 13, 656. [Google Scholar] [CrossRef]
- Nagella, S.R.; Ha, C.-S. Structural designs of transparent polyimide films with low dielectric properties and low water absorption: A review. Nanomaterials 2023, 13, 2090. [Google Scholar] [CrossRef]
- Zhang, T.; Chai, Y.; Wang, S.; Yu, J.; Jiang, S.; Zhu, W.; Fang, Z.; Li, B. Recent Study Advances in Flexible Sensors Based on Polyimides. Sensors 2023, 23, 9743. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Chen, Y.; Zhang, C.; Jiang, S.; Hou, H.; Duan, G. Porous monoliths from polyimide: Synthesis, modifications and applications. Prog. Mater. Sci. 2024, 144, 101284. [Google Scholar] [CrossRef]
- Van Vlierberghe, S.; Sirova, M.; Rossmann, P.; Thielecke, H.; Boterberg, V.; Rihova, B.; Schacht, E.; Dubruel, P. Surface modification of polyimide sheets for regenerative medicine applications. Biomacromolecules 2010, 11, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Wang, J.; Gu, S.; Kaspar, R.B.; Zhuang, Z.; Zheng, J.; Guo, H.; Qiu, S.; Yan, Y. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352–8355. [Google Scholar] [CrossRef]
- Dudova, D.S.; Bardakova, K.N.; Kholkhoev, B.C.; Ochirov, B.D.; Gorenskaia, E.N.; Farion, I.A.; Burdukovskii, V.F.; Timashev, P.S.; Minaev, N.V.; Kupriyanova, O.S. UV-laser formation of 3D structures based on thermally stable heterochain polymers. J. Appl. Polym. Sci. 2018, 135, 46463. [Google Scholar] [CrossRef]
- Herzberger, J.; Meenakshisundaram, V.; Williams, C.B.; Long, T.E. 3D printing all-aromatic polyimides using stereolithographic 3D printing of polyamic acid salts. ACS Macro Lett. 2018, 7, 493–497. [Google Scholar] [CrossRef]
- Hegde, M.; Meenakshisundaram, V.; Chartrain, N.; Sekhar, S.; Tafti, D.; Williams, C.B.; Long, T.E. 3D printing all-aromatic polyimides using mask-projection stereolithography: Processing the nonprocessable. Adv. Mater. 2017, 29, 1701240. [Google Scholar] [CrossRef]
- Abdulrhman, M.; Kaniyoor, A.; Fernández-Posada, C.M.; Acosta-Mora, P.; McLean, I.; Weston, N.; Desmulliez, M.P.; Marques-Hueso, J. Low-power laser manufacturing of copper tracks on 3D printed geometry using liquid polyimide coating. Nanoscale Adv. 2023, 5, 2280–2287. [Google Scholar] [CrossRef]
- Weyhrich, C.W.; Will, J.W.; Nayyar, G.; Westover, C.C.; Patterson, S.; Arrington, C.B.; Williams, C.B.; Long, T.E. Temporally Stable Supramolecular Polymeric Salts Enabling High-Performance 3D All-Aromatic Polyimide Lattices. Small 2023, 19, 2303188. [Google Scholar] [CrossRef]
- Kholkhoev, B.C.; Bardakova, K.N.; Minaev, N.V.; Kupriyanova, O.S.; Gorenskaia, E.N.; Zharikova, T.M.; Timashev, P.S.; Burdukovskii, V.F. Robust thermostable polymer composition based on poly [N, N′-(1, 3-phenylene) isophthalamide] and 3, 3-bis (4-acrylamidophenyl) phthalide for laser 3D printing. Mendeleev Commun. 2019, 29, 223–225. [Google Scholar] [CrossRef]
- Bardakova, K.N.; Kholkhoev, B.C.; Farion, I.A.; Epifanov, E.O.; Korkunova, O.S.; Efremov, Y.M.; Minaev, N.V.; Solovieva, A.B.; Timashev, P.S.; Burdukovskii, V.F. 4D printing of shape-memory semi-interpenetrating polymer networks based on aromatic heterochain polymers. Adv. Mater. Technol. 2022, 7, 2100790. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, Y.; Song, F.; Li, J.; Zhang, J.; Sun, Y.; Luo, G.; Shen, Q. Study on chemical graft structure modification and mechanical properties of photocured polyimide. ACS Omega 2022, 7, 9582–9593. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, Y.; Wang, T.; Yang, Z.; Wang, Q.; Zhang, X. Dual-method molding of 4D shape memory polyimide ink. Mater. Des. 2020, 191, 108606. [Google Scholar] [CrossRef]
