Immune Response to Respiratory Viral Infections
Abstract
1. Introduction
2. The Airway Mucosal Surface
3. Respiratory Viral Infections and Immune Response
3.1. Innate Immune Response
3.2. Adaptive Immune Response
4. Host Responses to RSV, Influenza Virus, and SARS-CoV-2
4.1. Innate and Adaptive Immune Response to RSV
4.2. Innate and Adaptive Immune Response to SARS-CoV-2
4.3. Innate and Adaptive Immune Response to Influenza Virus
5. Special Population: Pregnant Women and Newborns
5.1. Role of RSV Infection in Pregnant Women and Newborns
5.2. Role of Influenza Virus Infection in Pregnant Women and Newborns
5.3. Role of SARS-CoV-2 Infection in Pregnant Women and Newborns
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, F.-F.; Yu, S.-J.; Du, W.-N.; Wang, H.-M.; Yao, X.-X.; Xue, D.-D.; Yu, Y. Global Morbidity and Mortality of Lower Respiratory Infections: A Population-Based Study. Respir. Med. 2022, 205, 107042. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Schwarze, J. Respiratory Viral Infections in Infants: Causes, Clinical Symptoms, Virology, and Immunology. Clin. Microbiol. Rev. 2010, 23, 74–98. [Google Scholar] [CrossRef]
- Stambas, J.; Lu, C.; Tripp, R.A. Innate and Adaptive Immune Responses in Respiratory Virus Infection: Implications for the Clinic. Expert Rev. Respir. Med. 2020, 14, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- De Conto, F.; Conversano, F.; Medici, M.C.; Ferraglia, F.; Pinardi, F.; Arcangeletti, M.C.; Chezzi, C.; Calderaro, A. Epidemiology of Human Respiratory Viruses in Children with Acute Respiratory Tract Infection in a 3-Year Hospital-Based Survey in Northern Italy. Diagn. Microbiol. Infect. Dis. 2019, 94, 260–267. [Google Scholar] [CrossRef]
- Zappa, A.; Perin, S.; Amendola, A.; Bianchi, S.; Pariani, E.; Ruzza, M.L.; Podestà, A.; Tanzi, E.; Farina, C. Epidemiological and Molecular Surveillance of Influenza and Respiratory Syncytial Viruses in Children with Acute Respiratory Infections (2004/2005 Season). Microbiol. Medica 2008, 23. [Google Scholar] [CrossRef]
- Hernandez-Vargas, E.A.; Wilk, E.; Canini, L.; Toapanta, F.R.; Binder, S.C.; Uvarovskii, A.; Ross, T.M.; Guzmán, C.A.; Perelson, A.S.; Meyer-Hermann, M. Effects of Aging on Influenza Virus Infection Dynamics. J. Virol. 2014, 88, 4123–4131. [Google Scholar] [CrossRef]
- Ni, L.; Ye, F.; Cheng, M.-L.; Feng, Y.; Deng, Y.-Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 2020, 52, 971–977.e3. [Google Scholar] [CrossRef] [PubMed]
- Santos Coy-Arechavaleta, A.; Alvarado-Yaah, J.E.; Uribe-Noguez, L.A.; Guerra-Castillo, F.X.; Santacruz-Tinoco, C.E.; Ramón-Gallegos, E.; Muñoz-Medina, J.E.; Fernandes-Matano, L. Relationship between the Viral Load in Patients with Different COVID-19 Severities and SARS-CoV-2 Variants. Microorganisms 2024, 12, 428. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.N.; Rouse, B.T. Immune Responses to Viruses. In Clinical Immunology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 421–431. [Google Scholar] [CrossRef]
- Alonso, W.J.; Laranjeira, B.J.; Pereira, S.A.R.; Florencio, C.M.G.D.; Moreno, E.C.; Miller, M.A.; Giglio, R.; Schuck-Paim, C.; Moura, F.E.A. Comparative Dynamics, Morbidity and Mortality Burden of Pediatric Viral Respiratory Infections in an Equatorial City. Pediatr. Infect. Dis. J. 2012, 31, e9–e14. [Google Scholar] [CrossRef]
- Everard, M.L. Paediatric Respiratory Infections. Eur. Respir. Rev. 2016, 25, 36–40. [Google Scholar] [CrossRef]
- Shi, T.; Mcallister, D.A.; O’brien, K.L.; Simoes, E.A.F.; Madhi, S.A.; Gessner, B.D.; Polack, F.P.; Balsells, E.; Acacio, S.; Aguayo, C.; et al. Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children in 2015: A Systematic Review and Modelling Study. Lancet 2017, 390, 946–958. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Confirmed Cases and Deaths. The United Nations Children’s Fund (UNICEF). Available online: https://data.unicef.org/resources/covid-19-confirmed-cases-and-deaths-dashboard (accessed on 7 April 2024).
