MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program
Abstract
:1. Introduction
2. Results
2.1. Predictors of miR Change after 2 Years
2.2. Correlations between Baseline Clinical Characteristics and Changes in MiRs
3. Discussion
3.1. let-7c-5p
3.2. miR-130b-3p
3.3. miR-151a-3p
3.4. miR-17-5p
3.5. miR-20b-5p
3.6. miR-22-3p
3.7. miR-222-3p
3.8. miR-29b-3p
3.9. miR-320a-3p
3.10. miR-320c
3.11. miR-92a-3p
3.12. miR-93-5p
3.13. Limitations and Future Directions
4. Materials and Methods
4.1. Diabetes Prevention Program
4.2. Molecular Data Collection
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020; Centers for Disease Control and Prevention, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2020.
- Aroda, V.R.; Knowler, W.C.; Crandall, J.P.; Perreault, L.; Edelstein, S.L.; Jeffries, S.L.; Molitch, M.E.; Pi-Sunyer, X.; Darwin, C.; Heck-man-Stoddard, B.M.; et al. Metformin for diabetes prevention: Insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia 2017, 60, 1601–1611. [Google Scholar] [CrossRef]
- Diabetes Prevention Program Research Group. Long-term Effects of Metformin on Diabetes Prevention: Identification of Subgroups That Benefited Most in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care 2019, 42, 601–608. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Madsen, K.S.; Chi, Y.; Metzendorf, M.-I.; Richter, B.; Hemmingsen, B. Metformin for prevention or delay of type 2 diabetes mellitus and its associated complications in persons at increased risk for the development of type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2019, 12, CD008558. [Google Scholar] [CrossRef]
- Correia, S.; Carvalho, C.; Santos, M.S.; Seica, R.; Oliveira, C.R.; Moreira, P.I. Mechanisms of action of metformin in type 2 diabetes and associated complications: An overview. Mini-Reviews Med. Chem. 2008, 8, 1343–1354. [Google Scholar] [CrossRef]
- He, L. Metformin and Systemic Metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef]
- Long, Y.C.; Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Investig. 2006, 116, 1776–1783. [Google Scholar] [CrossRef]
- Szewczuk, M.; Boguszewska, K.; Kazmierczak-Baranska, J.; Karwowski, B.T. The role of AMPK in metabolism and its influence on DNA damage repair. Mol. Biol. Rep. 2020, 47, 9075–9086. [Google Scholar] [CrossRef]
- Flowers, E.; Allen, I.E.; Kanaya, A.M.; Aouizerat, B.E. Circulating microRNAs are associated with variability in fasting blood glucose over 12-months and target pathways related to type 2 diabetes: A pilot study. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211055837. [Google Scholar] [CrossRef]
- Flowers, E.; Asam, K.; Allen, I.E.; Kanaya, A.M.; Aouizerat, B.E. Co-expressed microRNAs, target genes and pathways related to metabolism, inflammation and endocrine function in individuals at risk for type 2 diabetes. Mol. Med. Rep. 2022, 25, 156. [Google Scholar] [CrossRef]
- Flowers, E.; Kanaya, A.M.; Fukuoka, Y.; Allen, I.E.; Cooper, B.; Aouizerat, B.E. Preliminary evidence supports circulating microRNAs as prognostic biomarkers for type 2 diabetes. Obes. Sci. Pr. 2017, 3, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Aouizerat, B.E.; Kanaya, A.M.; Florez, J.C.; Gong, X.; Zhang, L. MicroRNAs Associated With Incident Diabetes in the Diabetes Prevention Program. J. Clin. Endocrinol. Metab. 2022, 108, e306–e312. [Google Scholar] [CrossRef] [PubMed]
- Alimoradi, N.; Firouzabadi, N.; Fatehi, R. Metformin and insulin-resistant related diseases: Emphasis on the role of microRNAs. Biomed. Pharmacother. 2021, 139, 111662. [Google Scholar] [CrossRef]