- Kholkhoev, B.C.; Matveev, Z.A.; Nikishina, A.N.; Burdukovskii, V.F. Polybenzimidazole-based thiol-ene photosensitive composition for DLP 3D printing. Mendeleev Commun. 2022, 32, 813–815. [Google Scholar] [CrossRef]
- Korkunova, O.S.; Kholkhoev, B.C.; Burdukovskii, V.F. Photosensitive thiol–ene composition for DLP 3D printing of thermally stable polymer materials. Mendeleev Commun. 2022, 32, 231–233. [Google Scholar] [CrossRef]
- Guo, Y.; Ji, Z.; Zhang, Y.; Wang, X.; Zhou, F. Solvent-free and photocurable polyimide inks for 3D printing. J. Mater. Chem. A 2017, 5, 16307–16314. [Google Scholar] [CrossRef]
- Chung, J.H.; Ma, S.Y.; Bail, R.; Lee, D.H. Synthesis of Crosslinkable Polyetherimide and Application as an Additive in 3D Printing of Photopolymers. Macromol. Res. 2022, 30, 43–50. [Google Scholar] [CrossRef]
- Kholkhoev, B.C.; Bardakova, K.N.; Epifanov, E.O.; Matveev, Z.A.; Shalygina, T.A.; Atutov, E.B.; Voronina, S.Y.; Timashev, P.S.; Burdukovskii, V.F. A photosensitive composition based on an aromatic polyamide for LCD 4D printing of shape memory mechanically robust materials. Chem. Eng. J. 2023, 454, 140423. [Google Scholar] [CrossRef]
- Kholkhoev, B.C.; Bardakova, K.N.; Nikishina, A.N.; Matveev, Z.A.; Efremov, Y.M.; Frolova, A.A.; Akovantseva, A.A.; Gorenskaia, E.N.; Verlov, N.A.; Timashev, P.S. 4D-printing of mechanically durable high-temperature shape memory polymer with good irradiation resistance. Appl. Mater. Today 2024, 36, 102022. [Google Scholar] [CrossRef]
- Vygodskii, Y.S.; Matieva, A.; Volkova, T.; Sakharova, A.; Sapozhnikov, D. (Co) polymerization of styrene in the presence of polyheteroarylenes. Polym. Sci. Ser. A 2004, 46, 352–360. [Google Scholar]
- Vygodskii, Y.S.; Sapozhnikov, D.A.; Bayminov, B.A.; Semjonov, S.L.; Kosolapov, A.F.; Plastinin, E.A. In situ synthesis of copolymers based on polyvinylpyrrolidone and condensation polymers and their use as optical fiber coatings. Prog. Org. Coat. 2016, 99, 210–215. [Google Scholar] [CrossRef]
- Vygodskii, Y.S.; Volkova, T.; Sakharova, A.; Sapozhnikov, D.; Nikiforova, G.; Buzin, M. Three-dimensional copolymerization of methyl methacrylate and allyl methacrylate in the presence of aromatic polyimide. Polym. Sci. Ser. A 2004, 46, 681–687. [Google Scholar]
- Vygodskii, Y.S.; Volkova, T.Y.V.; Batalova, T.Y.L.; Zabegaeva, O.N.; Belavtseva, E.M.; Sakharova, A.A.; Gasanov, R.G.; Sapozhnikov, D.A.; Voytekunas, V.Y. Copolymers obtained by ε-caprolactam and methyl methacrylate polymerization in the presence of polyimides. High Perform. Polym. 2009, 21, 579–595. [Google Scholar] [CrossRef]
- Vygodskii, Y.S.; Volkova, T.; Sakharova, A.; Sapozhnikov, D.; Matieva, A. Influence of poly (heteroarylenes) with different molecular masses on free-radical polymerization of methyl methacrylate. Polym. Sci. Ser. A 2002, 44, 1249–1254. [Google Scholar]