- Paget, J.; Spreeuwenberg, P.; Charu, V.; Taylor, R.J.; Danielle Iuliano, A.; Bresee, J.; Simonsen, L.; Viboud, C.; for the Global Seasonal Influenza-Associated Mortality Collaborator Network and GLaMOR Collaborating Teams. Global mortality associated with seasonal influenza epidemics: New burden estimates and predictors from the GLaMOR Project. J. Glob. Health 2019, 9, 020421. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Leonardi, S.; Rezaee, F.; Harford, T.J.; Perez, M.K.; Piedimonte, G.; De Paris, K.; Coleman, M.; Gibbons, D. Effects of Vertical Transmission of Respiratory Viruses to the Offspring. Front. Immunol. 2022, 13, e853009. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.P.; Thomé, B.L.; da Souza, A.P.D. Exploring the Immune Response against RSV and SARS-CoV-2 Infection in Children. Biology 2023, 12, 1223. [Google Scholar] [CrossRef] [PubMed]
- Ardain, A.; Marakalala, M.J.; Leslie, A. Tissue-Resident Innate Immunity in the Lung. Immunology 2020, 159, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.K. Physiology of Airway Mucus Clearance. Respir. Care 2002, 47, 761–768. [Google Scholar] [PubMed]
- Knowles, M.R.; Boucher, R.C. Mucus Clearance as a Primary Innate Defense Mechanism for Mammalian Airways. J. Clin. Investig. 2002, 109, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Mettelman, R.C.; Kaitlynn Allen, E.; Thomas, P.G. Mucosal Immune Responses to Infection and Vaccination in the Respiratory Tract. Immunity 2022, 55, 749–780. [Google Scholar] [CrossRef] [PubMed]
- Watford, W.T.; Ghio, A.J.; Wright, J.R. Complement-Mediated Host Defense in the Lung. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2000, 279, L790–L798. [Google Scholar] [CrossRef]
- Watson, A.; Phipps, M.J.S.; Clark, H.W.; Skylaris, C.-K.; Madsen, J. Surfactant Proteins A and D: Trimerized Innate Immunity Proteins with an Affinity for Viral Fusion Proteins The Innate Immune Defence of the Upper and Lower Airways. J. Innate Immun. 2018, 11, 13–28. [Google Scholar] [CrossRef]
- Hartshorn, K.L.; White, M.R.; Shepherd, V.; Reid, K.; Jensenius, J.C.; Crouch, E.C. Mechanisms of Anti-Influenza Activity of Surfactant Proteins A and D: Comparison with Serum Collectins. Am. J. Physiol.-Lung Cell. Mol. Physiol. 1997, 273, L1156–L1166. [Google Scholar] [CrossRef] [PubMed]
- Brügger, M.; Démoulins, T.; Barut, G.T.; Zumkehr, B.; Oliveira Esteves, B.I.; Mehinagic, K.; Haas, Q.; Schögler, A.; Rameix-Welti, M.-A.; Eléouët, J.-F.; et al. Pulmonary Mesenchymal Stem Cells Are Engaged in Distinct Steps of Host Response to Respiratory Syncytial Virus Infection. PLoS Pathog. 2021, 17, e1009789. [Google Scholar] [CrossRef] [PubMed]
- Kesimer, M.; Kirkham, S.; Pickles, R.J.; Henderson, A.G.; Alexis, N.E.; DeMaria, G.; Knight, D.; Thornton, D.J.; Sheehan, J.K. Tracheobronchial Air-Liquid Interface Cell Culture: A Model for Innate Mucosal Defense of the Upper Airways? Am. J. Physiol.-Lung Cell. Mol. Physiol. 2009, 296, L92–L100. [Google Scholar] [CrossRef]
- Sheng, Y.H.; Hasnain, S.Z. Mucus and Mucins: The Underappreciated Host Defence System. Front. Cell Infect. Microbiol. 2022, 12, e856962. [Google Scholar] [CrossRef]
- Roy, M.G.; Livraghi-Butrico, A.; Fletcher, A.A.; McElwee, M.M.; Evans, S.E.; Boerner, R.M.; Alexander, S.N.; Bellinghausen, L.K.; Song, A.S.; Petrova, Y.M.; et al. Muc5b Is Required for Airway Defence. Nature 2014, 505, 412–416. [Google Scholar] [CrossRef]
- de Souza, A.P.D.; Singanayagam, A.; Porto, B.N. Editorial: Role of Lung and Gut Microbiota in the Immune Response against Respiratory Viral Infections. Front. Immunol. 2023, 13, e1114581. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Gail, M.H.; Consonni, D.; Carugno, M.; Humphrys, M.; Pesatori, A.C.; Caporaso, N.E.; Goedert, J.J.; Ravel, J.; Landi, M.T. Characterizing Human Lung Tissue Microbiota and Its Relationship to Epidemiological and Clinical Features. Genome Biol. 2016, 17, 163. [Google Scholar] [CrossRef]
- Yagi, K.; Huffnagle, G.B.; Lukacs, N.W.; Asai, N. The Lung Microbiome during Health and Disease. Int. J. Mol. Sci. 2021, 22, 10872. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Zhang, N.; Wang, X.; Sun, L.; Chen, N.; Zhao, S.; He, Q. Airway Microbiome, Host Immune Response and Recurrent Wheezing in Infants with Severe Respiratory Syncytial Virus Bronchiolitis. Pediatr. Allergy Immunol. 2020, 31, 281–289. [Google Scholar] [CrossRef]
