Advances in Migratory Plant Endoparasitic Nematode Effectors
Abstract
:1. Introduction
2. Synthesis and Secretion of Effectors by Migratory Plant Endoparasitic Nematodes
2.1. The Synthetic Sites of Effectors in Migratory Plant Endoparasitic Nematodes
2.2. Localization of Migratory Plant Endoparasitic Nematode Effectors in Plant Cells
3. The Functions of Effectors in Migratory Plant Endoparasitic Nematodes
3.1. Effectors Involved in the Degradation and Modification of Plant Cell Walls
3.2. Effectors Influencing Host Immune Responses
3.3. Effectors Promoting Nematode Reproduction
4. The Interaction between Effectors of Migratory Plant Endoparasitic Nematodes and Host Plants
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elling, A.A. Major emerging problems with minor Meloidogyne species. Phytopathology 2013, 103, 1092–1102. [Google Scholar] [CrossRef] [PubMed]
- Mathew, R.; Opperman, C.H. Current insights into migratory endoparasitism: Deciphering the biology, parasitism mechanisms, and management strategies of key migratory endoparasitic phytonematodes. Plants 2020, 9, 671. [Google Scholar] [CrossRef] [PubMed]
- Perrine-Walker, F. Interactions of endoparasitic and ectoparasitic nematodes within the plant root system. Funct. Plant Biol. 2019, 46, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.; Gaur, H.S.; Helder, J.; Jones, M.G.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-H.; Zhao, L.-R.; Ding, S.; Tang, S.-Q.; Chen, C.; Zhang, H.-X.; Xie, H. Study on burrowing nematode, Radopholus similis, pathogenicity test system in tobacco as host. J. Integr. Agric. 2022, 21, 2652–2664. [Google Scholar] [CrossRef]
- Xie, H. Radopholus similis and its detection and epidemic prevention control. Plant Quar. 2006, 20, 321–324. [Google Scholar]
- Singh, R.; Phulera, S. Plant parasitic nematodes: The hidden enemies of farmers. In Environmental Issues for Socio-Ecological Development, 1st ed.; Singh, R.D., Ed.; Excel India Publishers: New Delhi, India, 2015; pp. 68–81. [Google Scholar]
- Du, Y.; Zhou, J.; Liu, B.-Y.; Lei, Q.-W. A checklist of species of the genus Pratylenchus and its Chinese species. Plant Quar. 2020, 34, 6–13. [Google Scholar]
- Gough, E.C.; Owen, K.J.; Zwart, R.S.; Thompson, J.P. A systematic review of the effects of arbuscular mycorrhizal fungi on root-lesion nematodes, Pratylenchus spp. Front. Plant Sci. 2020, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Back, M. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, biology, pathogenicity and management. Nematology Monographs and Perspectives Volume 6. Plant Pathol. 2009, 58, 1000. [Google Scholar] [CrossRef]
- Ye, S.; Zeng, R.; Zhou, J.; An, M.; Ding, Z. Molecular characterization of Ditylenchus destructor voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie 2020, 171, 91–102. [Google Scholar] [CrossRef]
- Song, W.; Dai, M.; Shi, Q.; Liang, C.; Duan, F.; Zhao, H. Diagnosis and characterization of Ditylenchus destructor isolated from Mazus japonicus in China. Life 2023, 13, 1758. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.-Z.; Tang, L.-H. Progress in quarantine pests of Bursaphelenchus xylophilus. J. Jilin Agric. Univ. 2020, 42, 8–13. [Google Scholar]
- Vicente, C.; Espada, M.; Vieira, P.; Mota, M. Pine wilt disease: A threat to European forestry. Eur. J. Plant Pathol. 2012, 133, 89–99. [Google Scholar] [CrossRef]
- Xie, J.-L.; Yang, F.; Wang, Y.-P.; Peng, Y.-L.; Ji, H.-L. Studies on the efficiency of different inoculation methods of rice white-tip nematode, Aphelenchoides besseyi. Nematology 2019, 21, 673–678. [Google Scholar] [CrossRef]
- Kanzaki, N.; Giblin-Davis, R.M.; Scheffrahn, R.H.; Taki, H.; Esquivel, A.; Davies, K.A.; Herre, E.A. Reverse taxonomy for elucidating diversity of insect-associated nematodes: A case study with termites. PLoS ONE 2012, 7, e43865. [Google Scholar] [CrossRef]
