The Renin–Angiotensin System in Liver Disease
Abstract
:1. Introduction
2. Overview of the RAS Pathways
3. RAS and Liver Fibrosis
4. RAS in Cirrhosis, Portal HTN, and the Development of a Hyperdynamic Circulation
4.1. RAS in Cirrhosis
4.2. RAS in Portal Hypertension, the Hyperdynamic Circulation, and Hepatocellular Carcinoma
5. RAS and the Kidneys in Liver Disease
6. Modulation of Classical RAS
6.1. RAS Inhibition in Liver Fibrosis
6.2. RAS Inhibition in Cirrhotic Portal Hypertension
ACEi… | ||
Improves fibrosis? | Decreases portal pressure? | Has no effect on portal pressure? |
|
|
|
ARB… | ||
Improves fibrosis? | Decreases portal pressure? | Has no effect on portal pressure? |
|
|
|
6.3. RAS Inhibition and the Kidneys in Liver Disease
6.4. Differential Effects of ACEi and ARBs in Liver Disease
6.5. Other RAS Modulators
7. Modulation of Alternative RAS
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Basso, N.; Terragno, N.A. History about the discovery of the renin-angiotensin system. Hypertension 2001, 38, 1246–1249. [Google Scholar] [CrossRef]
- Vargas Vargas, R.A.; Varela Millán, J.M.; Fajardo Bonilla, E. Renin-angiotensin system: Basic and clinical aspects—A general perspective. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2022, 69, 52–62. [Google Scholar] [CrossRef]
- Rajtik, T.; Galis, P.; Bartosova, L.; Paulis, L.; Goncalvesova, E.; Klimas, J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int. J. Mol. Sci. 2021, 22, 12800. [Google Scholar] [CrossRef]
- Mastoor, Z.; Diz-Chaves, Y.; González-Matías, L.C.; Mallo, F. Renin-Angiotensin System in Liver Metabolism: Gender Differences and Role of Incretins. Metabolites 2022, 12, 411. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyasselan, R.; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000, 87, E1–E9. [Google Scholar] [CrossRef]
- Taskin, E.; Güven, C. Local Renin-Angiotensin System at Liver and Crosstalk with Hepatic Diseases. In Renin-Angiotensin System—Past, Present, and Future; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Ager, E.I.; Neo, J.; Christophi, C. The renin-angiotensin system and malignancy. Carcinogenesis 2008, 29, 1675–1684. [Google Scholar] [CrossRef]
- Liu, Y.B.; Chen, M.K. Epidemiology of liver cirrhosis and associated complications: Current knowledge and future directions. World J. Gastroenterol. 2022, 28, 5910–5930. [Google Scholar] [CrossRef]
- Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Cassis, L.A.; Kooi, C.W.; Daugherty, A. Structure and Functions of Angiotensinogen. Hypertens Res. 2016, 39, 492–500, Erratum in Hypertens. Res. 2016, 39, 827. [Google Scholar] [CrossRef] [PubMed]
- Bataller, R.; Sancho-Bru, P.; Ginès, P.; Lora, J.; Al-Garawi, A.; Solé, M.; Colemenero, J.; Nicolás, J.; Jiménez, W.; Weich, N.; et al. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 2003, 125, 117–125. [Google Scholar] [CrossRef]
- Martyniak, A.; Tomasik, P.J. A New Perspective on the Renin-Angiotensin System. Diagnostics 2022, 13, 16. [Google Scholar] [CrossRef]
- Lubel, J.S.; Herath, C.B.; Burrell, L.M.; Angus, P.W. Liver disease and the renin-angiotensin system: Recent discoveries and clinical implications. J. Gastroenterol. Hepatol. 2008, 23, 1327–1338. [Google Scholar] [CrossRef]
- Hartl, L.; Rumpf, B.; Domenig, O.; Simbrunner, B.; Paternostro, R.; Jachs, M.; Poglitsch, M.; Marculescu, R.; Trauner, M.; Reidl-Schwaighofer, R.; et al. The systemic and hepatic alternative renin-angiotensin system is activated in liver cirrhosis, linked to endothelial dysfunction and inflammation. Sci. Rep. 2023, 13, 953. [Google Scholar] [CrossRef]
- Sansoè, G.; Aragno, M.; Mastrocola, R.; Mengozzi, G.; Novo, E.; Parola, M. Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data. PLoS ONE 2016, 11, e0162644. [Google Scholar] [CrossRef]
- Sancho-Bru, P.; Bataller, R.; Fernandez-Varo, G.; Moreno, M.; Ramalho, L.; Colmenero, J.; Marí, M.; Clària, J.; Jiménez, W.; Arroyo, V.; et al. Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology 2007, 133, 2019–2028. [Google Scholar] [CrossRef]
- Zhang, J.; Li, N.; Yang, L.; Xie, H.; Yang, Y.; Wang, H.; Wu, C.; Shen, T.; Zhu, Q. Bradykinin contributes to immune liver injury via B2R receptor-mediated pathways in trichloroethylene sensitized mice: A role in Kupffer cell activation. Toxicology 2019, 415, 37–48. [Google Scholar] [CrossRef]
- Nabeshima, Y.; Tazuma, S.; Kanno, K.; Hyogo, H.; Iwai, M.; Horiuchi, M.; Chayama, K. Anti-fibrogenic function of angiotensin II type 2 receptor in CCl4-induced liver fibrosis. Biochem. Biophys. Res. Commun. 2006, 346, 658–664. [Google Scholar] [CrossRef]
- Ahmadian, E.; Pennefather, P.S.; Eftekhari, A.; Heidari, R.; Eghbal, M.A. Role of renin-angiotensin system in liver diseases: An outline on the potential therapeutic points of intervention. Expert. Rev. Gastroenterol. Hepatol. 2016, 10, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Sansoè, G.; Aragno, M.; Wong, F. Pathways of hepatic and renal damage through non-classical activation of the renin-angiotensin system in chronic liver disease. Liver Int. 2020, 40, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Nair, A.P.; Misra, A.; Scott, C.Z.; Mahar, J.H.; Fedson, S. Neprilysin Inhibitors in Heart Failure: The Science, Mechanism of Action, Clinical Studies, and Unanswered Questions. JACC Basic. Transl. Sci. 2022, 8, 88–105. [Google Scholar] [CrossRef]