- Melo-González, F.; Sepúlveda-Alfaro, J.; Schultz, B.M.; Suazo, I.D.; Boone, D.L.; Kalergis, A.M.; Bueno, S.M. Distal Consequences of Mucosal Infections in Intestinal and Lung Inflammation. Front. Immunol. 2022, 13, e877533. [Google Scholar] [CrossRef]
- Misharin, A.V.; Morales-Nebreda, L.; Mutlu, G.M.; Budinger, G.R.S.; Perlman, H. Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung. Am. J. Respir. Cell Mol. Biol. 2013, 49, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Hyland, L.; Hou, S. Nasal-Associated Lymphoid Tissue Is a Site of Long-Term Virus-Specific Antibody Production Following Respiratory Virus Infection of Mice. J. Virol. 2001, 75, 5416–5420. [Google Scholar] [CrossRef] [PubMed]
- Wiley, J.A.; Richert, L.E.; Swain, S.D.; Harmsen, A.; Barnard, D.L.; Randall, T.D.; Jutila, M.; Douglas, T.; Broomell, C.; Young, M.; et al. Inducible Bronchus-Associated Lymphoid Tissue Elicited by a Protein Cage Nanoparticle Enhances Protection in Mice against Diverse Respiratory Viruses. PLoS ONE 2009, 4, e7142. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C. Mechanism of Membrane Fusion by Viral Envelope Proteins. Adv. Virus Res. 2005, 64, 231–261. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, T.H. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin. Microbiol. Rev. 2009, 22, 240–273. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M. Pattern Recognition Receptors in Health and Diseases. Sig. Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, S.; Rodriguez-Fernandez, R.; Diaz, A.; Oliva Rodriguez-Pastor, S.; Ramilo, O.; Mejias, A. Infant Immune Response to Respiratory Viral Infections. Immunol. Allergy Clin. N. Am. 2019, 39, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, H.C.; Hansen, M.R.; Tripp, R.A. Interferons—Implications in the Immune Response to Respiratory Viruses. Microorganisms 2023, 11, 2179. [Google Scholar] [CrossRef]
- Todd, E.M.; Zhou, J.Y.; Szasz, T.P.; Deady, L.E.; D’angelo, J.A.; Cheung, M.D.; Kim, A.H.J.; Morley, S.C. Alveolar Macrophage Development in Mice Requires L-Plastin for Cellular Localization in Alveoli. Blood 2016, 128, 2785–2796. [Google Scholar] [CrossRef]
- Arish, M.; Sun, J. Monocyte and Macrophage Function in Respiratory Viral Infections. Anim. Dis. 2023, 3, 30. [Google Scholar] [CrossRef]
- Cortjens, B.; van Woensel, J.B.M.; Bem, R.A. Neutrophil Extracellular Traps in Respiratory Disease: Guided Anti-Microbial Traps or Toxic Webs? Paediatr. Respir. Rev. 2017, 21, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Macchia, I.; La Sorsa, V.; Urbani, F.; Moretti, S.; Antonucci, C.; Afferni, C.; Schiavoni, G. Eosinophils as Potential Biomarkers in Respiratory Viral Infections. Front. Immunol. 2023, 14, e1170035. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Simon, D.; Simon, H.-U. Eosinophil Extracellular DNA Traps: Molecular Mechanisms and Potential Roles in Disease. Curr. Opin. Immunol. 2012, 24, 736–739. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.H.; Cardani, A.; Braciale, T.J. The Host Immune Response in Respiratory Virus Infection: Balancing Virus Clearance and Immunopathology. Semin. Immunopathol. 2016, 38, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Culley, F.J. Natural Killer Cells in Infection and Inflammation of the Lung. Immunology 2009, 128, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pamer, E.G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2014, 11, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.E.; Varga, S.M. The CD8 T Cell Response to Respiratory Virus Infections. Front. Immunol. 2018, 9, e00678. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Madan, R.; Karp, C.L.; Braciale, T.J. Effector T Cells Control Lung Inflammation during Acute Influenza Virus Infection by Producing IL-10. Nat. Med. 2009, 15, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Braciale, T.J.; Sun, J.; Kim, T.S. Regulating the Adaptive Immune Response to Respiratory Virus Infection. Nat. Rev. Immunol. 2012, 12, 295–305. [Google Scholar] [CrossRef]
- Mangodt, T.C.; Van Herck, M.A.; Nullens, S.; Ramet, J.; De Dooy, J.J.; Jorens, P.G.; De Winter, B.Y. The Role of Th17 and Treg Responses in the Pathogenesis of RSV Infection. Pediatr. Res. 2015, 78, 483–491. [Google Scholar] [CrossRef]
- Swarnalekha, N.; Schreiner, D.; Litzler, L.C.; Iftikhar, S.; Kirchmeier, D.; Künzli, M.; Son, Y.M.; Sun, J.; Moreira, E.A.; King, C.G. T Resident Helper Cells Promote Humoral Responses in the Lung. Sci. Immunol. 2021, 6, 6808. [Google Scholar] [CrossRef]