- Chien, H.-Y.; Lee, T.-P.; Chen, C.-Y.; Chiu, Y.-H.; Lin, Y.-C.; Lee, L.-S.; Li, W.-C. Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. J. Chin. Med. Assoc. 2015, 78, 204–211. [Google Scholar] [CrossRef]
- Ghai, V.; Kim, T.-K.; Etheridge, A.; Nielsen, T.; Hansen, T.; Pedersen, O.; Galas, D.; Wang, K. Extracellular Vesicle Encapsulated MicroRNAs in Patients with Type 2 Diabetes Are Affected by Metformin Treatment. J. Clin. Med. 2019, 8, 617. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Katsiki, N.; Behnam, B.; Iranpanah, H.; Sahebkar, A. MicroRNAs and type 2 diabetes mellitus: Molecular mechanisms and the effect of antidiabetic drug treatment. Metabolism 2018, 87, 48–55. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Xu, B.; Li, L. A New Role for an Old Drug: Metformin Targets MicroRNAs in Treating Diabetes and Cancer. Drug Dev. Res. 2015, 76, 263–269. [Google Scholar] [CrossRef]
- Demirsoy, I.H.; Ertural, D.Y.; Balci, Ş.; Çınkır, Ş.; Sezer, K.; Tamer, L.; Aras, N. Profiles of Circulating miRNAs Following Metformin Treatment in Patients with Type 2 Diabetes. J. Med. Biochem. 2018, 37, 499–506. [Google Scholar] [CrossRef]
- Pedersen, H.K.; Gudmundsdottir, V.; Nielsen, H.B.; Hyotylainen, T.; Nielsen, T.; Jensen, B.A.H.; Forslund, K.; Hildebrand, F.; Prifti, E.; Falony, G.; et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016, 535, 376–381. [Google Scholar] [CrossRef]
- Giuliani, A.; Londin, E.; Ferracin, M.; Mensà, E.; Prattichizzo, F.; Ramini, D.; Marcheselli, F.; Recchioni, R.; Rippo, M.R.; Bonafè, M.; et al. Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs. Sci. Rep. 2020, 10, 21782. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, H.; Xi, J.; Bai, X. miR-140-5p Attenuates High-Glucose-Induced Endothelial-to-Mesenchymal Transition in Human Retinal Microvascular Endothelial Cells by Promoting Autophagy Through the Inhibition of TGF-β2/Smad3 Pathway. Di-Abetol. Metab. Syndr. 2022, 14, 13. [Google Scholar]
- Frost, R.J.A.; Olson, E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA 2011, 108, 21075–21080. [Google Scholar] [CrossRef] [PubMed]
- Vulf, M.; Bograya, M.; Komar, A.; Khaziakhmatova, O.; Malashchenko, V.; Yurova, K.; Sirotkina, A.; Minchenko, A.; Kirienkova, E.; Gazatova, N.; et al. NGR4 and ERBB4 as Promising Diagnostic and Therapeutic Targets for Metabolic Disorders. Front. Biosci. 2023, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Hooten, N.N.; Martin-Montalvo, A.; Dluzen, D.F.; Zhang, Y.; Bernier, M.; Zonderman, A.B.; Becker, K.G.; Gorospe, M.; Cabo, R.; Evans, M.K. Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence. Aging Cell 2016, 15, 572–581. [Google Scholar] [CrossRef] [PubMed]
- Abdelmohsen, K.; Gorospe, M. Noncoding RNA control of cellular senescence. Wiley Interdiscip. Rev. RNA 2015, 6, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Prabu, P.; Rome, S.; Sathishkumar, C.; Aravind, S.; Mahalingam, B.; Shanthirani, C.S.; Gastebois, C.; Villard, A.; Mohan, V.; Balasubramanyam, M. Circulating MiRNAs of ‘Asian Indian Phenotype’ Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes. PLoS ONE 2015, 10, e0128372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhou, Z.; Wang, J.; Li, S. MiR-130b promotes obesity associated adipose tissue inflammation and insulin resistance in diabetes mice through alleviating M2 macrophage polarization via repression of PPAR-γ. Immunol. Lett. 2016, 180, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, J.; Li, L.; Gao, J.; Song, D.; Xu, D.; Wang, X.; Wang, W.; Cao, L.; Qin, X.; et al. MiRNA-133a-5p regulates car-diomyocyte hypertrophy in diabetes through cytochrome c oxidase subunit 4 homologous gene. Eur. J. Heart Fail. 2019, 21, 1507–1517. [Google Scholar] [CrossRef] [PubMed]