- Sapozhnikov, D.; Volkova, T.; Sakharova, A.; Gasanov, R.; Voytekunas, V.Y.; Abadie, M.; Sanchez, J.-Y.; Vygodskii, Y.S. Photopolymerization of (meth) acrylates in the presence of polyheteroarylenes. Polym. Sci. Ser. B 2009, 51, 1–12. [Google Scholar] [CrossRef]
- Sapozhnikov, D.; Bayminov, B.; Chuchalov, A.; Semjonov, S.; Kosolapov, A.; Zabegaeva, O.; Vygodskii, Y.S. Synthesis of Organosoluble Polyimides and Optical Fiber Protective Coatings on Their Basis. Polym. Sci. Ser. B 2020, 62, 39–46. [Google Scholar] [CrossRef]
- Liu, J.; Wang, K.; Lin, L.; Liu, R.; Xie, Y.; Gao, F.; Liu, X. Synthesis and property of fluorinated polyimides with double bond end groups for UV-cured coating. Prog. Org. Coat. 2016, 99, 103–109. [Google Scholar] [CrossRef]
- Semjonov, S.; Sapozhnikov, D.; Erin, D.Y.; Zabegaeva, O.; Kushtavkina, I.; Nishchev, K.; Vygodskii, Y.S.; Dianov, E. High-temperature polyimide coating for optical fibres. Quantum Electron. 2015, 45, 330. [Google Scholar] [CrossRef]
- Heller, C.; Schwentenwein, M.; Russmüller, G.; Koch, T.; Moser, D.; Schopper, C.; Varga, F.; Stampfl, J.; Liska, R. Vinylcarbonates and vinylcarbamates: Biocompatible monomers for radical photopolymerization. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 650–661. [Google Scholar] [CrossRef]
- Maruyama, K.; Shindo, H.; Otsuki, T.; Maruyama, T. Chemically Induced Dynamic Nuclear Polarization in the Photochemical Reaction of Phenanthraquinone with Hydrogen Donors. I. Kinetics of Nuclear Spin Polarization. Bull. Chem. Soc. Jpn. 1971, 44, 2756–2760. [Google Scholar] [CrossRef]
- Chesnokov, S.A.; Kovylin, R.S.; Mamysheva, O.G.N.; Fukin, G.K.; Cherkasov, V.K.; Lyssenko, K.A. The photopolymerization kinetics features of naphthyl (Meth) acrylates in melts. J. Polym. Res. 2014, 21, 441. [Google Scholar] [CrossRef]
- Matthewson, M.J.; Kurkjian, C.R.; Gulati, S.T. Strength measurement of optical fibers by bending. J. Am. Ceram. Soc. 1986, 69, 815–821. [Google Scholar] [CrossRef]
- Murphy, E.; Shah, P.; Kelly, J.; Anderson, T. New heat resistant UV cure coatings as protective overcoats for optical fiber applications. In Proceedings of the 58th International Wire & Cable Symposium, Charlotte, NC, USA, 8–11 November 2009; pp. 90–94. [Google Scholar]
- Sohma, K.; Hattori, T. Heat-resistant optical fiber coated with newly developed UV curable silicone resins. IEICE Tech. Rep. 2011, 111, 5–10. [Google Scholar]
- Stolov, A.A.; Wrubel, J.A.; Simoff, D.A. Thermal stability of specialty optical fiber coatings: Observation of kinetic compensation effect. J. Therm. Anal. Calorim. 2016, 124, 1411–1423. [Google Scholar] [CrossRef]
- Stolov, A.A.; Simoff, D.A. Thermal stability of optical fiber coatings: Comparison of experimental thermogravimetric approaches. J. Therm. Anal. Calorim. 2021, 146, 1773–1789. [Google Scholar] [CrossRef]
- Yudin, V.; Kovylin, R.; Baten’kin, M.; Kulikova, T.; Aleynik, D.Y.; Egorikhina, M.; Rubtsova, Y.P.; Charykova, I.; Mlyavykh, S.; Chesnokov, S. Visible-light induced synthesis of biocompatible porous polymers from oligocarbonatedimethacrylate (OCM-2) in the presence of dialkyl phthalates. Polymer 2020, 192, 122302. [Google Scholar] [CrossRef]
- ISO 527:3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. ISO: Geneva, Switzerland, 2018.