- Pruner, K.B.; Pepper, M. Immune Memory Focus Local Memory CD4 T Cell Niches in Respiratory Viral Infection. J. Exp. Med. 2021, 218, e20201733. [Google Scholar] [CrossRef]
- Tang, J.; Sun, J. Lung Tissue-Resident Memory T Cells: The Gatekeeper to Respiratory Viral (Re)-Infection. Curr. Opin. Immunol. 2023, 80, 102278. [Google Scholar] [CrossRef]
- Chiu, C.; Openshaw, P.J. Antiviral B Cell and T Cell Immunity in the Lungs. Nat. Immunol. 2015, 16, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Takahashi, Y.; Yokoi, Y.; Ato, M.; Kodama, Y.; Hachimura, S.; Kurosaki, T.; Kobayashi, K. Memory B Cells in the Lung Participate in Protective Humoral Immune Responses to Pulmonary Influenza Virus Reinfection. Proc. Natl. Acad. Sci. USA 2012, 109, 2485–2490. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Liao, H.; Hu, Y.; Luo, K.; Hu, S.; Zhu, H. Innate Immune Evasion by Human Respiratory Syncytial Virus. Front. Microbiol. 2022, 13, e865592. [Google Scholar] [CrossRef]
- Marr, N.; Wang, T.-I.; Kam, S.H.Y.; Hu, Y.S.; Sharma, A.A.; Lam, A.; Markowski, J.; Solimano, A.; Lavoie, P.M.; Turvey, S.E. Attenuation of Respiratory Syncytial Virus–Induced and RIG-I–Dependent Type I IFN Responses in Human Neonates and Very Young Children. J. Immunol. 2014, 192, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Zhang, Z.; Xie, T.; Xu, J.; Yan, J.; Kang, A.; Dai, Q.; Wang, S.; Ji, J.; Shan, J. Jinxin Oral Liquid Inhibits Human Respiratory Syncytial Virus-Induced Excessive Inflammation Associated with Blockade of the NLRP3/ASC/Caspase-1 Pathway. Biomed. Pharmacother. 2018, 103, 1376–1383. [Google Scholar] [CrossRef]
- Zheng, M.; Karki, R.; Peter Williams, E.; Yang, D.; Fitzpatrick, E.; Vogel, P.; Beth Jonsson, C.; Kanneganti, T.-D. TLR2 Senses the SARS-CoV-2 Envelope Protein to Produce Inflammatory Cytokines. Nat. Immunol. 2021, 22, 829–838. [Google Scholar] [CrossRef]
- Manik, M.; Rakesh, S.K. Role of Toll-like Receptors in Modulation of Cytokine Storm Signaling in SARS-CoV-2-Induced COVID-19. J. Med. Virol. 2021, 94, 869–877. [Google Scholar] [CrossRef]
- Maison, D.P.; Deng, Y.; Gerschenson, M. SARS-CoV-2 and the Host-Immune Response. Front. Immunol. 2023, 14, e1195871. [Google Scholar] [CrossRef]
- Iwasaki, A.; Pillai, P.S. Innate Immunity to Influenza Virus Infection. Nat. Rev. Immunol. 2014, 14, 315–328. [Google Scholar] [CrossRef]
- Mejias, A.; Dimo, B.; Suarez, N.M.; Garcia, C.; Carmen Suarez-Arrabal, M.; Jartti, T.; Blankenship, D.; Jordan-Villegas, A.; Ardura, M.I.; Xu, Z.; et al. Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection. PLoS Med. 2013, 10, e1001549. [Google Scholar] [CrossRef]
- Selvaggi, C.; Pierangeli, A.; Fabiani, M.; Spano, L.; Nicolai, A.; Papoff, P.; Moretti, C.; Midulla, F.; Antonelli, G.; Scagnolari, C. Interferon Lambda 1e3 Expression in Infants Hospitalized for RSV or HRV Associated Bronchiolitis. J. Infect. 2014, 68, 467–477. [Google Scholar] [CrossRef]
- Hartenian, E.; Nandakumar, D.; Lari, A.; Ly, M.; Tucker, J.M.; Glaunsinger, B.A. The Molecular Virology of Coronaviruses. J. Biol. Chem. 2020, 295, 12910–12934. [Google Scholar] [CrossRef]
- Bergeron, H.C.; Tripp, R.A. Immunopathology of RSV: An Updated Review. Viruses 2021, 13, 2478. [Google Scholar] [CrossRef]
- Russell, C.D.; Unger, S.A.; Walton, M.; Schwarze, J. The Human Immune Response to Respiratory Syncytial Virus Infection. Clin. Microbiol. Rev. 2017, 30, e00090-16. [Google Scholar] [CrossRef] [PubMed]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef] [PubMed]
- Nüssing, S.; Sant, S.; Koutsakos, M.; Subbarao, K.; Nguyen, T.H.O.; Kedzierska, K. Innate and Adaptive T Cells in Influenza Disease. Front. Med. 2018, 12, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.; Ahout, I.M.L.; De Jonge, M.I.; Ferwerda, G. Mucosal IgG Levels Correlate Better with Respiratory Syncytial Virus Load and Inflammation than Plasma IgG Levels. Clin. Vaccine Immunol. 2016, 23, 243–245. [Google Scholar] [CrossRef]