- Chappell, M.C.; Pirro, N.T.; Sykes, A.; Ferrario, C.M. Metabolism of angiotensin-(1–7) by angiotensin-converting enzyme. Hypertension 1998, 31 Pt 2, 362–367. [Google Scholar] [CrossRef]
- Warner, F.J.; Lubel, J.S.; McCaughan, G.W.; Angus, P.W. Liver fibrosis: A balance of ACEs? Clin. Sci. 2007, 113, 109–118. [Google Scholar] [CrossRef]
- Tetzner, A.; Gebolys, K.; Meinert, C.; Klein, S.; Uhlich, A.; Trebicka, J.; Villacañas, Ó.; Walther, T. G-Protein-Coupled Receptor MrgD Is a Receptor for Angiotensin-(1–7) Involving Adenylyl Cyclase, cAMP, and Phosphokinase, A. Hypertension 2016, 68, 185–194. [Google Scholar] [CrossRef]
- Gunarathne, L.S.; Rajapaksha, I.G.; Casey, S.; Qaradakhi, T.; Zulli, A.; Rajapaksha, H.; Trebicka, J.; Angus, P.W.; Herath, C.B. Mas-related G protein-coupled receptor type D antagonism improves portal hypertension in cirrhotic rats. Hepatol. Commun. 2022, 6, 2523–2537. [Google Scholar] [CrossRef]
- Grace, J.A.; Klein, S.; Herath, C.B.; Qaradakhi, T.; Zulli, A.; Rajapakshi, H.; Trebicka, J.; Angus, P.; Herath, C. Activation of the MAS receptor by angiotensin-(1–7) in the renin-angiotensin system mediates mesenteric vasodilatation in cirrhosis. Gastroenterology 2013, 145, 874–884.e5. [Google Scholar] [CrossRef]
- Li, P.; Chappell, M.C.; Ferrario, C.M.; Brosnihan, K.B. Angiotensin-(1–7) augments bradykinin-induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 1997, 29 Pt 2, 394–400. [Google Scholar] [CrossRef]
- Roks, A.J.; van Geel, P.P.; Pinto, Y.M.; Buikema, H.; Henning, R.H.; Zeeuw, D.d.; van Gilst, W.H. Angiotensin-(1–7) is a modulator of the human renin-angiotensin system. Hypertension 1999, 34, 296–301. [Google Scholar] [CrossRef]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1–7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Palazzuoli, A.; Mancone, M.; De Ferrari, G.M.; Forleo, G.; Secco, G.G.; Ruocco, G.M.; D’Ascenzo, F.; Monticone, S.; Paggi, A.; Vicenzi, M.; et al. Antecedent Administration of Angiotensin-Converting Enzyme Inhibitors or Angiotensin II Receptor Antagonists and Survival after Hospitalization for COVID-19 Syndrome. J. Am. Heart Assoc. 2020, 9, e017364. [Google Scholar] [CrossRef] [PubMed]
- White, M.C.; Fleeman, R.; Arnold, A.C. Sex differences in the metabolic effects of the renin-angiotensin system. Biol. Sex. Differ. 2019, 10, 31. [Google Scholar] [CrossRef]
- Medina, D.; Mehay, D.; Arnold, A.C. Sex differences in cardiovascular actions of the renin-angiotensin system. Clin. Auton. Res. 2020, 30, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Saber, S. Angiotensin II: A key mediator in the development of liver fibrosis and cancer. Bull. Natl. Res. Cent. 2018, 42, 18. [Google Scholar] [CrossRef]
- Yang, M.; Ma, X.; Xuan, X.; Deng, H.; Chen, Q.; Yuan, L. Liraglutide Attenuates Non-Alcoholic Fatty Liver Disease in Mice by Regulating the Local Renin-Angiotensin System. Front. Pharmacol. 2020, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- Fuloria, S.; Subramaniyan, V.; Meenakshi, D.U.; Sekar, M.; Chakravarthi, S.; Kumar, D.H.; Kumari, U.; Vanteddu, V.G.; Patel, T.D.; Narra, K.; et al. Etiopathophysiological role of the renin-angiotensin-aldosterone system in age-related muscular weakening: RAAS-independent beneficial role of ACE2 in muscle weakness. J. Biochem. Mol. Toxicol. 2022, 36, e23030. [Google Scholar] [CrossRef] [PubMed]
- Leung, P.S. Local RAS. Adv. Exp. Med. Biol. 2010, 690, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Holappa, M.; Vapaatalo, H.; Vaajanen, A. Many Faces of Renin-angiotensin System—Focus on Eye. Open Ophthalmol. J. 2017, 11, 122–142. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Sakane, S.; Eguileor, A.; Weber, R.C.G.; Lee, W.; Liu, X.; Lam, K.; Ischizuka, K.; Rosenthal, S.B.; Diggle, K.; et al. The Origin and Fate of Liver Myofibroblasts. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, I.G.; Gunarathne, L.S.; Angus, P.W.; Herath, C.B. Update on New Aspects of the Renin-Angiotensin System in Hepatic Fibrosis and Portal Hypertension: Implications for Novel Therapeutic Options. J. Clin. Med. 2021, 10, 702. [Google Scholar] [CrossRef]
- Hoffmann, C.; Djerir, N.E.H.; Danckaert, A.; Fernandes, J.; Roux, P.; Charrueau, C.; Lachagès, A.; Charlotte, F.; Brocheriou, I.; Clément, K.; et al. Hepatic stellate cell hypertrophy is associated with metabolic liver fibrosis. Sci. Rep. 2020, 10, 3850. [Google Scholar] [CrossRef] [PubMed]
- Moreira de Macêdo, S.; Guimarães, T.A.; Feltenberger, J.D.; Sousa Santos, S.H. The role of renin-angiotensin system modulation on treatment and prevention of liver diseases. Peptides 2014, 62, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ezhilarasan, D. Endothelin-1 in portal hypertension: The intricate role of hepatic stellate cells. Exp. Biol. Med. 2020, 245, 1504–1512. [Google Scholar] [CrossRef]
- Rockey, D.C. Endothelial dysfunction in advanced liver disease. Am. J. Med. Sci. 2015, 349, 6–16. [Google Scholar] [CrossRef]
- Liu, R.M.; Desai, L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015, 6, 565–577. [Google Scholar] [CrossRef]
- Bataller, R.; Gäbele, E.; Parsons, C.J.; Morris, T.; Yang, L.; Schoonhoven, R.; Brenner, D.A.; Rippe, R.A. Systemic infusion of angiotensin II exacerbates liver fibrosis in bile duct-ligated rats. Hepatology 2005, 41, 1046–1055. [Google Scholar] [CrossRef]
- Herath, C.B.; Warner, F.J.; Lubel, J.S.; Dean, R.G.; Jia, Z.; Lew, R.A.; Smith, A.I.; Burrell, L.M.; Angus, P.W. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental biliary fibrosis. J. Hepatol. 2007, 47, 387–395. [Google Scholar] [CrossRef]
- Pereira, R.M.; Dos Santos, R.A.S.; Teixeira, M.M.; Leite, V.H.R.; Costa, L.P.; Dias, F.L.C.; Barcelos, L.S.; Collares, G.B.; Simões e Silva, A.C. The renin-angiotensin system in a rat model of hepatic fibrosis: Evidence for a protective role of Angiotensin-(1–7). J. Hepatol. 2007, 46, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Lubel, J.S.; Herath, C.B.; Tchongue, J.; Grace, J.; Jia, Z.; Spencer, K.; Casley, D.; Crowley, P.; Sievert, W.; Burrell, L.M.; et al. Angiotensin-(1–7), an alternative metabolite of the renin-angiotensin system, is up-regulated in human liver disease and has antifibrotic activity in the bile-duct-ligated rat. Clin. Sci. 2009, 117, 375–386. [Google Scholar] [CrossRef]
- Kaplan, D.E.; Ripoll, C.; Thiele, M.; Fortune, B.E.; Simonetto, D.A.; Garcia-Tsao, G.; Bosch, J. AASLD Practice Guidance on risk stratification and management of portal hypertension and varices in cirrhosis. Hepatology 2024, 79, 1180–1211. [Google Scholar] [CrossRef]
- Vilas-Boas, W.W.; Ribeiro-Oliveira, A., Jr.; Pereira, R.M.; Ribeiro, R.C.; Almeida, J.; Nadu, A.P.; Simões e Silva, A.C.; dos Santos, R.A.S. Relationship between angiotensin-(1–7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J. Gastroenterol. 2009, 15, 2512–2519. [Google Scholar] [CrossRef] [PubMed]
- Casey, S.; Schierwagen, R.; Mak, K.Y.; Klein, S.; Uschner, F.; Jansen, C.; Praktiknjo, M.; Meyer, C.; Thomas, D.; Herath, C.; et al. Activation of the Alternate Renin-Angiotensin System Correlates with the Clinical Status in Human Cirrhosis and Corrects Post Liver Transplantation. J. Clin. Med. 2019, 8, 419. [Google Scholar] [CrossRef]
- Remmler, J.; Schneider, C.; Treuner-Kaueroff, T.; Bartels, M.; Seehofer, D.; Scholz, M.; Berg, T.; Kaiser, T. Increased Level of Interleukin 6 Associates with Increased 90-Day and 1-Year Mortality in Patients with End-Stage Liver Disease. Clin. Gastroenterol. Hepatol. 2018, 16, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Kamath, P.S.; Wiesner, R.H.; Malinchoc, M.; Kremers, W.; Therneau, T.M.; Kosberg, C.L.; D’Amico, G.; Dickson, E.R.; Kim, W.R. A model to predict survival in patients with end-stage liver disease. Hepatology 2001, 33, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Simões e Silva, A.C.; Silveira, K.D.; Ferreira, A.J.; Teixeira, M.M. ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis. Br. J. Pharmacol. 2013, 169, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Hartl, L.; Jachs, M.; Desbalmes, C.; Schaufler, D.; Simbrunner, B.; Paternostro, R.; Schwabl, P.; Bauer, D.J.M.; Semmler, G.; Scheiner, B.; et al. The differential activation of cardiovascular hormones across distinct stages of portal hypertension predicts clinical outcomes. Hepatol. Int. 2021, 15, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Q.; Ma, L.; Wu, D.; Gao, J.; Chen, G.; Li, H. Systematic profiling of ACE2 expression in diverse physiological and pathological conditions for COVID-19/SARS-CoV-2. J. Cell Mol. Med. 2020, 24, 9478–9482. [Google Scholar] [CrossRef] [PubMed]
- Martell, M.; Coll, M.; Ezkurdia, N.; Raurell, I.; Genescà, J. Physiopathology of splanchnic vasodilation in portal hypertension. World J. Hepatol. 2010, 2, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Gunarathne, L.S.; Rajapaksha, H.; Shackel, N.; Angus, P.W.; Herath, C.B. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J. Gastroenterol. 2020, 26, 6111–6140. [Google Scholar] [CrossRef] [PubMed]
- Simões ESilva, A.C.; Miranda, A.S.; Rocha, N.P.; Teixeira, A.L. Renin angiotensin system in liver diseases: Friend or foe? World J. Gastroenterol. 2017, 23, 3396–3406. [Google Scholar] [CrossRef]
- Fede, G.; Privitera, G.; Tomaselli, T.; Spadaro, L.; Purrello, F. Cardiovascular dysfunction in patients with liver cirrhosis. Ann. Gastroenterol. 2015, 28, 31–40. [Google Scholar] [PubMed]
- Bansal, S.; Lindenfeld, J.; Schrier, R.W. Sodium retention in heart failure and cirrhosis: Potential role of natriuretic doses of mineralocorticoid antagonist? Circ. Heart Fail. 2009, 2, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Guturu, P.; Shah, V. New insights into the pathobiology of portal hypertension. Hepatol. Res. 2009, 39, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.; Abraldes, J.G.; Berzigotti, A.; Garcia-Pagan, J.C.; Bosch, J. Renin-angiotensin-aldosterone inhibitors in the reduction of portal pressure: A systematic review and meta-analysis. J. Hepatol. 2010, 53, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Sieber, C.C.; Lopez-Talavera, J.C.; Groszmann, R.J. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology 1993, 104, 1750–1754. [Google Scholar] [CrossRef]
- Rockey, D.C.; Chung, J.J. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: Endothelial dysfunction in portal hypertension. Gastroenterology 1998, 114, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Macgilchrist, A.J.; Howes, L.G.; Hawksby, C.; Reid, J.L. Plasma noradrenaline in cirrhosis: A study of kinetics and temporal relationship to ascites formation. Eur. J. Clin. Investig. 1991, 21, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Paternostro, R.; Reiberger, T.; Mandorfer, M.; Schwarzer, R.; Schwabl, P.; Bota, S.; Ferlitsch, M.; Trauner, M.; Peck-Radosavljevic, M.; Ferlitsch, A.; et al. Plasma renin concentration represents an independent risk factor for mortality and is associated with liver dysfunction in patients with cirrhosis. J. Gastroenterol. Hepatol. 2017, 32, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007, 49, 185–192. [Google Scholar] [CrossRef]
- Gunarathne, L.S.; Angus, P.W.; Herath, C.B. Blockade of Mas Receptor or Mas-Related G-Protein Coupled Receptor Type D Reduces Portal Pressure in Cirrhotic but Not in Non-cirrhotic Portal Hypertensive Rats. Front. Physiol. 2019, 10, 1169. [Google Scholar] [CrossRef]
- Bosch, J.; Arroyo, V.; Betriu, A.; Mas, A.; Carrilho, F.; Rivera, F.; Navarro-Lopez, F.; Rodes, J. Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis. Gastroenterology 1980, 78, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Osawa, L.; Nakanishi, H.; Kurosaki, M.; Kirino, S.; Inada, K.; Yamashita, K.; Hayakawa, Y.; Sekiguchi, S.; Wang, W.; Okada, M.; et al. Plasma Renin Activity Predicts Prognosis and Liver Disease-Related Events in Liver Cirrhosis Patients with Ascites Treated by Tolvaptan. Dig. Dis. 2022, 40, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Fountain, J.H.; Kaur, J.; Lappin, S.L. Physiology, Renin Angiotensin System. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wilkinson, S.P.; Smith, I.K.; Williams, R. Changes in plasma renin activity in cirrhosis: A reappraisal based on studies in 67 patients and “low-renin” cirrhosis. Hypertension 1979, 1, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, H.; Liu, L.; Yao, L.-L.; Wang, J.; Xiang, D.; Ma, J.; Zhang, G.; Zhang, S.; Li, J.; et al. ACE2 negatively regulates the Warburg effect and suppresses hepatocellular carcinoma progression via reducing ROS-HIF1α activity. Int. J. Biol. Sci. 2023, 19, 2613–2629. [Google Scholar] [CrossRef] [PubMed]
- Barone, M.; Viggiani, M.T.; Losurdo, G.; Principi, M.; Leo, A.D. Systematic review: Renin-angiotensin system inhibitors in chemoprevention of hepatocellular carcinoma. World J. Gastroenterol. 2019, 25, 2524–2538. [Google Scholar] [CrossRef] [PubMed]
- Yoshiji, H.; Kuriyama, S.; Kawata, M.; Yoshii, J.; Ikenaka, Y.; Noguchi, R.; Nakatani, T.; Tsujinoue, H.; Fukui, H. The angiotensin-I-converting enzyme inhibitor perindopril suppresses tumor growth and angiogenesis: Possible role of the vascular endothelial growth factor. Clin. Cancer Res. 2001, 7, 1073–1078. [Google Scholar] [PubMed]
- Fan, F.; Tian, C.; Tao, L.; Wu, H.; Liu, Z.; Shen, C.; Jiang, G.; Lu, Y. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway. Biomed. Pharmacother. 2016, 83, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Garcia-Tsao, G. Acute Kidney Injury in Patients with Cirrhosis. N. Engl. J. Med. 2023, 388, 733–745. [Google Scholar] [CrossRef]
- Ning, Y.; Zou, X.; Xu, J.; Wang, X.; Ding, M.; Lu, H. Impact of acute kidney injury on the risk of mortality in patients with cirrhosis: A systematic review and meta-analysis. Ren. Fail. 2022, 44, 1934–1947. [Google Scholar] [CrossRef]
- Ruiz-del-Arbol, L.; Monescillo, A.; Arocena, C.; Valer, P.; Ginès, P.; Moreira, V.; Milicua, J.M.; Jiménez, W.; Arroyo, V. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 2005, 42, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Ginès, P.; Schrier, R.W. Renal failure in cirrhosis. N. Engl. J. Med. 2009, 361, 1279–1290, Erratum in N. Engl. J. Med. 2011, 364, 389. [Google Scholar] [CrossRef] [PubMed]
- Angeli, P.; Merkel, C. Pathogenesis and management of hepatorenal syndrome in patients with cirrhosis. J. Hepatol. 2008, 48 (Suppl. S1), S93–S103. [Google Scholar] [CrossRef]
- Mezzano, S.A.; Ruiz-Ortega, M.; Egido, J. Angiotensin II and renal fibrosis. Hypertension 2001, 38 Pt 2, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.M.F.; de Carvalho, S.T.; Fradico, P.F.; Cazumbá, M.L.B.; Campos, R.G.B.; Simões ESilva, A.C. Hepatorenal syndrome in children: A review. Pediatr. Nephrol. 2021, 36, 2203–2215. [Google Scholar] [CrossRef]
- Magaldi, A.J.; Cesar, K.R.; de Araújo, M.; Simões e Silva, A.C.; Santos, R.A. Angiotensin-(1–7) stimulates water transport in rat inner medullary collecting duct: Evidence for involvement of vasopressin V2 receptors. Pflugers Arch. 2003, 447, 223–230. [Google Scholar] [CrossRef] [PubMed]
- DelliPizzi, A.M.; Hilchey, S.D.; Bell-Quilley, C.P. Natriuretic action of angiotensin(1–7). Br. J. Pharmacol. 1994, 111, 1–3. [Google Scholar] [CrossRef]
- Bitker, L.; Patel, S.K.; Bittar, I.; Eastwood, G.M.; Bellomo, R.; Burrell, L.M. Reduced urinary levels of angiotensin-converting enzyme 2 activity predict acute kidney injury in critically ill patients. Crit. Care Resusc. 2023, 22, 344–354. [Google Scholar] [CrossRef]
- Ferrario, C.M.; Jessup, J.; Gallagher, P.E.; Averill, D.B.; Brosnihan, K.B.; Tallant, E.A.; Smith, R.D.; Chappell, M.C. Effects of renin-angiotensin system blockade on renal angiotensin-(1–7) forming enzymes and receptors. Kidney Int. 2005, 68, 2189–2196. [Google Scholar] [CrossRef]
- Schindler, C.; Bramlage, P.; Kirch, W.; Ferrario, C.M. Role of the vasodilator peptide angiotensin-(1–7) in cardiovascular drug therapy. Vasc. Health Risk Manag. 2007, 3, 125–137. [Google Scholar]
- Kim, G.; Kim, J.; Lim, Y.L.; Kim, M.Y.; Baik, S.K. Renin-angiotensin system inhibitors and fibrosis in chronic liver disease: A systematic review. Hepatol. Int. 2016, 10, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Rimola, A.; Londoño, M.-C.; Guevara, G.; Bruguera, M.; Navasa, M.; Forns, X.; García-Retortillo, M.; García-Valdecasas, J.-C.; Rodes, J. Beneficial effect of angiotensin-blocking agents on graft fibrosis in hepatitis C recurrence after liver transplantation. Transplantation 2004, 78, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Corey, K.E.; Shah, N.; Misdraji, J.; Abu Dayyeh, B.K.; Zheng, H.; Bhan, A.K.; Chung, R.T. The effect of angiotensin-blocking agents on liver fibrosis in patients with hepatitis C. Liver Int. 2009, 29, 748–753. [Google Scholar] [CrossRef] [PubMed]
- Abu Dayyeh, B.K.; Yang, M.; Dienstag, J.L.; Chung, R.T. The effects of angiotensin blocking agents on the progression of liver fibrosis in the HALT-C Trial cohort. Dig. Dis. Sci. 2011, 56, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Guillaud, O.; Gurram, K.C.; Puglia, M.; Lilly, L.; Adeyi, O.; Renner, E.L.; Selzner, N. Angiotensin blockade does not affect fibrosis progression in recurrent hepatitis C after liver transplantation. Transplant. Proc. 2013, 45, 2331–2336. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Roh, J.H.; Lee, S.; Yoon, J.H. Clinical implications of renin-angiotensin system inhibitors for development and progression of non-alcoholic fatty liver disease. Sci. Rep. 2021, 11, 2884. [Google Scholar] [CrossRef] [PubMed]
- Runyon, B.A.; AASLD. Introduction to the revised American Association for the Study of Liver Diseases Practice Guideline management of adult patients with ascites due to cirrhosis 2012. Hepatology 2013, 57, 1651–1653. [Google Scholar] [CrossRef] [PubMed]
- Gentile, J.A.; Bone, L.B.; Kyle, J.A.; Kyle, L.R. Drug Considerations for Medication Therapy in Cirrhosis. US Pharmacist 2020. Available online: https://www.uspharmacist.com/article/drug-considerations-for-medication-therapy-in-cirrhosis (accessed on 12 February 2024).
- Hsu, W.-F.; Yu, S.-H.; Lin, J.-T.; Wu, J.-C.; Hou, M.-C.; Huang, Y.-H.; Wu, C.-Y.; Peng, C.-Y. Renal Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Patients with Liver Cirrhosis: A Nationwide Cohort Study. Gastroenterol. Res. Pract. 2019, 2019, 1743290. [Google Scholar] [CrossRef]
- Schepke, M.; Werner, E.; Biecker, E.; Schiedermaier, P.; Heller, J.; Neef, M.; Stoffel-Wagner, B.; Hofer, U.; Caselmann, W.H.; Sauerbruch, T. Hemodynamic effects of the angiotensin II receptor antagonist irbesartan in patients with cirrhosis and portal hypertension. Gastroenterology 2001, 121, 389–395. [Google Scholar] [CrossRef]
- González-Abraldes, J.; Albillos, A.; Bañares, R.; Del Arbol, L.R.; Moitinho, E.; Rodríguez, C.; González, M.; Escorsell, A.; García-Pagán, J.C.; Bosch, J. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001, 121, 382–388. [Google Scholar] [CrossRef]
- Schneider, A.W.; Kalk, J.F.; Klein, C.P. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology 1999, 29, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Castaño, G.; Viudez, P.; Riccitelli, M.; Sookoian, S. A randomized study of losartan vs. propranolol: Effects on hepatic and systemic hemodynamics in cirrhotic patients. Ann. Hepatol. 2003, 2, 36–40. [Google Scholar] [CrossRef] [PubMed]
- De, B.K.; Bandyopadhyay, K.; Das, T.K.; Das, D.; Biswas, P.K.; Majumdar, D.; Mandal, S.K.; Ray, S.; Dasgupta, S. Portal pressure response to losartan compared with propranolol in patients with cirrhosis. Am. J. Gastroenterol. 2003, 98, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Debernardi-Venon, W.; Martini, S.; Biasi, F.; Vizio, B.; Termine, A.; Poli, G.; Brunello, F.; Alessandria, C.; Bonardi, R.; Saracco, G.; et al. AT1 receptor antagonist Candesartan in selected cirrhotic patients: Effect on portal pressure and liver fibrosis markers. J. Hepatol. 2007, 46, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, H.; Nakazawa, T.; Shibuya, A.; Minamino, T.; Takada, J.; Tanaka, Y.; Okuwaki, Y.; Watanabe, M.; Koizumi, W. Effects of 1-year administration of olmesartan on portal pressure and TGF-beta1 in selected patients with cirrhosis: A randomized controlled trial. J. Gastroenterol. 2011, 46, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.; Therapondos, G.; Lui, H.F.; Johnston, N.; Webb, D.J.; Hayes, P.C. Chronic administration of losartan, an angiotensin II receptor antagonist, is not effective in reducing portal pressure in patients with preascitic cirrhosis. Am. J. Gastroenterol. 2004, 99, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Heim, M.H.; Jacob, L.; Beglinger, C. The angiotensin II receptor antagonist candesartan is not effective in reducing portal hypertension in patients with cirrhosis. Digestion 2007, 75, 122–123. [Google Scholar] [CrossRef] [PubMed]
- Schepke, M.; Wiest, R.; Flacke, S.; Heller, J.; Stoffel-Wagner, B.; Herold, T.; Ghauri, M.; Sauerbruch, T. Irbesartan plus low-dose propranolol versus low-dose propranolol alone in cirrhosis: A placebo-controlled, double-blind study. Am. J. Gastroenterol. 2008, 103, 1152–1158. [Google Scholar] [CrossRef]
- Agasti, A.K.; Mahajan, A.U.; Phadke, A.Y.; Nathani, P.J.; Sawant, P. Comparative randomized study on efficacy of losartan versus propranolol in lowering portal pressure in decompensated chronic liver disease. J. Dig. Dis. 2013, 14, 266–271. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.M.; Cho, Y.Z.; Na, J.H.; Kim, H.S.; Kim, H.A.; Kang, H.W.; Baik, S.K.; Kwon, S.O.; Cha, S.H.; et al. Effects of candesartan and propranolol combination therapy versus propranolol monotherapy in reducing portal hypertension. Clin. Mol. Hepatol. 2014, 20, 376–383. [Google Scholar] [CrossRef]
- Svoboda, P.; Ochmann, J.; Kantorová, I. Effect of enalapril treatment and sclerotherapy of esophageal varices on hepatic hemodynamics in portal hypertension. Hepatogastroenterology 1992, 39, 549–552. [Google Scholar] [PubMed]
- Tsai, Y.T.; Lin, H.C.; Lee, F.Y.; Hou, M.C.; Wang, S.S.; Lee, S.D. Effects of captopril on renal functions, renal and portal hemodynamics in patients with cirrhosis. Proc. Natl. Sci. Counc. Repub. China B 1996, 20, 44–50. [Google Scholar] [PubMed]
- Baik, S.K.; Park, D.H.; Kim, M.Y.; Choi, Y.J.; Kim, H.S.; Lee, D.K.; Kwon, S.O.; Kim, Y.J.; Park, J.W.; Chang, S.J. Captopril reduces portal pressure effectively in portal hypertensive patients with low portal venous velocity. J. Gastroenterol. 2003, 38, 1150–1154. [Google Scholar] [CrossRef] [PubMed]
- Pariente, E.A.; Bataille, C.; Bercoff, E.; Lebrec, D. Acute effects of captopril on systemic and renal hemodynamics and on renal function in cirrhotic patients with ascites. Gastroenterology 1985, 88 Pt 1, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Bass, N.M.; Bacchetti, P.; Gee, L.; Rockey, D.C. Hepatic tissue endothelin-1 levels in chronic liver disease correlate with disease severity and ascites. Am. J. Gastroenterol. 2000, 95, 199–203. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, N.; Li, F.; Zhou, Z.; Han, Q.; Lv, Y.; Sang, J.; Liu, Z. Therapeutic effect of renin angiotensin system inhibitors on liver fibrosis. J. Renin-Angiotensin-Aldosterone Syst. 2016, 17, 147032031662871. [Google Scholar] [CrossRef] [PubMed]
- Yokohama, S.; Yoneda, M.; Haneda, M.; Okamoto, S.; Okada, M.; Aso, K.; Hasegawa, T.; Tokusashi, Y.; Miyokawa, N.; Nakamura, K. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 2004, 40, 1222–1225. [Google Scholar] [CrossRef]
- Sookoian, S.; Fernández, M.A.; Castaño, G. Effects of six months losartan administration on liver fibrosis in chronic hepatitis C patients: A pilot study. World J. Gastroenterol. 2005, 11, 7560–7563. [Google Scholar] [CrossRef]
- Kim, M.Y.; Cho, M.Y.; Baik, S.K.; Jeong, P.H.; Suk, K.T.; Jang, Y.O.; Yea, C.J.; Kim, J.W.; Kim, H.S.; Kwon, S.O.; et al. Beneficial effects of candesartan, an angiotensin-blocking agent, on compensated alcoholic liver fibrosis—A randomized open-label controlled study. Liver Int. 2012, 32, 977–987. [Google Scholar] [CrossRef]
- Zhang, X.; Wong, G.L.-H.; Yip, T.C.-F.; Tse, Y.-K.; Liang, L.Y.; Hui, V.W.-K.; Lin, H.; Li, G.-L.; Lai, J.C.-T.; Chan, H.L.-Y.; et al. Angiotensin-converting enzyme inhibitors prevent liver-related events in nonalcoholic fatty liver disease. Hepatology 2022, 76, 469–482. [Google Scholar] [CrossRef]
- Elhence, H.; Dodge, J.L.; Lee, B.P. Association of Renin-Angiotensin System Inhibition with Liver-Related Events and Mortality in Compensated Cirrhosis. Clin. Gastroenterol. Hepatol. 2024, 22, 315–323.e17. [Google Scholar] [CrossRef] [PubMed]
- Tergast, T.L.; Griemsmann, M.; Wedemeyer, H.; Cornberg, M.; Maasoumy, B. Effects of renin-angiotensin inhibitors on renal function and the clinical course in patients with decompensated cirrhosis. Sci. Rep. 2023, 13, 17486. [Google Scholar] [CrossRef] [PubMed]
- Hirose, A.; Ono, M.; Saibara, T.; Nozaki, Y.; Masuda, K.; Yoshioka, A.; Takahashi, M.; Akisawa, N.; Iwasaki, S.; Oben, J.A.; et al. Angiotensin II type 1 receptor blocker inhibits fibrosis in rat nonalcoholic steatohepatitis. Hepatology 2007, 45, 1375–1381. [Google Scholar] [CrossRef]
- Kim, M.Y.; Baik, S.K.; Park, D.H.; Jang, Y.O.; Suk, K.T.; Yea, C.J.; Lee, I.Y.; Kim, J.W.; Kim, H.S.; Kwon, S.O.; et al. Angiotensin receptor blockers are superior to angiotensin-converting enzyme inhibitors in the suppression of hepatic fibrosis in a bile duct-ligated rat model. J. Gastroenterol. 2008, 43, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Fogari, R.; Maffioli, P.; Mugellini, A.; Zoppi, A.; Lazzari, P.; Derosa, G. Effects of losartan and amlodipine alone or combined with simvastatin in hypertensive patients with nonalcoholic hepatic steatosis. Eur. J. Gastroenterol. Hepatol. 2012, 24, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Song, Z.; Zhang, L.; Geng, Y.; Sun, J.; Miao, G.; Liu, P. Effects of losartan in patients with NAFLD: A meta-analysis of randomized controlled trial. Open Life Sci. 2023, 18, 20220583. [Google Scholar] [CrossRef] [PubMed]
- Vos, M.B.; Van Natta, M.L.; Blondet, N.M.; Dasarathy, S.; Fishbein, M.; Hertel, P.; Jain, A.K.; Karpen, S.J.; Lavine, J.E.; Mohammad, S.; et al. Randomized placebo-controlled trial of losartan for pediatric NAFLD. Hepatology 2022, 76, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Tomita, K.; Kawai, T.; Yokoyama, H.; Shimada, A.; Kikuchi, M.; Hirose, H.; Ebinuma, H.; Irie, J.; Ojiro, K.; et al. Effect of Telmisartan or Losartan for Treatment of Nonalcoholic Fatty Liver Disease: Fatty Liver Protection Trial by Telmisartan or Losartan Study (FANTASY). Int. J. Endocrinol. 2014, 2013, 587140. [Google Scholar] [CrossRef] [PubMed]
- Stokkeland, K.; Lageborn, C.T.; Ekbom, A.; Höijer, J.; Bottai, M.; Stål, P.; Söderberg-Löfdal, K. Statins and Angiotensin-Converting Enzyme Inhibitors are Associated with Reduced Mortality and Morbidity in Chronic Liver Disease. Basic. Clin. Pharmacol. Toxicol. 2018, 122, 104–110. [Google Scholar] [CrossRef]
- Tapper, E.B. Use of Angiotensin-Converting Enzyme Inhibitors in Patients with Liver Disease. Gastroenterol. Hepatol. 2023, 19, 65–67. [Google Scholar]
- Boyer, T.D.; Zia, P.; Reynolds, T.B. Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Gastroenterology 1979, 77, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Lebrec, D.; Poynard, T.; Hillon, P.; Benhamou, J.P. Propranolol for prevention of recurrent gastrointestinal bleeding in patients with cirrhosis: A controlled study. N. Engl. J. Med. 1981, 305, 1371–1374. [Google Scholar] [CrossRef] [PubMed]
- Vilas-Boas, W.W.; Ribeiro-Oliveira Jr, A.; Ribeiro, R.C.; Vieira, R.L.P.; Almeida, J.; Nadu, A.P.; Simões e Silva, A.C.; Santos, R.A.S. Effect of propranolol on the splanchnic and peripheral renin angiotensin system in cirrhotic patients. World J. Gastroenterol. 2008, 14, 6824–6830. [Google Scholar] [CrossRef] [PubMed]
- De, B.K.; Dutta, D.; Som, R.; Biswas, P.K.; Pal, S.K.; Biswas, A. Hemodynamic effects of propranolol with spironolactone in patients with variceal bleeds: A randomized controlled trial. World J. Gastroenterol. 2008, 14, 1908–1913. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.P.; Williams, R. Renin-angiotensin-aldosterone system in cirrhosis. Gut 1980, 21, 545–554. [Google Scholar] [CrossRef]
- Nakamura, T.; Sata, M.; Suzuki, K.; Moriwaki, H.; Fukui, H.; Fujiyama, S.; Imawari, M. Open-labeled randomized controlled trial to compare diuretic therapy with recombinant human serum albumin and diuretic therapy for therapeutic treatment of ascites in patients with advanced liver cirrhosis: An exploratory trial. Hepatol. Res. 2014, 44, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Santos, M.; Almeida, S.; Marques, I.; Bettencourt, P.; Carvalho, H. High-dose spironolactone changes renin and aldosterone levels in acutely decompensated heart failure. Cor Vasa 2014, 56, e463–e470. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Li, J.; Zhang, R.; Zhou, Y.; Yin, Q.; Zheng, Y.; Wang, F.; Xia, Y.; Chen, K.; et al. Hemodynamic effects of renin-angiotensin-aldosterone inhibitor and β-blocker combination therapy vs. β-blocker monotherapy for portal hypertension in cirrhosis: A meta-analysis. Exp. Ther. Med. 2017, 13, 1977–1985. [Google Scholar] [CrossRef]
- Kalambokis, G.; Economou, M.; Fotopoulos, A.; Al Bokharhii, J.; Pappas, C.; Katsaraki, A.; Tsianos, E.V. The effects of chronic treatment with octreotide versus octreotide plus midodrine on systemic hemodynamics and renal hemodynamics and function in nonazotemic cirrhotic patients with ascites. Am. J. Gastroenterol. 2005, 100, 879–885. [Google Scholar] [CrossRef]
- Minakari, M.; Faiiaz, L.; Rowshandel, M.; Shavakhi, A. Comparison of the effect of midodrine versus octreotide on hemodynamic status in cirrhotic patients with ascites. J. Res. Med. Sci. 2011, 16, 87–93. [Google Scholar]
- Shrestha, D.B.; Budhathoki, P.; Sedhai, Y.R.; Baniya, R.K.; Karki, P.; Jha, P.; Mainali, G.; Acharya, R.; Sodhi, A.; Kadaria, D. Midodrine in Liver Cirrhosis with Ascites: A Systematic Review and Meta-Analysis. Cureus 2022, 14, e27483. [Google Scholar] [CrossRef] [PubMed]
- Ginès, P.; Wong, F.; Watson, H.; Milutinovic, S.; Ruiz del Arbol, L.; Olteanu, D.; HypoCAT Study Investigators. Effects of satavaptan, a selective vasopressin V(2) receptor antagonist, on ascites and serum sodium in cirrhosis with hyponatremia: A randomized trial. Hepatology 2008, 48, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Wong, F.; Gines, P.; Watson, H.; Horsmans, Y.; Angeli, P.; Gow, P.; Minini, P.; Bernardi, M. Effects of a selective vasopressin V2 receptor antagonist, satavaptan, on ascites recurrence after paracentesis in patients with cirrhosis. J. Hepatol. 2010, 53, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Dahl, E.; Gluud, L.L.; Kimer, N.; Krag, A. Meta-analysis: The safety and efficacy of vaptans (tolvaptan, satavaptan and lixivaptan) in cirrhosis with ascites or hyponatraemia. Aliment. Pharmacol. Ther. 2012, 36, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S.; et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- FDA. Drug Safety Communication: FDA Limits Duration and Usage of SAMSCA (Tolvaptan) Due to Possible Liver Injury Leading to Organ Transplant or Death. US Food and Drug Administration. 2017. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-limits-duration-and-usage-samsca-tolvaptan-due-possible-liver#:~:text=%5B04%2D30%2D2013%5D,requiring%20liver%20transplant%20or%20death (accessed on 23 March 2024).
- Jia, J.-D.; Xie, W.; Ding, H.-G.; Mao, H.; Guo, H.; Li, Y.; Wang, X.; Wang, J.-F.; Lu, W.; Li, C.-Z.; et al. Utility and safety of tolvaptan in cirrhotic patients with hyponatremia: A prospective cohort study. Ann. Hepatol. 2017, 16, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Sakaida, I.; Terai, S.; Kurosaki, M.; Okada, M.; Hirano, T.; Fukuta, Y. Real-world effectiveness and safety of tolvaptan in liver cirrhosis patients with hepatic edema: Results from a post-marketing surveillance study (START study). J. Gastroenterol. 2020, 55, 800–810. [Google Scholar] [CrossRef]
- Bellos, I.; Kontzoglou, K.; Psyrri, A.; Pergialiotis, V. Tolvaptan Response Improves Overall Survival in Patients with Refractory Ascites: A Meta-Analysis. Dig. Dis. 2020, 38, 320–328. [Google Scholar] [CrossRef]
- Bastos, A.C.; Magalhães, G.S.; Gregório, J.F.; Matos, N.A.; Motta-Santos, D.; Bezerra, F.S.; Santos, R.A.S.; Campagnole Santos, M.J.; Rodrigues-Machado, M.G. Oral formulation angiotensin-(1–7) therapy attenuates pulmonary and systemic damage in mice with emphysema induced by elastase. Immunobiology 2020, 225, 151893. [Google Scholar] [CrossRef]
- Marques, F.D.; Ferreira, A.J.; Sinisterra, R.D.M.; Jacoby, B.A.; Sousa, F.B.; Caliari, M.V.; Silva, G.A.B.; Melo, M.B.; Nadu, A.P.; Souza, L.E.; et al. An oral formulation of angiotensin-(1–7) produces cardioprotective effects in infarcted and isoproterenol-treated rats. Hypertension 2011, 57, 477–483. [Google Scholar] [CrossRef]
- Osterreicher, C.H.; Taura, K.; De Minicis, S.; Seki, E.; Penz-Osterreicher, M.; Kluwe, Y.K.; Schuster, M.; Oudit, G.Y.; Penninger, J.M.; Brenner, D.A. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology 2009, 50, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Benthin, C.; Zeno, B.; Albertson, T.E.; Boyd, J.; Christie, J.D.; Hall, R.; Poirier, G.; Ronco, J.J.; Tidswell, M.; et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care 2017, 21, 234. [Google Scholar] [CrossRef] [PubMed]
- Hernández Prada, J.A.; Ferreira, A.J.; Katovich, M.J.; Shenoy, V.; Qi, Y.; Santos, R.A.S.; Castellano, R.K.; Lampkins, A.J.; Gubala, V.; Ostrov, D.A.; et al. Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008, 51, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.M.; El Deeb, M.; Zaafan, M.A. The protective effect of xanthenone against LPS-induced COVID-19 acute respiratory distress syndrome (ARDS) by modulating the ACE2/Ang-1–7 signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5285–5296. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, I.G.; Mak, K.Y.; Huang, P.; Burrell, L.M.; Angus, P.W.; Herath, C.B. The small molecule drug diminazene aceturate inhibits liver injury and biliary fibrosis in mice. Sci. Rep. 2018, 8, 10175. [Google Scholar] [CrossRef] [PubMed]
- Mak, K.Y.; Chin, R.; Cunningham, S.C.; Habib, M.R.; Torresi, J.; Sharland, A.F.; Alexander, I.E.; Angus, P.W.; Herath, C.B. ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice. Mol. Ther. 2015, 23, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Pun, C.K.; Chang, C.C.; Chuang, C.L.; Huang, H.C.; Hsu, S.J.; Huang, Y.H.; Hou, M.C.; Lee, F.Y. Dual angiotensin receptor and neprilysin inhibitor reduced portal pressure through peripheral vasodilatation and decreasing systemic arterial pressure in cirrhotic rats. J. Chin. Med. Assoc. 2023, 86, 786–794. [Google Scholar] [CrossRef]
- Hsu, S.J.; Huang, H.C.; Chuang, C.L.; Chang, C.C.; Hou, M.C.; Lee, F.Y.; Lee, S.D. Dual Angiotensin Receptor and Neprilysin Inhibitor Ameliorates Portal Hypertension in Portal Hypertensive Rats. Pharmaceutics 2020, 12, 320. [Google Scholar] [CrossRef] [PubMed]
- Esser, N.; Zraika, S. Neprilysin Inhibitors and Angiotensin(1–7) in COVID-19. Br. J. Cardiol. 2020, 27, 109–111. [Google Scholar] [CrossRef]
- Klein, S.; Herath, C.B.; Schierwagen, R.; Grace, J.; Haltenhof, T.; Uschner, F.E.; Strassburg, C.P.; Sauerbruch, T.; Walther, T.; Angus, P.; et al. Hemodynamic Effects of the Non-Peptidic Angiotensin-(1–7) Agonist AVE0991 in Liver Cirrhosis. PLoS ONE 2015, 10, e0138732. [Google Scholar] [CrossRef]
MasR… | |||
Improves fibrosis? | Decreases portal pressure? | Increases portal pressure? | Has no effect on portal pressure? |
|
|
|
|
MrgD… | |||
Improves fibrosis? | Decreases portal pressure? | Increases portal pressure? | Has no effect on portal pressure? |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGrath, M.S.; Wentworth, B.J. The Renin–Angiotensin System in Liver Disease. Int. J. Mol. Sci. 2024, 25, 5807. https://doi.org/10.3390/ijms25115807
McGrath MS, Wentworth BJ. The Renin–Angiotensin System in Liver Disease. International Journal of Molecular Sciences. 2024; 25(11):5807. https://doi.org/10.3390/ijms25115807
Chicago/Turabian StyleMcGrath, Mary S., and Brian J. Wentworth. 2024. "The Renin–Angiotensin System in Liver Disease" International Journal of Molecular Sciences 25, no. 11: 5807. https://doi.org/10.3390/ijms25115807
APA StyleMcGrath, M. S., & Wentworth, B. J. (2024). The Renin–Angiotensin System in Liver Disease. International Journal of Molecular Sciences, 25(11), 5807. https://doi.org/10.3390/ijms25115807