- Tang, Z. Two-Point Bend Studies of Glass Fibers. Doctoral Dissertation, Missouri University of Science and Technology, Rolla, MO, USA, 2011. [Google Scholar]
- NIST/SEMATECH e-Handbook of Statistical Methods. Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda33u.htm (accessed on 11 May 2024).
Photopolymerizing Composition | Wmax × 102, s−1 | Plim, % |
---|---|---|
EGDMA | 2.38 | 64 |
EGDMA–FCPI15% | 1.86 | 59 |
TIEGDMA | 3.37 | 77 |
TIEGDMA–FCPI15% | 2.93 | 70 |
TTEGDMA | 4.95 | 98 |
TTEGDMA–FCPI15% | 4.35 | 94 |
TTEGDA | 6.81 | 100 |
TTEGDA–FCPI15% | 8.46 | 100 |
BDDMA | 2.34 | 75 |
BDDMA–FCPI15% | 2.64 | 70 |
BDDA | 7.51 | 98 |
BDDA–FCPI15% | 7.66 | 97 |
BDDA–FCPI23% | 3.55 | 86 |
Sample | σ, MPa | E, GPa | ε, % | Tonset, °C |
---|---|---|---|---|
Poly(DeSolite 3471-3-14) | 21.6 | 0.1 | 81.0 | 290 |
Poly(EGDMA) | 20.9 | 2.0 | 1.1 | 260 |
Poly(EGDMA–FCPI15%) | Brittle | 130, 290 | ||
Poly(TIEGDMA) | 24.6 | 1.6 | 1.8 | 240 |
Poly(TIEGDMA–FCPI15%) | 37.7 | 1.7 | 3.1 | 160, 240 |
Poly(TTEGDA) | 19.4 | 0.5 | 17.5 | 330 |
Poly(TTEGDA–FCPI15%) | 24.6 | 1.1 | 4.9 | 360 |
Poly(BDDMA) | 24.5 | 2.1 | 1.4 | 260 |
Poly(BDDMA–FCPI15%) | Brittle | 140, 270 | ||
Poly(BDDA) | 20.2 | 1.5 | 1.6 | 370 |
Poly(BDDA–FCPI23%) | 44.0 | 1.9 | 3.6 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapozhnikov, D.A.; Melnik, O.A.; Chuchalov, A.V.; Kovylin, R.S.; Chesnokov, S.A.; Khanin, D.A.; Nikiforova, G.G.; Kosolapov, A.F.; Semjonov, S.L.; Vygodskii, Y.S. Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber. Int. J. Mol. Sci. 2024, 25, 5494. https://doi.org/10.3390/ijms25105494
Sapozhnikov DA, Melnik OA, Chuchalov AV, Kovylin RS, Chesnokov SA, Khanin DA, Nikiforova GG, Kosolapov AF, Semjonov SL, Vygodskii YS. Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber. International Journal of Molecular Sciences. 2024; 25(10):5494. https://doi.org/10.3390/ijms25105494
Chicago/Turabian StyleSapozhnikov, Dmitriy A., Olga A. Melnik, Alexander V. Chuchalov, Roman S. Kovylin, Sergey A. Chesnokov, Dmitriy A. Khanin, Galina G. Nikiforova, Alexey F. Kosolapov, Sergey L. Semjonov, and Yakov S. Vygodskii. 2024. "Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber" International Journal of Molecular Sciences 25, no. 10: 5494. https://doi.org/10.3390/ijms25105494
APA StyleSapozhnikov, D. A., Melnik, O. A., Chuchalov, A. V., Kovylin, R. S., Chesnokov, S. A., Khanin, D. A., Nikiforova, G. G., Kosolapov, A. F., Semjonov, S. L., & Vygodskii, Y. S. (2024). Soluble Fluorinated Cardo Copolyimide as an Effective Additive to Photopolymerizable Compositions Based on Di(meth)acrylates: Application for Highly Thermostable Primary Protective Coating of Silica Optical Fiber. International Journal of Molecular Sciences, 25(10), 5494. https://doi.org/10.3390/ijms25105494