- Ofori, J.K.; Salunkhe, V.A.; Bagge, A.; Vishnu, N.; Nagao, M.; Mulder, H.; Wollheim, C.B.; Eliasson, L.; Esguerra, J.L.S. Elevated miR-130a/miR130b/miR-152 expression reduces intracellular ATP levels in the pancreatic beta cell. Sci. Rep. 2017, 7, srep44986. [Google Scholar] [CrossRef]
- Chen, F.; Ye, X.; Jiang, H.; Zhu, G.; Miao, S. MicroRNA-151 Attenuates Apoptosis of Endothelial Cells Induced by Oxidized Low-density Lipoprotein by Targeting Interleukin-17A (IL-17A). J. Cardiovasc. Transl. Res. 2020, 14, 400–408. [Google Scholar] [CrossRef]
- Lewis, K.A.; Chang, L.; Cheung, J.; Aouizerat, B.E.; Jelliffe-Pawlowski, L.L.; McLemore, M.R.; Piening, B.; Rand, L.; Ryckman, K.K.; Flowers, E. Systematic review of transcriptome and microRNAome associations with gestational diabetes mellitus. Front. Endocrinol. 2023, 13, 971354. [Google Scholar] [CrossRef] [PubMed]
- Assmann, T.S.; Milagro, F.I.; Martínez, J.A. Crosstalk between microRNAs, the putative target genes and the lncRNA network in metabolic diseases. Mol. Med. Rep. 2019, 20, 3543–3554. [Google Scholar] [CrossRef] [PubMed]
- Ye, D.; Zhang, T.; Lou, G.; Xu, W.; Dong, F.; Chen, G.; Liu, Y. Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci. 2018, 208, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Klöting, N.; Berthold, S.; Kovacs, P.; Schön, M.R.; Fasshauer, M.; Ruschke, K.; Stumvoll, M.; Blüher, M. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 2009, 4, e4699. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.A.; Gonzalez, J.S.; Tripputi, M.T.; Dagogo-Jack, S.; Matulik, M.J.; Montez, M.G.; Tadros, S.; Edelstein, S.L.; DPP Research Group. Long-term metformin adherence in the Diabetes Prevention Program Outcomes Study. BMJ Open Diabetes Res. Care 2020, 8, e001537. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Kanaya, A.M.; Zhang, L.; Aouizerat, B.E. The Role of racial and ethnic factors in microRNA expression and risk for type 2 diabetes. Front. Genet. 2022, 13, 853633. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Chen, L.; Yan, C.; Zhou, W.; Endo, Y.; Liu, J.; Hu, L.; Hu, Y.; Mi, B.; Liu, G. Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing. Small 2019, 16, e1904044. [Google Scholar] [CrossRef] [PubMed]
- Katayama, M.; Wiklander, O.P.B.; Fritz, T.; Caidahl, K.; El-Andaloussi, S.; Zierath, J.R.; Krook, A. Circulating Exosomal miR-20b-5p Is Elevated in Type 2 Diabetes and Could Impair Insulin Action in Human Skeletal Muscle. Diabetes 2019, 68, 515–526. [Google Scholar] [CrossRef]
- Gjorgjieva, M.; Sobolewski, C.; Ay, A.-S.; Abegg, D.; de Sousa, M.C.; Portius, D.; Berthou, F.; Fournier, M.; Maeder, C.; Rantakari, P.; et al. Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. J. Pers. Med. 2020, 10, 170. [Google Scholar] [CrossRef]
- Parker, D.C.; Wan, M.; Lohman, K.; Hou, L.; Nguyen, A.T.; Ding, J.; Bertoni, A.; Shea, S.; Burke, G.L.; Jacobs, D.R.; et al. Monocyte miRNAs Are Associated With Type 2 Diabetes. Diabetes 2022, 71, 853–861. [Google Scholar] [CrossRef]