- Zhivaki, D.; Bastien Lemoine, S.; Lim, A.; Zhang, X.; Tissiè, P.; Lo, R.; Correspondence, M. Respiratory Syncytial Virus Infects Regulatory B Cells in Human Neonates via Chemokine Receptor CX3CR1 and Promotes Lung Disease Severity. Immunity 2017, 46, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Neufeldt, C.J.; Cerikan, B.; Cortese, M.; Frankish, J.; Lee, J.-Y.; Plociennikowska, A.; Heigwer, F.; Prasad, V.; Joecks, S.; Burkart, S.S.; et al. SARS-CoV-2 Infection Induces a pro-Inflammatory Cytokine Response through CGAS-STING and NF-ΚB. Commun. Biol. 2022, 5, 45. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, N.; Kuo, H.-H.; Boucau, J.; Farmer, J.R.; Allard-Chamard, H.; Mahajan, V.S.; Piechocka-Trocha, A.; Lefteri, K.; Osborn, M.; Bals, J.; et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19. Cell 2020, 183, 143–157.e13. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, S.; Goraya, M.U.; Maarouf, M.; Huang, S.; Chen, J.-L. Host Immune Response to Influenza A Virus Infection. Front. Immunol. 2018, 9, e00320. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, M. Innate Immune Evasion by Human Respiratory RNA Viruses. J. Innate Immun. 2020, 12, 4–20. [Google Scholar] [CrossRef] [PubMed]
- Van Royen, T.; Rossey, I.; Sedeyn, K.; Schepens, B.; Saelens, X. How RSV Proteins Join Forces to Overcome the Host Innate Immune Response. Viruses 2022, 14, 419. [Google Scholar] [CrossRef]
- Minkoff, J.M.; tenOever, B. Nature Reviews Microbiology Innate Immune Evasion Strategies of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Varghese, P.M.; Kishore, U.; Rajkumari, R. Innate and Adaptive Immune Responses against Influenza A Virus: Immune Evasion and Vaccination Strategies. Immunobiology 2022, 227, 152279. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y. Pathogenicity and Virulence of Influenza. Virulence 2023, 14. [Google Scholar] [CrossRef]
- Li, C.; Wang, T.; Zhang, Y.; Wei, F. Evasion Mechanisms of the Type I Interferons Responses by Influenza A Virus. Crit. Rev. Microbiol. 2020, 46, 420–432. [Google Scholar] [CrossRef]
- Bokun, V.; Moore, J.J.; Moore, R.; Smallcombe, C.C.; Harford, T.J.; Rezaee, F.; Esper, F.; Piedimonte, G. Respiratory Syncytial Virus Exhibits Differential Tropism for Distinct Human Placental Cell Types with Hofbauer Cells Acting as a Permissive Reservoir for Infection. PLoS ONE 2019, 14, e0225767. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Piedimonte, G. An Overview on the RSV-Mediated Mechanisms in the Onset of Non-Allergic Asthma. Front. Pediatr. 2022, 10, e998296. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Varga, S.M. Modulation of the Host Immune Response by Respiratory Syncytial Virus Proteins. J. Microbiol. 2017, 55, 161–171. [Google Scholar] [CrossRef] [PubMed]
- González-Sanz, R.; Mata, M.; Bermejo-Martín, J.; Álvarez, A.; Cortijo, J.; Melero, J.A.; Martínez, I. ISG15 Is Upregulated in Respiratory Syncytial Virus Infection and Reduces Virus Growth through Protein ISGylation. J. Virol. 2016, 90, e02695-15. [Google Scholar] [CrossRef] [PubMed]
- Goritzka, M.; Makris, S.; Kausar, F.; Durant, L.R.; Pereira, C.; Kumagai, Y.; Culley, F.J.; Mack, M.; Akira, S.; Johansson, C. Alveolar Macrophage–Derived Type I Interferons Orchestrate Innate Immunity to RSV through Recruitment of Antiviral Monocytes. J. Exp. Med. 2015, 212, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Shehata, L.; Wieland-Alter, W.F.; Maurer, D.P.; Chen, E.; Connor, R.I.; Wright, P.F.; Walker, L.M. Systematic Comparison of Respiratory Syncytial Virus-Induced Memory B Cell Responses in Two Anatomical Compartments. Nat. Commun. 2019, 10, 1126. [Google Scholar] [CrossRef] [PubMed]
- Siefker, D.T.; Vu, L.; You, D.; Mcbride, A.; Taylor, R.; Jones, T.L.; Devincenzo, J.; Cormier, S.A. Respiratory Syncytial Virus Disease Severity Is Associated with Distinct CD8 1 T-Cell Profiles at a Glance Commentary. Am. J. Respir. Crit. Care Med. 2020, 201, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 2020, 11, e611337. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ravichandran, S.; Lee, Y.; Grubbs, G.; Coyle, E.M.; Klenow, L.; Genser, H.; Golding, H.; Khurana, S. Antibody Affinity Maturation and Plasma IgA Associate with Clinical Outcome in Hospitalized COVID-19 Patients. Nat. Commun. 2021, 12, 1221. [Google Scholar] [CrossRef]
- Cervia, C.; Nilsson, J.; Zurbuchen, Y.; Valaperti, A.; Schreiner, J.; Wolfensberger, A.; Raeber, M.E.; Adamo, S.; Weigang, S.; Emmenegger, M.; et al. Systemic and Mucosal Antibody Responses Specific to SARS-CoV-2 during Mild versus Severe COVID-19. J. Allergy Clin. Immunol. 2021, 147, 545–557. [Google Scholar] [CrossRef]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Gelb, B.D.; Merad, M.; Correspondence, D.B.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020, 183, 982–995. [Google Scholar] [CrossRef] [PubMed]