- Meyer, M.C.; Favoreto, L.; Klepker, D.; Marcelino-Guimarães, F.C. Soybean green stem and foliar retention syndrome caused by Aphelenchoides besseyi. Trop. Plant Pathol. 2017, 42, 403–409. [Google Scholar] [CrossRef]
- Favoreto, L.; Meyer, M.C.; Calandrelli, A.; Maia da Silva, M.C.; Aleandro da Silva, S.; Machado, A.C.Z. Aphelenchoides besseyi parasitizing common bean in Brazil. Plant Dis. 2020, 105, 748–751. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Liu, S.-T.; Chen, C.; Ding, S.-W.; Xie, H.; Xu, C.-L. A loop-mediated isothermal amplification method for detection of Hirschmanniella oryzae based on rDNA-ITS sequences. Acta Phytopathol. Sin. 2021, 51, 626–635. [Google Scholar]
- Karakaş, M. Life cycle and mating behavior of Helicotylenchus multicinctus (Nematoda: Hoplolaimidae) on excised Musa cavendishii roots. Biologia 2007, 62, 320–322. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Plant-parasitic nematodes andtheir biocontrol agents: Current status and future vistas. In Management of Phytonematodes: Recent Advances and Future Challenges, 1st ed.; Ansari, R., Rizvi, R., Mahmood, I., Eds.; Springer: Singapore, 2020; pp. 171–203. [Google Scholar]
- Pires, D.; Vicente, C.S.L.; Menéndez, E.; Faria, J.M.S.; Rusinque, L.; Camacho, M.J.; Inácio, M.L. The fight against plant-parasitic nematodes: Current status of bacterial and fungal biocontrol agents. Pathoges 2022, 11, 1178. [Google Scholar] [CrossRef]
- Gong, L.-E.; Ying, S.-M.; Zhang, Y.-F.; Wang, J.-Y.; Sun, G.-C. Strategies for exogenous RNA delivery in RNAi-mediated pest management. Chin. J. Biotechnol. 2023, 39, 459–471. [Google Scholar]
- Feng, J.-Y.; Li, C.-K.; Ding, S.-L.; Liu, J.; Yin, X.-M.; An, S.-H.; Na, R.-S.; Liu, X.-G. Research advances on the application of RNA interference in agricultural disease and pest control. Chin. J. Pestic. Sci. 2022, 24, 1302–1313. [Google Scholar]
- Gautam, P.; Kumar, R.; Feroz, Z.; Vijayaraghavalu, S.; Kumar, M. RNA interference technology in plants: Mechanisms and applications in cropimprovement. In Plant Genomics for Sustainable Agriculture, 1st ed.; Singh, R.L., Mondal, S., Parihar, A., Singh, P.K., Eds.; Springer Nature: Singapore, 2022; pp. 265–290. [Google Scholar]
- Chen, S.-Y. The Use of RNA Interference in Enhancing Plant Resistance against Nematodes. J. Bot. Res. 2020, 2, 4–11. [Google Scholar] [CrossRef]
- Mwaka, H.S.; Bauters, L.; Namaganda, J.; Marcou, S.; Bwesigye, P.N.; Kubiriba, J.; Smagghe, G.; Tushemereirwe, W.K.; Gheysen, G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int. J. Mol. Sci. 2023, 24, 12126. [Google Scholar] [CrossRef]
- Huang, X.; Xu, C.-L.; Chen, W.-Z.; Chen, C.; Xie, H. Cloning and characterization of the first serine carboxypeptidase from a plant parasitic nematode, Radopholus similis. Sci. Rep. 2017, 7, 4815. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.-W.; Wang, D.-W.; Xu, C.-L.; Yang, S.-H.; Cheng, X.; Peng, X.-F.; Chen, C.; Xie, H. A new fungus-mediated RNAi method established and used to study the fatty acid and retinol binding protein function of the plant-parasitic nematode Aphelenchoides besseyi. RNA Biol. 2021, 18, 1424–1433. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Xu, C.-L.; Ding, S.-W.; Huang, X.; Cheng, X.; Zhang, C.; Chen, C.; Xie, H. Identification and function of FAR protein family genes from a transcriptome analysis of Aphelenchoides besseyi. Bioinformatics 2018, 34, 2936–2943. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guo, K. Application of dsRNA in the Pine Wood Nematode, Bursaphelenchus xylophilus. Methods Mol. Biol. 2024, 2771, 133–139. [Google Scholar] [PubMed]
- Liu, X.; Zhou, X.; Zhou, L.; