Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application
Abstract
:1. Introduction
2. Results
2.1. Atomic Force Microscopy (AFM)
2.2. Surface Free Energy
2.3. Moisture Content and Antioxidant Activity
2.4. Phenolic Acid Release
2.5. Cytocompatibility
2.6. Antimicrobial Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Film Preparation
4.3. Atomic Force Microscopy
4.4. Surface Free Energy
4.5. Moisture Content
4.6. Antioxidant Activity
4.7. Phenolic Acid Release
4.8. Cell Culture
4.9. Cell Viability Assay
4.10. Antimicrobial Activity
- R—antimicrobial activity;
- U0—average of logarithm numbers of viable bacteria from the control sample at time = 0 h;
- Ut—average of logarithm numbers of viable bacteria from the control sample at time = 24 h;
- At—average of logarithm numbers of viable bacteria from the test sample at time = 24 h.
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Sahana, T.G.; Rekha, P.D. Biopolymers: Applications in wound healing and skin tissue engineering. Mol. Biol. Rep. 2018, 45, 2857–2867. [Google Scholar] [CrossRef] [PubMed]
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining Its Role. Cells 2020, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Eskandarinia, A.; Kefayat, A.; Rafienia, M.; Agheb, M.; Navid, S.; Ebrahimpour, K. Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydr. Polym. 2019, 216, 25–35. [Google Scholar] [CrossRef]
- Tian, R.; Qiu, X.; Yuan, P.; Lei, K.; Wang, L.; Bai, Y.; Liu, S.; Chen, X. Fabrication of self-healing hydrogels with on-demand antimicrobial activity and sustained biomolecule release for infected skin regeneration. ACS Appl. Mater. Interfaces 2018, 10, 17018–17027. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, R.; Hua, X.; Chen, H.; Xu, J.; Wu, R.; Cen, L. Highly stretchable HA/SA hydrogels for tissue engineering. J. Biomater. Sci. Polym. Ed. 2018, 29, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Graça, M.F.P.; Miguel, S.P.; Cabral, C.S.D.; Correia, I.J. Hyaluronic acid—Based wound dressings: A review. Carbohyd. Polym. 2020, 241, 116364. [Google Scholar] [CrossRef] [PubMed]
- Serini, S.; Trombino, S.; Curcio, F.; Sole, R.; Cassano, R.; Calviello, G. Hyaluronic Acid-Mediated Phenolic Compound Nanodelivery for Cancer Therapy. Pharmaceutics 2023, 15, 1751. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, B.; Mazur, O. Collagen-Based Materials Modified by Phenolic Acids—A Review. Materials 2020, 13, 3641. [Google Scholar] [CrossRef]
- Shao, Y.; Luo, W.; Guo, Q.; Li, X.; Zhang, Q.; Li, J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des. Devel. Ther. 2019, 13, 2043–2055. [Google Scholar] [CrossRef]
- Samanta, S.; Rangasami, V.K.; Sarlus, H.; Samal, J.R.K.; Evans, A.D.; Parihar, V.S.; Varghese, O.P.; Harris, R.A.; Oommen, O.P. Interpenetrating gallol functionalized tissue adhesive hyaluronic acid hydrogel polarizes macrophages to an immunosuppressive phenotype. Acta Biomater. 2022, 142, 36–48. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Neri, T.A.; Choi, B.D. Characterization of hyaluronic acid extracted from Liparis tessellatus eggs grafted with phenolic acids and nisin. Int. J. Biol. Macromol. 2020, 157, 45–50. [Google Scholar] [CrossRef]
- de Oliveira, M.M.; Nakamura, C.V.; Auzély-Velty, R. Boronate-ester crosslinked hyaluronic acid hydrogels for dihydrocaffeic acid delivery and fibroblasts protection against UVB irradiation. Carbohyd. Polym. 2020, 247, 116845. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar]
- Vilela, C.; Pinto, R.J.B.; Coelho, J.; Domingues, M.R.M.; Daina, S.; Sadocco, P.; Santos, S.A.O.; Freire, C.S.R. Bioactive chitosan/ellagic acid films with UV-light protection for active food packaging. Food Hydrocoll. 2017, 73, 120–128. [Google Scholar] [CrossRef]
- Luo, Y.; Liu, H.; Yang, S.; Zeng, J.; Wu, Z. Sodium Alginate-Based Green Packaging Films Functionalized by Guava Leaf Extracts and Their Bioactivities. Materials 2019, 12, 2923. [Google Scholar] [CrossRef]
- Tirado-Gallegos, J.M.; Zamudio-Flores, P.B.; Ornelas-Paz, J.D.J.; Rios-Velasco, C.; Olivas Orozco, G.I.; Espino-Díaz, M.; Baeza-Jiménez, R.; Buenrostro-Figueroa, J.J.; Agui-lar-González, M.A.; Lardizábal-Gutiérrez, D.; et al. Elaboration and Characterization of Active Apple Starch Films Incorporated with Ellagic Acid. Coatings 2018, 8, 384. [Google Scholar] [CrossRef]
- Kim, S.; Gaber, M.W.; Zawaski, J.A.; Zhang, F.; Richardson, M.; Zhang, X.A.; Yang, Y. The inhibition of glioma growth in vitro and in vivo by a chitosan/ellagic acid composite biomaterial. Biomaterials 2009, 30, 4743–4751. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Liu, Y.; Waleed Gaber, M.; Bumgardner, J.D.; Haggard, W.O.; Yang, Y. Development of chitosan–ellagic acid films as a local drug delivery system to induce apoptotic death of human melanoma cells. J. Biomed. Mater. Res. 2009, 90B, 145–155. [Google Scholar] [CrossRef]
- Tavares, W.S.; Ribeiro Pena, G.; Martin-Pastor, M.; Oliveira de Sousa, F.F. Design and characterization of ellagic acid-loaded zein nanoparticles and their effect on the antioxidant and antibacterial activities. J. Mol. Liq. 2021, 341, 116915. [Google Scholar] [CrossRef]
- Tavares, W.S.; Tavares-Júnior, A.G.; Otero-Espinar, F.J.; Martín-Pastor, M.; Sousa, F.F.O. Design of ellagic acid-loaded chitosan/zein films for wound bandaging. J. Drug Deliv. Sci. Technol. 2020, 59, 101903. [Google Scholar] [CrossRef]
- Shaik, M.M.; Kowshik, M. Ellagic acid containing collagen-chitosan scaffolds as potential antioxidative bio-materials for tissue engineering applications. Int. J. Polym. Mater. 2019, 68, 208–215. [Google Scholar] [CrossRef]
- Behl, G.; Sharma, M.; Dahiya, S.; Chhikara, A.; Chopra, M. Synthesis, Characterization, and Evaluation of Radical Scavenging Ability of Ellagic Acid-Loaded Nanogels. J. Nanomater. 2011, 2011, 695138. [Google Scholar] [CrossRef]
- Shavandi, A.; Bekhit, A.E.D.A.; Saeedi, P.; Izadifar, Z.; Bekhit, A.A.; Khademhosseini, A. Polyphenol uses in biomaterials engineering. Biomaterials 2018, 167, 91–106. [Google Scholar] [CrossRef] [PubMed]
- Grabska-Zielińska, S.; Pin, J.M.; Kaczmarek-Szczepańska, B.; Olewnik-Kruszkowska, E.; Sionkowska, A.; Monteiro, F.J.; Steinbrink, K.; Kleszczyński, K. Scaffolds Loaded with Dialdehyde Chitosan and Collagen—Their Physico-Chemical Properties and Biological Assessment. Polymers 2022, 14, 1818. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek-Szczepańska, B.; Pin, J.M.; Zasada, L.; Sonne, M.M.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Assessment of Melatonin-Cultured Collagen/Chitosan Scaffolds Cross-Linked by a Glyoxal Solution as Biomaterials for Wound Healing. Antioxidants 2022, 11, 570. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek-Szczepańska, B.; Ostrowska, J.; Kozłowska, J.; Szota, Z.; Brożyna, A.A.; Dreier, R.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Kleszczyński, K. Evaluation of Polymeric Matrix Loaded with Melatonin for Wound Dressing. Int. J. Mol. Sci. 2021, 22, 5658. [Google Scholar] [CrossRef]
- ISO 22196; 2011(E) Plastics—Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. Final Report: R2019-302; ISO: Geneva, Switzerland, 2011.
- Wekwejt, M.; Małek, M.; Ronowska, A.; Michno, A.; Pałubicka, A.; Zasada, L.; Klimek, A.; Kaczmarek-Szczepańska, B. Hyaluronic acid/tannic acid films for wound healing application. Int. J. Biol. Macromol. 2024, 254, 128101. [Google Scholar] [CrossRef]
- Wang, Y.; Hansen, C.J.; Wu, C.C.; Robinette, E.J.; Peterson, A.M. Effect of surface wettability on the interfacial adhesion of a thermosetting elastomer on glass. RSC Adv. 2021, 11, 31142–31151. [Google Scholar] [CrossRef]
- Skopinska-Wisniewska, J.; Kozlowska, J.; Grabska, S.; Stachowiak, N.; Kaczmarek, B.; Sionkowska, A. The influence of UV-irradiation on the poly(vinyl alcohol)/hyaluronic acid film properties. Mol. Cryst Liq. Cryst. 2019, 680, 85–95. [Google Scholar] [CrossRef]
- Szulc, M.; Lewandowska, K. Characterization of Chitosan Films Modified Using Caffeic Acid and a Neutralization Process. Materials 2023, 16, 5038. [Google Scholar] [CrossRef]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Nishimoto, S.K.; Bumgardner, J.D.; Haggard, W.O.; Waleed Gaber, M.; Yang, Y. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 2010, 31, 4157–4166. [Google Scholar] [CrossRef]
- Arulmozhi, A.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloid. Surface. B. 2013, 110, 313–320. [Google Scholar] [CrossRef]
- Dovedytis, M.; Liu, Z.J.; Bartlett, S. Hyaluronic acid and its biomedical applications: A review. Eng. Regen. 2020, 1, 102–113. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, occurrence, toxicity and environmental health risks of synthetic phenolic antioxidants: A review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, A.; Mohajeri, T.; Aleyaghoob, G.; Heidarian, F.; Oskuee, R.K. Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnol. Appl. Biochem. 2022, 68, 2323–2356. [Google Scholar] [CrossRef]
- Kholghi, K.K.; Tamri, P.; Haddadi, R.; Pourmoslemi, S. Ellagic acid loaded nanospheres/biodegradable PVA-sodium alginate hydrogel for wound healing application. J. Appl. Polym. Sci. 2023, 140, e54406. [Google Scholar] [CrossRef]
- Tavares, W.S.; Martin-Pastor, M.; Tavares Junior, A.G.; Sousa, F.F.O. Biopharmaceutical activities related to ellagic acid, chitosan, and zein and their improvement by association. J. Food Sci. 2018, 83, 2970–2975. [Google Scholar] [CrossRef]
- Sepúlveda, L.; Ascacio, A.; Rodríguez-Herrera, R.; Aguilera-Carbó, A.; Aguilar, C.N. Ellagic acid: Biological properties and biotechnological development. Afr. J. Biotechnol. 2011, 10, 4518–4523. [Google Scholar]
- Macêdo, N.S.; Barbosa, C.R.D.S.; Bezerra, A.H.; de Sousa Silveira, Z.; da Silva, L.; Coutinho, H.D.M.; Dashti, S.; Kim, B.; Bezerra da Cunha, F.A.; da Silva, M.V. Evaluation of ellagic acid and gallic acid as efflux pump inhibitors in strains of Staphylococcus aureus. Biol. Open 2022, 11, bio059434. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Peng, X.; Li, B.; Liu, Y.; Sun, H.; Li, X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020, 151, 1224–1239. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Dai, Y.; Gao, H. Development and application of hyaluronic acid in tumor targeting drug delivery. Acta Pharm. Sin. B 2019, 9, 1099–1112. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.M.; Fernandez, N.; Matias, A.A.; do Rosario Bronze, M. Hyaluronic acid and chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydr. Polym. 2020, 243, 116441. [Google Scholar] [CrossRef] [PubMed]
- Theoret, C. Physiology of Wound Healing. In Equine Wound Management, 3rd ed.; Theoret, C., Schumacher, J., Eds.; E-Publishing Inc., John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–13. [Google Scholar] [CrossRef]
- Sgariglia, M.A.; Soberón, J.R.; Cabanes, A.P.; Sampietro, D.A.; Vattuone, M.A. Anti-inflammatory properties of phenolic lactones isolated from Caesalpinia paraguariensis stem bark. J. Ethnopharmacol. 2013, 147, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Yung, D.B.Y.; Sircombe, K.J.; Pletzer, D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol. Microbiol. 2021, 116, 1–15. [Google Scholar] [CrossRef]
- Kaczmarek, B.; Wekwejt, M.; Nadolna, K.; Owczarek, A.; Mazur, O.; Pałubicka, A. The mechanical properties and bactericidal degradation effectiveness of tannic acid-based thin films for wound care a scientific article. J. Mech. Behav. Biomed. Mater. 2020, 110, 103916. [Google Scholar] [CrossRef]
Specimen | Ra [nm] | Rq [nm] |
---|---|---|
80HA/20EA/AcOH | 369 ± 27 | 297 ± 23 |
50HA/50EA/AcOH | 273 ± 35 | 217 ± 27 |
20HA/80EA/AcOH | 320 ± 45 | 260 ± 36 |
80HA/20EA/NaOH | 260 ± 32 * | 204 ± 26 n.s. |
50HA/50EA/NaOH | 297 ± 37 n.s. | 240 ± 28 n.s. |
20HA/80EA/NaOH | 472 ± 21 ** | 385 ± 16 ** |
Specimen | Contact Angle [°] | IFT (s) [mJ/m2] | IFT (s,D) [mJ/m2] | IFT (s,P) [mJ/m2] | |
---|---|---|---|---|---|
G | D | ||||
100HA | 35.28 ± 2.29 | 58.16 ± 1.46 | 51.71 ± 0.74 | 17.44 ± 0.26 | 34.28 ± 0.48 |
80HA/20EA/AcOH | Measurement impossible | ||||
50HA/50EA/AcOH | |||||
20HA/80EA/AcOH | |||||
80HA/20EA/NaOH | 37.70 ± 1.67 n.s. | 51.33 ± 2.07 * | 50.69 ± 0.84 | 21.48 ± 0.41 | 29.21 ± 0.43 |
50HA/50EA/NaOH | 23.83 ± 1.10 * | 68.95 ± 0.83 * | 59.30 ± 0.41 | 10.93 ± 0.12 | 48.37 ± 0.29 |
20HA/80EA/NaOH | 26.24 ± 1.16 * | 57.90 ± 1.43 n.s. | 56.53 ± 0.60 | 16.66 ± 0.25 | 39.86 ± 0.35 |
Specimen | MC [%] | RSA [%] |
---|---|---|
100HA | 15.26 ± 0.99 | −21.50 ± 0.02 |
80HA/20EA/AcOH | 8.94 ± 0.61 * | 85.40 ± 0.01 * |
50HA/50EA/AcOH | 9.65 ± 1.16 * | 84.80 ± 0.01 * |
20HA/80EA/AcOH | 6.40 ± 0.38 * | 85.11 ± 0.01 * |
80HA/20EA/NaOH | 12.50 ± 0.93 * | 86.23 ± 0.06 * |
50HA/50EA/NaOH | 4.60 ± 0.52 * | 83.21 ± 0.07 * |
20HA/80EA/NaOH | 3.27 ± 0.35 * | 85.15 ± 0.04 * |
Sample | HA Content [wt.%] | EA Content [wt.%] | EA Solvent |
---|---|---|---|
100HA | 100 | - | - |
80HA/20EA/AcOH | 80 | 20 | 0.1 M AcOH |
50HA/50EA/AcOH | 50 | 50 | |
20HA/80EA/AcOH | 20 | 80 | |
80HA/20EA/NaOH | 80 | 20 | 0.0015 M NaOH |
50HA/50EA/NaOH | 50 | 50 | |
20HA/80EA/NaOH | 20 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarek-Szczepańska, B.; Kleszczyński, K.; Zasada, L.; Chmielniak, D.; Hollerung, M.B.; Dembińska, K.; Pałubicka, K.; Steinbrink, K.; Swiontek Brzezinska, M.; Grabska-Zielińska, S. Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application. Int. J. Mol. Sci. 2024, 25, 5891. https://doi.org/10.3390/ijms25115891
Kaczmarek-Szczepańska B, Kleszczyński K, Zasada L, Chmielniak D, Hollerung MB, Dembińska K, Pałubicka K, Steinbrink K, Swiontek Brzezinska M, Grabska-Zielińska S. Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application. International Journal of Molecular Sciences. 2024; 25(11):5891. https://doi.org/10.3390/ijms25115891
Chicago/Turabian StyleKaczmarek-Szczepańska, Beata, Konrad Kleszczyński, Lidia Zasada, Dorota Chmielniak, Mara Barbara Hollerung, Katarzyna Dembińska, Krystyna Pałubicka, Kerstin Steinbrink, Maria Swiontek Brzezinska, and Sylwia Grabska-Zielińska. 2024. "Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application" International Journal of Molecular Sciences 25, no. 11: 5891. https://doi.org/10.3390/ijms25115891
APA StyleKaczmarek-Szczepańska, B., Kleszczyński, K., Zasada, L., Chmielniak, D., Hollerung, M. B., Dembińska, K., Pałubicka, K., Steinbrink, K., Swiontek Brzezinska, M., & Grabska-Zielińska, S. (2024). Hyaluronic Acid/Ellagic Acid as Materials for Potential Medical Application. International Journal of Molecular Sciences, 25(11), 5891. https://doi.org/10.3390/ijms25115891