- Mifsud, E.J.; Kuba, M.; Barr, I.G.; Valkenburg, S. Innate Immune Responses to Influenza Virus Infections in the Upper Respiratory Tract. Viruses 2021, 13, 2090. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F.; Smith, G.J.D.; Fouchier, R.A.M.; Peiris, M.; Kedzierska, K.; Doherty, P.C.; Palese, P.; Shaw, M.L.; Treanor, J.; Webster, R.G.; et al. Influenza. Nat. Rev. Dis. Prim. 2018, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. The Human Antibody Response to Influenza A Virus Infection and Vaccination. Nat. Rev. Immunol. 2019, 19, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Wu, Y.; Huang, S.; Zhang, R.; Son, Y.M.; Li, C.; Cheon, I.S.; Gao, X.; Wang, M.; Chen, Y.; et al. Uncoupling of Macrophage Inflammation from Self-Renewal Modulates Host Recovery from Respiratory Viral Infection. Immunity 2021, 54, 1200–1218.e9. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; et al. PPAR-γ in Macrophages Limits Pulmonary Inflammation and Promotes Host Recovery Following Respiratory Viral Infection. J. Virol. 2019, 93, e00030-19. [Google Scholar] [CrossRef] [PubMed]
- Marvin, S.A.; Russier, M.; Huerta, C.T.; Russell, C.J.; Schultz-Cherry, S. Influenza Virus Overcomes Cellular Blocks To Productively Replicate, Impacting Macrophage Function. J. Virol. 2017, 91, e01417-16. [Google Scholar] [CrossRef] [PubMed]
- van de Sandt, C.E.; Hillaire, M.L.B.; Geelhoed-Mieras, M.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M.; Rimmelzwaan, G.F. Human Influenza A Virus–Specific CD8+ T-Cell Response Is Long-Lived. J. Infect. Dis. 2015, 212, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Thomas, P.G. Balancing Immune Protection and Immune Pathology by CD8+ T-Cell Responses to Influenza Infection. Front. Immunol. 2016, 7, e00025. [Google Scholar] [CrossRef]
- Hayward, A.C.; Wang, L.; Goonetilleke, N.; Fragaszy, E.B.; Bermingham, A.; Copas, A.; Dukes, O.; Millett, E.R.C.; Nazareth, I.; Nguyen-Van-Tam, J.S.; et al. Natural T Cell–Mediated Protection against Seasonal and Pandemic Influenza. Results of the Flu Watch Cohort Study. Am. J. Respir. Crit. Care Med. 2015, 191, 1422–1431. [Google Scholar] [CrossRef]
- Manti, S.; Spoto, G.; Nicotera, A.G.; Di Rosa, G.; Piedimonte, G. Impact of Respiratory Viral Infections during Pregnancy on the Neurological Outcomes of the Newborn: Current Knowledge. Front. Neurosci. 2024, 17, e1320319. [Google Scholar] [CrossRef]
- Cervantes, O.; Cruz Talavera, I.; Every, E.; Coler, B.; Li, M.; Li, A.; Li, H.; Adams Waldorf, K. Role of Hormones in the Pregnancy and Sex-specific Outcomes to Infections with Respiratory Viruses. Immunol. Rev. 2022, 308, 123–148. [Google Scholar] [CrossRef]
- Schumacher, A.; Heinze, K.; Witte, J.; Poloski, E.; Linzke, N.; Woidacki, K.; Zenclussen, A.C. Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance. J. Immunol. 2013, 190, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Front. Immunol. 2020, 11, e01023. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells. Front. Immunol. 2020, 11, e02025. [Google Scholar] [CrossRef] [PubMed]
- Szekeres-Bartho, J.; Polgar, B. PIBF: The Double Edged Sword. Pregnancy and Tumor. Am. J. Reprod. Immunol. 2010, 64, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Littauer, E.Q.; Skountzou, I. Hormonal Regulation of Physiology, Innate Immunity and Antibody Response to H1N1 Influenza Virus Infection During Pregnancy. Front. Immunol. 2018, 9, e02455. [Google Scholar] [CrossRef] [PubMed]
- Muzzio, D.; Zenclussen, A.C.; Jensen, F. The Role of B Cells in Pregnancy: The Good and the Bad. Am. J. Reprod. Immunol. 2013, 69, 408–412. [Google Scholar] [CrossRef]
- Trinh, I.V.; Desai, S.P.; Ley, S.H.; Mo, Z.; Satou, R.; Pridjian, G.C.; Longo, S.A.; Shaffer, J.G.; Robinson, J.E.; Norton, E.B.; et al. Prenatal Infection by Respiratory Viruses Is Associated with Immunoinflammatory Responses in the Fetus. Am. J. Respir. Crit. Care Med. 2024, 209, 693–702. [Google Scholar] [CrossRef]
- Ma, J.; Chen, L.; Tang, S.; Shi, Y. Efficacy and Safety of Respiratory Syncytial Virus Vaccination during Pregnancy to Prevent Lower Respiratory Tract Illness in Newborns and Infants: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Pediatr. 2024, 11, e1260740. [Google Scholar] [CrossRef]
- Lambert, L.; Sagfors, A.M.; Openshaw, P.J.M.; Culley, F.J.; Kollmann, T.R.; Del Giudice, G.; Vaccines, N.; Jürgen Schwarze, I. Immunity to RSV in Early-Life. Front. Immunol. 2014, 5, e00466. [Google Scholar] [CrossRef] [PubMed]
- Harford, T.J.; Rezaee, F.; Dye, B.R.; Fan, J.; Spence, J.R.; Piedimonte, G. RSV-Induced Changes in a 3-Dimensional Organoid Model of Human Fetal Lungs. PLoS ONE 2022, 17, e0265094. [Google Scholar] [CrossRef] [PubMed]
- Kolli, D.; Velayutham, T.S.; Casola, A. Host-Viral Interactions: Role of Pattern Recognition Receptors (PRRs) in Human Pneumovirus Infections. Pathogens 2013, 2, 232–263. [Google Scholar] [CrossRef] [PubMed]
- Ruckwardt, T.J.; Morabito, K.M.; Graham, B.S. Determinants of Early Life Immune Responses to RSV Infection. Curr. Opin. Virol. 2016, 16, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Faber, T.E.; Groen, H.; Welfing, M.; Jansen, K.J.G.; Bont, L.J. Specific Increase in Local IL-17 Production during Recovery from Primary RSV Bronchiolitis. J. Med. Virol. 2012, 84, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Raj, R.S.; Bonney, E.A.; Phillippe, M. Influenza, Immune System, and Pregnancy. Reprod. Sci. 2014, 21, 1434–1451. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-like Receptors. Nat. Immunol. 2010, 11, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Guillot, L.; Le Goffic, R.; Bloch, S.; Escriou, N.; Akira, S.; Chignard, M.; Si-Tahar, M. Involvement of Toll-like Receptor 3 in the Immune Response of Lung Epithelial Cells to Double-Stranded RNA and Influenza A Virus. J. Biol. Chem. 2005, 280, 5571–5580. [Google Scholar] [CrossRef] [PubMed]
- Khaitov, M.R.; Laza-Stanca, V.; Edwards, M.R.; Walton, R.P.; Rohde, G.; Contoli, M.; Papi, A.; Stanciu, L.A.; Kotenko, S.V.; Johnston, S.L. Respiratory Virus Induction of Alpha-, Beta- and Lambda-Interferons in Bronchial Epithelial Cells and Peripheral Blood Mononuclear Cells. Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 375–386. [Google Scholar] [CrossRef]
- Mckinstry, K.K.; Strutt, T.M.; Swain, S.L. Hallmarks of CD4 T Cell Immunity against Influenza. J. Intern. Med. 2011, 269, 507–518. [Google Scholar] [CrossRef]
- Gordon, C.L.; Johnson, P.D.R.; Permezel, M.; Holmes, N.E.; Gutteridge, G.; Mcdonald, C.F.; Eisen, D.P.; Stewardson, A.J.; Edington, J.; Charles, P.G.P.; et al. Association between Severe Pandemic 2009 Influenza A (H1N1) Virus Infection and Immunoglobulin G2 Subclass Deficiency. Clin. Infect. Dis. 2010, 50, 672–678. [Google Scholar] [CrossRef]
- Zheng, R.; Qin, X.; Li, Y.; Yu, X.; Wang, J.; Tan, M.; Yang, Z.; Li, W. Imbalanced Anti-H1N1 Immunoglobulin Subclasses and Dysregulated Cytokines in Hospitalized Pregnant Women with 2009 H1N1 Influenza and Pneumonia in Shenyang, China. Hum. Immunol. 2012, 73, 906–911. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, M.; Arck, P.C. Vertically Transferred Immunity in Neonates: Mothers, Mechanisms and Mediators. Front. Immunol. 2020, 11, e00555. [Google Scholar] [CrossRef] [PubMed]
- Pou, C.; Nkulikiyimfura, D.; Henckel, E.; Olin, A.; Lakshmikanth, T.; Mikes, J.; Wang, J.; Chen, Y.; Karin Bernhardsson, A.; Gustafsson, A.; et al. The Repertoire of Maternal Anti-Viral Antibodies in Human Newborns. Nat. Med. 2019, 25, 591–596. [Google Scholar] [CrossRef]
- Pyzik, M.; Sand, K.M.K.; Hubbard, J.J.; Andersen, J.T.; Sandlie, I.; Blumberg, R.S. The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019, 10, e01540. [Google Scholar] [CrossRef] [PubMed]
- Schlaudecker, E.P.; Steinhoff, M.C.; Omer, S.B.; McNeal, M.M.; Roy, E.; Arifeen, S.E.; Dodd, C.N.; Raqib, R.; Breiman, R.F.; Zaman, K. IgA and Neutralizing Antibodies to Influenza A Virus in Human Milk: A Randomized Trial of Antenatal Influenza Immunization. PLoS ONE 2013, 8, e70867. [Google Scholar] [CrossRef]
- Jacobs, M.B.; Valentine, H.D.; Adkins, S.; Magallanes, C.; Morgan, S.C.; Pereira, L.M.; Tekkatte, C.; Hakim, A.; De Hoff, P.; Laurent, L.C.; et al. Humoral Immune Response to SARS-CoV-2 in Pregnant and Nonpregnant Women Following Infection. AJOG Glob. Rep. 2023, 3, 100192. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, J.M.; Murphy, E.A.; Yee, J.; Cagino, K.A.; Friedlander, R.L.; Glynn, S.M.; Matthews, K.C.; Jurkiewicz, M.; Sukhu, A.C.; Zhao, Z.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Serology Levels in Pregnant Women and Their Neonates. Am. J. Obstet. Gynecol. 2021, 225, 73.e1–73.e7. [Google Scholar] [CrossRef]
- González-Mesa, E.; García-Fuentes, E.; Carvia-Pontiasec, R.; Lavado-Fernández, A.I.; Cuenca-Marín, C.; Suárez-Arana, M.; Blasco-Alonso, M.; Benítez-Lara, B.; Mozas-Benítez, L.; González-Cazorla, A.; et al. Transmitted Fetal Immune Response in Cases of SARS-CoV-2 Infections during Pregnancy. Diagnostics 2022, 12, 245. [Google Scholar] [CrossRef]
- Zelini, P.; Perotti, F.; Licia Scatigno, A.; Dominoni, M.; Zavaglio, F.; Arossa, A.; Piccini, S.; Angelini, M.; Ghirardello, S.; Lilleri, D.; et al. Impact of SARS-CoV-2 Infection during Pregnancy and Persistence of Antibody Response. New Microbiol. 2022, 45, 181–189. [Google Scholar]
Immunological Mechanism | RSV | SARS-CoV-2 | Influenza Virus |
---|---|---|---|
Innate immune response | |||
PRRs | TLR2, TLR3, TLR4, TLR7, and TLR8 recognize the virus [58]. RIG-I and MDA5 recognize the virus [59]. NLRP3 promotes secretion of pro-inflammatory cytokines [60]. NLRC5 regulates IFN-I expression [58]. | TLR2 recognizes the virus, triggering the release of TNF-α and IFN-γ [61]. TLR3 induces the production of IL-1β and IL-18 via the NLRP3 inflammasome [61]. TLR4, TLR1, TLR5, TLR7, TLR8, and TLR9 detect viral RNA, realizing cytokines, including IFN I/III [62]. RIG-I and MDA5 activate NF-kB signaling and IFN I/III [63]. | TLR3, TLR7, TLR8, RIG-I, and NLRP3 induce the expression of IFNs I/III and pro-inflammatory cytokines, stimulating antiviral ISGs, and recruit immune cells [64]. NLRP3 inflammasome releases IL-1β and IL-18 triggering pyroptosis in infected cells [64]. |
IFNs | Viral proteins inhibit IFN production [65]. Increased levels of IFN-λ 1–3 are associated with the disease severity [66]. | IFNs I/III activate JAK/STAT pathway and induce the expression of MHC class I and ISGs [67]. | IFNs I/III stimulate antiviral ISGs and recruit pro-inflammatory cells [64]. |
Adaptive immune response | |||
T cells’ response | CD4 cells promote the differentiation of cytotoxic CD8 cells and B cells [68]. Th2 response contributes to antibody and eosinophils’ responses [69]. | CD4 cells stimulate B cells and activate CD8 cells, which contribute to eliminate virus-infected cells [70]. | CD4 T cells produce IFNs and IL-2, provide help to B cells for antibody production, and contribute to the generation and recall of CD8 T cell memory. CD8 cells promote viral clearance and reduce the disease severity [71]. |
B cells’ response | B cells produce antibodies, and anti-F protein antibodies exhibit superior neutralization capabilities [72]. Neonatal B cells contribute to heightened Th2 response [73]. Reduced IFN responses potentially result in decreased B cell function in newborns [73]. | B cells produce neutralizing antibodies [74]. Acute COVID-19 is marked by the absence of germinal centers, leading to the generation of “disease-related” B cells with limited protective capacity [75]. | B cells produce antibodies, targeting the surface glycoproteins HA and NA. These antibodies neutralize viral particles, inhibit viral entry and release, and promote opsonization for phagocytosis [76]. |
Mechanisms of evasions | NS1 and NS2 suppress IFN-I production and signaling [77]. G, N, M, and SH proteins disrupt innate immune recognition by PRRs and modulate the host’s innate immune response, facilitating persistent infection and recurrent respiratory tract infections [78]. | Inhibits the IFNs production and signaling, delaying immune response activation [79]. Evades recognition by TLRs and RLRs and modulates antigen presentation [79]. Manipulates cytokine signaling pathways, exacerbating inflammation and disease severity [79]. Undergoes antigenic variation, evading recognition by pre-existing immunity and leading to reinfection or reduced vaccine efficacy [79]. | Rapid mutations of HA and NA allow the virus to escape recognition [80]. Antigenic drift and shift lead to the emergence of novel strains with altered antigenic properties, complicating immune recognition [81]. NS1 inhibits IFN response. Induces immunosuppression, facilitating viral persistence and dissemination [82]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambadauro, A.; Galletta, F.; Li Pomi, A.; Manti, S.; Piedimonte, G. Immune Response to Respiratory Viral Infections. Int. J. Mol. Sci. 2024, 25, 6178. https://doi.org/10.3390/ijms25116178
Gambadauro A, Galletta F, Li Pomi A, Manti S, Piedimonte G. Immune Response to Respiratory Viral Infections. International Journal of Molecular Sciences. 2024; 25(11):6178. https://doi.org/10.3390/ijms25116178
Chicago/Turabian StyleGambadauro, Antonella, Francesca Galletta, Alessandra Li Pomi, Sara Manti, and Giovanni Piedimonte. 2024. "Immune Response to Respiratory Viral Infections" International Journal of Molecular Sciences 25, no. 11: 6178. https://doi.org/10.3390/ijms25116178
APA StyleGambadauro, A., Galletta, F., Li Pomi, A., Manti, S., & Piedimonte, G. (2024). Immune Response to Respiratory Viral Infections. International Journal of Molecular Sciences, 25(11), 6178. https://doi.org/10.3390/ijms25116178