Molecular Study of Sudden Cardiac Death
1. Editorial
2. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A.; Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Mendis, S.; Graham, I.; Narula, J. Addressing the Global Burden of Cardiovascular Diseases; Need for Scalable and Sustainable Frameworks. Glob. Heart 2022, 17, 48. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Rankinen, T.; Sarzynski, M.A.; Ghosh, S.; Bouchard, C. Are There Genetic Paths Common to Obesity, Cardiovascular Disease Outcomes, and Cardiovascular Risk Factors? Circ. Res. 2015, 116, 909–922. [Google Scholar] [CrossRef]
- Chugh, S.S. Early Identification of Risk Factors for Sudden Cardiac Death. Nat. Rev. Cardiol. 2010, 7, 318–326. [Google Scholar] [CrossRef]
- Kim, J. Big Data, Health Informatics, and the Future of Cardiovascular Medicine. J. Am. Coll. Cardiol. 2017, 69, 899–902. [Google Scholar] [CrossRef]
- Krittanawong, C.; Johnson, K.W.; Hershman, S.G.; Tang, W.H.W. Big Data, Artificial Intelligence, and Cardiovascular Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2018, 3, 305–317. [Google Scholar] [CrossRef]
- Thakur, S.; Ramzan, M. A Systematic Review on Cardiovascular Diseases Using Big-Data by Hadoop. In Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 4–15 January 2016; pp. 351–355. [Google Scholar]
- Kilic, A. Artificial Intelligence and Machine Learning in Cardiovascular Health Care. Ann. Thorac. Surg. 2020, 109, 1323–1329. [Google Scholar] [CrossRef]
- Rogers, M.A.; Aikawa, E. Cardiovascular Calcification: Artificial Intelligence and Big Data Accelerate Mechanistic Discovery. Nat. Rev. Cardiol. 2019, 16, 261–274. [Google Scholar] [CrossRef]
- Leopold, J.A.; Maron, B.A.; Loscalzo, J. The Application of Big Data to Cardiovascular Disease: Paths to Precision Medicine. J. Clin. Investig. 2020, 130, 29–38. [Google Scholar] [CrossRef]
- Han, S.H.; Kim, K.O.; Cha, E.J.; Kim, K.A.; Shon, H.S. System Framework for Cardiovascular Disease Prediction Based on Big Data Technology. Symmetry 2017, 9, 293. [Google Scholar] [CrossRef]
- Banu, N.S.; Swamy, S. Prediction of Heart Disease at Early Stage Using Data Mining and Big Data Analytics: A Survey. In Proceedings of the 2016 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), Mysuru, India, 9–10 December 2016; pp. 256–261. [Google Scholar]
- Iglesias, P.; Benavent, M.; López, G.; Arias, J.; Romero, I.; Díez, J.J. Hyperthyroidism and Cardiovascular Disease: An Association Study Using Big Data Analytics. Endocrine 2023, 83, 405–413. [Google Scholar] [CrossRef]
- Tirdea, C.; Hostiuc, S.; Moldovan, H.; Scafa-Udriste, A. Identification of Risk Genes Associated with Myocardial Infarction—Big Data Analysis and Literature Review. Int. J. Mol. Sci. 2022, 23, 15008. [Google Scholar] [CrossRef]
- Wang, M.; Tu, X. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease. Front. Cardiovasc. Med. 2022, 9, 891399. [Google Scholar] [CrossRef]
- Wilde, A.A.; Bezzina, C.R. Genetics of Cardiac Arrhythmias. Heart 2005, 91, 1352–1358. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C. Genetics of Cardiac Arrhythmias and Sudden Cardiac Death. Ann. N. Y. Acad. Sci. 2004, 1015, 96–110. [Google Scholar] [CrossRef]
- Hartmann, N.; Knierim, M.; Maurer, W.; Dybkova, N.; Hasenfuß, G.; Sossalla, S.; Streckfuss-Bömeke, K. Molecular and Functional Relevance of NaV1.8-Induced Atrial Arrhythmogenic Triggers in a Human SCN10A Knock-Out Stem Cell Model. Int. J. Mol. Sci. 2023, 24, 10189. [Google Scholar] [CrossRef]
- Pabel, S.; Ahmad, S.; Tirilomis, P.; Stehle, T.; Mustroph, J.; Knierim, M.; Dybkova, N.; Bengel, P.; Holzamer, A.; Hilker, M.; et al. Inhibition of NaV1.8 Prevents Atrial Arrhythmogenesis in Human and Mice. Basic Res. Cardiol. 2020, 115, 20. [Google Scholar] [CrossRef]
- Mircea, A.A.; Rusu, M.; Liehn, E.A.; Bucur, O. Promising Therapies for Atrial Fibrillation and Ventricular Tachycardia. Int. J. Mol. Sci. 2022, 23, 12612. [Google Scholar] [CrossRef]
- Brandes, A.; Crijns, H.J.; Rienstra, M.; Kirchhof, P.; Grove, E.L.; Pedersen, K.B.; Van Gelder, I.C. Cardioversion of Atrial Fibrillation and Atrial Flutter Revisited: Current Evidence and Practical Guidance for a Common Procedure. EP Eur. 2020, 22, 1149–1161. [Google Scholar] [CrossRef]
- Williams, E.S.; Viswanathan, M.N. Current and Emerging Antiarrhythmic Drug Therapy for Ventricular Tachycardia. Cardiol. Ther. 2013, 2, 27–46. [Google Scholar] [CrossRef]
- Dorian, P.; Borggrefe, M.; Al-Khalidi, H.R.; Hohnloser, S.H.; Brum, J.M.; Tatla, D.S.; Brachmann, J.; Myerburg, R.J.; Cannom, D.S.; Van Der Laan, M.; et al. Placebo-Controlled, Randomized Clinical Trial of Azimilide for Prevention of Ventricular Tachyarrhythmias in Patients With an Implantable Cardioverter Defibrillator. Circulation 2004, 110, 3646–3654. [Google Scholar] [CrossRef]
- Wilde, A.A.M.; Semsarian, C.; Márquez, M.F.; Shamloo, A.S.; Ackerman, M.J.; Ashley, E.A.; Sternick, E.B.; Barajas-Martinez, H.; Behr, E.R.; Bezzina, C.R.; et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Europace 2022, 24, 1307–1367. [Google Scholar] [CrossRef]
- Coll, M.; Fernandez-Falgueras, A.; Iglesias, A.; del Olmo, B.; Nogue-Navarro, L.; Simon, A.; Perez Serra, A.; Puigmule, M.; Lopez, L.; Pico, F.; et al. Unpredicted Aberrant Splicing Products Identified in Postmortem Sudden Cardiac Death Samples. Int. J. Mol. Sci. 2022, 23, 12640. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hostiuc, S. Molecular Study of Sudden Cardiac Death. Int. J. Mol. Sci. 2024, 25, 6366. https://doi.org/10.3390/ijms25126366
Hostiuc S. Molecular Study of Sudden Cardiac Death. International Journal of Molecular Sciences. 2024; 25(12):6366. https://doi.org/10.3390/ijms25126366
Chicago/Turabian StyleHostiuc, Sorin. 2024. "Molecular Study of Sudden Cardiac Death" International Journal of Molecular Sciences 25, no. 12: 6366. https://doi.org/10.3390/ijms25126366
APA StyleHostiuc, S. (2024). Molecular Study of Sudden Cardiac Death. International Journal of Molecular Sciences, 25(12), 6366. https://doi.org/10.3390/ijms25126366