- Thibonnier, M.; Esau, C. Metabolic Benefits of MicroRNA-22 Inhibition. Nucleic Acid Ther. 2020, 30, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Aouizerat, B.E.; Abbasi, F.; Lamendola, C.; Grove, K.M.; Fukuoka, Y.; Reaven, G.M. Circulating microRNA-320a and microRNA-486 predict thiazolidinedione response: Moving towards precision health for diabetes prevention. Metabolism 2015, 64, 1051–1059. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Zhang, T.; Li, M.; Li, S.; He, Q.; Liu, S.; Xu, M.; Xiao, T.; Shao, Z.; et al. Single-cell RNA Sequencing Reveals Sexually Dimorphic Transcriptome and Type 2 Diabetes Genes in Mouse Islet β Cells. Genom. Proteom. Bioinform. 2021, 19, 408–422. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Zhang, Q.; Ma, X.; Wang, J.; Liang, T. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci. Rep. 2017, 7, 39812. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Reynolds, L.M.; Zeller, T.; Müller, C.; Lohman, K.; Nicklas, B.J.; Kritchevsky, S.B.; Huang, Z.; de la Fuente, A.; Soranzo, N.; et al. Alterations of a Cellular Cholesterol Metabolism Network Are a Molecular Feature of Obesity-Related Type 2 Diabetes and Cardiovascular Disease. Diabetes 2015, 64, 3464–3474. [Google Scholar] [CrossRef] [PubMed]
- de Mendonca, M.; de Sousa, E.; da Paixao, A.O.; dos Santos, B.A.; Spagnol, A.R.; Murata, G.M.; Araujo, H.N.; de Lima, T.I.; Guimaraes, D.S.P.S.F.; Silveira, L.R.; et al. MicroRNA miR-222 mediates pioglitazone beneficial effects on skeletal muscle of diet-induced obese mice. Mol. Cell. Endocrinol. 2020, 501, 110661. [Google Scholar] [CrossRef] [PubMed]
- Filardi, T.; Catanzaro, G.; Grieco, G.E.; Splendiani, E.; Trocchianesi, S.; Santangelo, C.; Brunelli, R.; Guarino, E.; Sebastiani, G.; Dotta, F.; et al. Identification and validation of miR-222-3p and miR-409-3p as plasma biomarkers in gestational diabetes mellitus sharing validated target genes involved in metabolic homeostasis. Int. J. Mol. Sci. 2022, 23, 4276. [Google Scholar] [CrossRef] [PubMed]
- Goldsworthy, M.; Bai, Y.; Li, C.-M.; Ge, H.; Lamas, E.; Hilton, H.; Esapa, C.T.; Baker, D.; Baron, W.; Juan, T.; et al. Haploinsufficiency of the insulin receptor in the presence of a splice-site mutation in ppp2r2a results in a novel digenic mouse model of type 2 diabetes. Diabetes 2016, 65, 1434–1446. [Google Scholar] [CrossRef] [PubMed]
- Dalgaard, L.T.; Sorensen, A.E.; Hardikar, A.A.; Joglekar, M. The microRNA-29 family: Role in metabolism and metabolic disease. Am. J. Physiol. Physiol. 2022, 323, C367–C377. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, H.; Zhao, X.; Xin, X.; Peng, L.; Ning, Y.; Wang, Y.; Lan, Y.; Zhang, Q. Metformin treatment alleviates polycystic ovary syndrome by decreasing the expression of MMP-2 and MMP-9 via H19/miR-29b-3p and AKT/mTOR/autophagy signaling pathways. J. Cell. Physiol. 2019, 234, 19964–19976. [Google Scholar] [CrossRef]
- Solis-Vivanco, A.; Santamaría-Olmedo, M.; Rodríguez-Juárez, D.; Valdés-Flores, M.; González-Castor, C.; Velázquez-Cruz, R.; Ramírez-Salazar, E.; García-Ulloa, A.C.; Hidalgo-Bravo, A. miR-145, miR-92a and miR-375 Show Differential Expression in Serum from Patients with Diabetic Retinopathies. Diagnostics 2022, 12, 2275. [Google Scholar] [CrossRef] [PubMed]
- Beuzelin, D.; Kaeffer, B. Exosomes and miRNA-Loaded Biomimetic Nanovehicles, a Focus on Their Potentials Preventing Type-2 Diabetes Linked to Metabolic Syndrome. Front. Immunol. 2018, 9, 2711. [Google Scholar] [CrossRef] [PubMed]
- Flowers, E.; Gadgil, M.; Aouizerat, B.E.; Kanaya, A.M. Circulating micrornas associated with glycemic impairment and progression in Asian Indians. Biomark. Res. 2015, 3, 22. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qu, H.; Song, Q.; Shen, Y.; Wang, L.; Niu, X. High-glucose induced toxicity in HK-2 cells can be alleviated by inhibition of miRNA-320c. Ren. Fail. 2022, 44, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Karere, G.M.; Glenn, J.P.; Li, G.; Konar, A.; VandeBerg, J.L.; Cox, L.A. Potential miRNA biomarkers and therapeutic targets for early atherosclerotic lesions. Sci. Rep. 2023, 13, 3467. [Google Scholar] [CrossRef] [PubMed]
- Lopez, Y.O.N.; Casu, A.; Kovacova, Z.; Petrilli, A.M.; Sideleva, O.; Tharp, W.G.; Pratley, R.E. Coordinated regulation of gene expression and microRNA changes in adipose tissue and circulating extracellular vesicles in response to pioglitazone treatment in humans with type 2 diabetes. Front. Endocrinol. 2022, 13, 955593. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.A.; El-Hefnawy, S.M.; Kasemy, Z.A.; Alhagaa, A.A.; Nooh, M.Z.; Arafat, E.S. Mi-RNA-93 and Mi-RNA-152 in the Diagnosis of Type 2 Diabetes and Diabetic Retinopathy. Br. J. Biomed. Sci. 2022, 79, 10192. [Google Scholar] [CrossRef] [PubMed]
- Esteves, J.V.; Enguita, F.J.; Machado, U.F. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J. Diabetes Res. 2017, 2017, 7267910. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Flowers, E.; Ramírez-Mares, J.-D.; Velazquez-Villafaña, M.; Rangel-Salazar, R.; Sucher, A.; Kanaya, A.M.; Aouizerat, B.E.; Monroy, M.L.L.d.l.V. Circulating microRNAs associated with prediabetes and geographic location in Latinos. Int. J. Diabetes Dev. Ctries. 2021, 41, 570–578. [Google Scholar] [CrossRef]
- Aroda, V.R.; Ratner, R.E. Metformin and Type 2 Diabetes Prevention. Diabetes Spectr. 2018, 31, 336–342. [Google Scholar] [CrossRef]
- Hoskin, M.A.; Bray, G.A.; Hattaway, K.; Khare-Ranade, P.A.; Pomeroy, J.; Semler, L.N.; Weinzierl, V.A.; Wylie-Rosett, J.; Diabetes Prevention Program Research Group. Prevention of Diabetes Through Lifestyle Intervention: Lessons Learned from the Diabetes Prevention Program and Outcomes Study and its Translation to Practice. Curr. Nutr. Rep. 2014, 3, 364–378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Overall n = 150 | Metformin n = 50 | Placebo n = 50 | p | |
---|---|---|---|---|
Demographic or Clinical Characteristics | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |
Age (years) | 51.0 (10.6) | 50.9 (10.5) | 49.8 (10.8) | 0.485 |
Sex at Birth * | 0.791 | |||
Male | 41 (27.3) | 15 (30.0) | 12 (24.0) | |
Female | 109 (72.7) | 35 (70.0) | 38 (76.0) | |
Race and Ethnicity * (%) | 0.878 | |||
White | 94 (62.7) | 33 (66.0) | 32 (64.0) | |
Black | 28 (18.7) | 9 (18.0) | 8 (16.0) | |
Hispanic | 22 (14.7) | 6 (12.0) | 7 (14.0) | |
Other | 6 (4.0) | 2 (4.0) | 3 (6.0) | |
Postmenopause (females only) | 21 (60) | 16 (42) | 0.080 | |
Fasting Blood Glucose | 106 (7.1) | 106.2 (6.7) | 106.3 (7.5) | 0.769 |
Fasting Insulin | 24.8 (13.9) | 27.2 (16.2) | 25.3 (12.5) | 0.152 |
Fasting Triglyceride | 164.5 (107.0) | 173.4 (130.8) | 171.9 (117.1) | 0.426 |
Total Cholesterol | 205.4 (38.4) | 201.2 (37.9) | 208.0 (35.8) | 0.627 |
HDL Cholesterol | 47.4 (13.4) | 46.1 (10.7) | 46.6 (14.1) | 0.372 |
LDL Cholesterol | 125.3 (33.0) | 120.9 (32.7) | 127.6 (32.0) | 0.516 |
Waist (cm) | 102.2 (14.5) | 101.3 (13.9) | 102.5 (16.9) | 0.85 |
Hip Circumference (cm) | 113.4 (17.1) | 111.2 (12.7) | 112.5 (11.3) | 0.293 |
Systolic Blood Pressure (mm/Hg) | 124.9 (16.2) | 125.7 (16.4) | 125.2 (15.1) | 0.846 |
Diastolic Blood Pressure (mm/Hg) | 77.9 (8.6) | 78.3 (8.6) | 77.4 (8.8) | 0.869 |
Weight (kg) | 91.2 (19.3) | 90.0 (18.3) | 93.9 (21.1) | 0.489 |
Body Mass Index | 33.3 (6.6) | 33.1 (6.6) | 34.2 (6.8) | 0.412 |
MicroRNA (miR) | Metformin Baseline Median (IQR) | Placebo Baseline Median (IQR) | Metformin Year 2 Median (IQR) | Placebo Year 2 Median (IQR) | Metformin Change in miR Median (IQR) | Placebo Change in miR Median (IQR) | p-Value | FDR * |
---|---|---|---|---|---|---|---|---|
let-7c-5p | −0.385 (0.734) | −0.364 (1.198) | 0.100 (1.013) | −0.347 (1.104) | 0.574 (1.043) | −0.082 (1.258) | 0.004 | 0.018 |
let-7f-5p | −0.303 (0.943) | −0.277 (0.875) | −0.283 (0.966) | −0.510 (0.879) | 0.129 (1.180) | −0.169 (0.987) | 0.136 | 0.237 |
miR-106b-5p | −0.331 (0.942) | −0.261 (0.754) | −0.060 (0.722) | −0.254 (0.603) | 0.386 (1.125) | 0.099 (0.930) | 0.114 | 0.221 |
miR-122-5p | −0.340 (0.724) | −0.347 (0.655) | −0.056 (0.540) | −0.284 (1.034) | 0.166 (0.724) | −0.009 (0.733) | 0.560 | 0.700 |
miR-126-3p | −0.136 (1.449) | −0.170 (0.913) | −0.024 (0.850) | 0.051 (1.007) | −0.109 (1.377) | 0.384 (1.023) | 0.048 | 0.121 |
miR-130b-3p | 0.127 (0.939) | 0.086 (0.886) | −0.581 (0.693) | 0.098 (1.674) | −0.628 (1.557) | 0.082 (2.106) | 0.007 | 0.025 |
miR-146a-5p | −0.113 (1.717) | −0.147 (1.298) | −0.271 (0.862) | −0.263 (1.645) | −0.122 (1.452) | 0.124 (1.459) | 0.161 | 0.268 |
miR-151a-3p | −0.485 (1.120) | −0.237 (1.819) | 0.120 (1.424) | −0.485 (1.067) | 0.798 (1.509) | −0.035 (1.671) | 0.001 | 0.004 |
miR-151a-5p | −0.430 (1.281) | −0.111 (1.324) | −0.050 (1.449) | 0.095 (1.158) | 0.477 (2.150) | 0.216 (1.556) | 0.343 | 0.501 |
miR-151b | −0.282 (1.524) | −0.296 (1.427) | 0.149 (1.344) | −0.120 (0.950) | 0.540 (2.109) | 0.099 (1.127) | 0.111 | 0.221 |
miR-15a-5p | −0.138 (1.166) | −0.078 (1.016) | −0.249 (0.651) | −0.535 (1.320) | −0.066 (1.173) | −0.188 (0.956) | 0.850 | 0.850 |
miR-15b-5p | −0.157 (0.962) | −0.020 (1.206) | 0.129 (1.230) | −0.298 (0.986) | 0.343 (1.774) | 0.025 (1.393) | 0.083 | 0.182 |
miR-16-5p | −0.202 (1.298) | 0.102 (1.227) | 0.055 (1.223) | −0.349 (1.410) | 0.005 (1.425) | −0.382 (1.507) | 0.074 | 0.172 |
miR-17-5p | −0.290 (1.099) | −0.112 (1.274) | 0.693 (1.138) | −0.194 (0.881) | 0.967 (1.641) | 0.017 (1.361) | 0.001 | 0.004 |
miR-192-5p | −0.129 (0.849) | −0.423 (0.823) | −0.077 (1.049) | −0.205 (0.942) | 0.094 (0.961) | 0.152 (1.261) | 0.850 | 0.850 |
miR-20b-5p | −0.053 (0.994) | 0.063 (1.182) | −0.236 (0.773) | 0.280 (1.559) | −0.240 (1.632) | 0.247 (2.035) | 0.032 | 0.087 |
miR-21-5p | −0.339 (1.178) | −0.458 (1.013) | 0.348 (1.734) | −0.324 (1.057) | 0.662 (1.665) | 0.034 (1.330) | 0.015 | 0.045 |
miR-221-3p | −0.187 (1.061) | −0.194 (1.150) | −0.267 (0.898) | −0.480 (0.759) | 0.001 (0.941) | −0.168 (1.396) | 0.251 | 0.382 |
miR-222-3p | 0.035 (1.110) | −0.060 (1.201) | −0.673 (0.852) | 0.487 (1.387) | −0.586 (1.406) | 0.528 (1.487) | 0.000 | 0.000 |
miR-22-3p | −0.332 (1.164) | −0.234 (1.023) | −0.283 (1.060) | −0.065 (1.167) | 0.220 (1.311) | −0.08 (1.301) | 0.430 | 0.579 |
miR-23a-3p | −0.216 (1.191) | −0.290 (1.310) | −0.709 (0.632) | 0.079 (1.119) | −0.448 (1.324) | 0.243 (1.637) | 0.000 | 0.001 |
miR-24-3p | −0.096 (1.214) | 0.196 (1.572) | −0.271 (0.808) | −0.050 (1.116) | −0.212 (1.447) | −0.199 (1.924) | 0.738 | 0.850 |
miR-27a-3p | −0.189 (1.243) | −0.124 (1.368) | 0.019 (1.038) | 0.010 (1.975) | 0.281 (1.500) | 0.061 (2.044) | 0.785 | 0.850 |
miR-29b-3p | −0.340 (1.264) | −0.033 (1.271) | −0.295 (0.806) | −0.128 (1.327) | 0.178 (1.681) | −0.116 (2.090) | 0.376 | 0.526 |
miR-30a-5p | −0.430 (0.900) | −0.313 (0.896) | −0.155 (0.677) | −0.426 (1.007) | 0.134 (1.022) | −0.196 (1.246) | 0.012 | 0.039 |
miR-320a-3p | −0.451 (1.026) | −0.754 (1.026) | −0.369 (0.971) | −0.469 (1.035) | −0.012 (1.336) | −0.054 (0.916) | 0.839 | 0.850 |
miR-320c | 0.107 (1.008) | 0.017 (1.005) | −0.593 (0.657) | 0.421 (0.943) | −0.629 (1.201) | 0.417 (1.064) | 0.000 | 0.000 |
miR-342-3p | −0.072 (0.903) | −0.092 (0.916) | −0.569 (0.665) | −0.159 (1.134) | −0.431 (1.102) | 0.146 (1.898) | 0.007 | 0.025 |
miR-363-3p | −0.171 (1.246) | −0.356 (0.844) | −0.385 (0.922) | −0.240 (0.904) | −0.137 (0.995) | 0.053 (1.187) | 0.130 | 0.237 |
miR-486-3p | −0.558 (1.112) | −0.219 (0.920) | −0.271 (0.872) | −0.432 (0.996) | 0.133 (1.056) | −0.016 (1.200) | 0.497 | 0.644 |
miR-532-5p | −0.148 (1.101) | −0.706 (0.717) | −0.170 (0.710) | −0.339 (0.645) | 0.204 (1.250) | 0.109 (1.056) | 0.834 | 0.850 |
miR-652-3p | −0.793 (0.951) | −0.288 (1.272) | −0.112 (0.878) | −0.204 (0.897) | 0.446 (1.270) | −0.013 (1.611) | 0.182 | 0.290 |
miR-92a-3p | −0.723 (1.345) | −0.723 (1.589) | −0.124 (1.349) | −0.107 (1.000) | 0.228 (1.831) | 0.194 (1.771) | 0.728 | 0.850 |
miR-93-5p | −0.400 (1.025) | −0.176 (1.036) | −0.653 (0.779) | 0.063 (1.096) | −0.222 (1.029) | 0.356 (1.521) | 0.001 | 0.004 |
Metformin | Age | Sex—Female | Black Race | Hispanic Ethnicity | Race/Ethnicity (Other) | BMI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MicroRNA (miR) | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value |
let-7c-5p | 0.589 | 0.005 | −0.004 | 0.729 | 0.003 | 0.729 | 0.318 | 0.285 | 0.153 | 0.624 | −0.612 | 0.216 | 0.002 | 0.912 |
miR-130b-3p | −0.759 | 0.003 | 0.029 | 0.021 | 0.357 | 0.216 | 0.162 | 0.358 | −0.320 | 0.398 | 0.048 | 0.937 | 0.023 | 0.272 |
miR-151a-3p | 1.020 | 0.001 | 0.012 | 0.412 | −0.033 | 0.919 | 0.656 | 0.113 | 0.394 | 0.364 | 1.085 | 0.114 | 0.014 | 0.547 |
miR-17-5p | 0.780 | 0.002 | 0.018 | 0.155 | 0.112 | 0.700 | 0.983 | 0.008 | 0.454 | 0.237 | 0.815 | 0.179 | −0.026 | 0.222 |
miR-20b-5p | 0.652 | 0.013 | 0.015 | 0.256 | −0.319 | 0.288 | 0.721 | 0.056 | 0.404 | 0.307 | 1.424 | 0.024 | −0.007 | 0.743 |
miR-222-3p | −1.040 | <0.001 | −0.007 | 0.536 | 0.150 | 0.578 | −0.355 | 0.294 | −0.096 | 0.787 | −0.864 | 0.125 | −0.016 | 0.414 |
miR-22-3p | −1.064 | <0.001 | 0.015 | 0.178 | 0.606 | 0.024 | −0.710 | 0.034 | 0.020 | 0.954 | −0.798 | 0.148 | 0.010 | 0.610 |
miR-29b-3p | 0.526 | 0.011 | 0.007 | 0.495 | −0.081 | 0.733 | 0.163 | 0.582 | 0.181 | 0.560 | −0.034 | 0.944 | −0.025 | 0.156 |
miR-320a-3p | −0.973 | <0.001 | −0.008 | 0.534 | 0.145 | 0.612 | 0.011 | 0.974 | 0.105 | 0.781 | −0.744 | 0.213 | 0.009 | 0.672 |
miR-320c | −0.874 | 0.002 | 0.000 | 0.989 | −0.249 | 0.431 | 0.232 | 0.555 | 0.265 | 0.523 | −0.297 | 0.649 | 0.01 | 0.670 |
miR-92a-3p | −0.807 | 0.004 | 0.002 | 0.909 | 0.340 | 0.279 | 0.056 | 0.886 | −0.683 | 0.100 | 0.375 | 0.564 | 0.003 | 0.903 |
miR-93-5p | 0.778 | 0.003 | 0.020 | 0.111 | −0.097 | 0.739 | 0.636 | 0.082 | 0.138 | 0.719 | 1.242 | 0.042 | −0.007 | 0.748 |
miRNA | Change in Metformin Group | Significant Predictors/Associations with Clinical Variables | Target Genes and Proteins | Mechanism Summary |
---|---|---|---|---|
let-7c-5p | Downregulated | Baseline fasting blood glucose | Insulin receptor (INSR), insulin receptor substrate 2 (IRS2), Erb-b2 receptor tyrosine kinase 4 (ERBB4), neuregulin 4 (NRG4), DICER1 protein, p16, p21, | May inhibit neuroinflammation. Targets genes involved in insulin signaling, metabolic disorders, and neuroinflammation pathways. Linked to cellular senescence by acting on proteins, inflammatory cytokines, and oncogenes associated with senescence-associated secretory phenotype (SASP) |
miR-130b-3p | Downregulated | Systolic blood pressure | Genes implicated in lipid metabolism, microsomal triglyceride transfer protein mRNA and protein expression, pyruvate dehydrogenase E1 alpha (PDHA1) and glucokinase (GCK) proteins | Associated with dyslipidemia, insulin resistance, and pancreatic beta cell ATP levels |
miR-151a-3p | Upregulated | Baseline fasting triglycerides, baseline HDL | Interleukin 17 (IL-17A) | May inhibit apoptosis of endothelial cells in atherosclerosis, possibly related to cholesterol regulation |
miR-17-5p | Upregulated | Black race | Neuronal differentiation 1 (NEUROD1), leptin (LEP), leptin receptor (LEPR), uncoupling protein 3 (UCP3), sirtuin 1 (SIRT1), peroxisome proliferator activated receptor α (PPARA), low-density lipoprotein receptor (LDLR) | Associated with metabolic diseases, cardiovascular complications, and adipose tissue dysfunction |
miR-20b-5p | Upregulated | Black race | interferon-α and interferon-γ response, tumor necrosis factor-α, interleukin (IL)2-STAT5, and IL6–janus kinase (JAK)–STAT3 signaling pathways), and upregulate gene sets associated with cholesterol homeostasis, fatty acid metabolism, and mammalian target of rapamycin (mTOR) signaling pathways, of Ak strain transforming interacting protein (AKTIP), signal transducer and activator of transcription 3 (STAT3), and glycogen synthase and impaired insulin signaling | Role in vascular endothelium, wound healing, angiogenesis inhibition, and glucose metabolism impairment |
miR-22-3p | Downregulated | Female sex, black race | Genes associated with cholesterol metabolism, including stearoyl-CoA desaturase gene (SCD) | Role in lipid and glucose metabolism, insulin resistance, and cholesterol regulation |
miR-222-3p | Downregulated | NA | Phosphatase and tensin homolog (PTEN), O-6-Methylguanine-DNA Methyltransferase (MGMT), protein phosphatase 2 regulatory subunit B-α isoform (PPP2R2A), and reversion-inducing cysteine-rich protein with Kazal motifs (RECK) | Role in diabetes, inflammation, obesity, NAFLD, and liver steatosis |
miR-29b-3p | Upregulated | NA | Period circadian regulator 3 (Per3) gene, H19 imprinted maternally expressed transcript (H19) gene, matrix metalloproteinase (MMP)-2 and MMP-9 | Role in T2D may be mediating fibrosis, human insulin gene transcription, and circadian rhythms in β cells, potential prognostic marker of deteriorating glucose tolerance |
miR-320a-3p | Downregulated | NA | RNA polymerase III subunit D (polr3d) gene, insulin-like growth factor 1 (IGF-I) (proangiogenic factor) | Potential role in diabetic retinopathy, glycemic impairment, cardiotoxicity |
miR-320c | Upregulated | NA | PI3K/AKT pathway, PTEN | Involved in diabetic nephropathy, PTEN targeting, β cell damage |
miR-92a-3p | Downregulated | NA | NA | Linked to atherosclerosis, diabetic retinopathy, and extracellular vesicles’ response to pioglitazone |
miR-93-5p | Upregulated | NA | Glucose transporter 4 (GLUT4), ERBB4, NRG4 | Involved in glucose homeostasis, regulation of target genes related to glucose metabolism, neuroinflammation, and cardiac pathology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewis, K.A.; Stroebel, B.M.; Zhang, L.; Aouizerat, B.; Mattis, A.N.; Flowers, E. MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. Int. J. Mol. Sci. 2024, 25, 5684. https://doi.org/10.3390/ijms25115684
Lewis KA, Stroebel BM, Zhang L, Aouizerat B, Mattis AN, Flowers E. MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. International Journal of Molecular Sciences. 2024; 25(11):5684. https://doi.org/10.3390/ijms25115684
Chicago/Turabian StyleLewis, Kimberly A., Benjamin M. Stroebel, Li Zhang, Bradley Aouizerat, Aras N. Mattis, and Elena Flowers. 2024. "MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program" International Journal of Molecular Sciences 25, no. 11: 5684. https://doi.org/10.3390/ijms25115684
APA StyleLewis, K. A., Stroebel, B. M., Zhang, L., Aouizerat, B., Mattis, A. N., & Flowers, E. (2024). MicroRNAs Associated with Metformin Treatment in the Diabetes Prevention Program. International Journal of Molecular Sciences, 25(11), 5684. https://doi.org/10.3390/ijms25115684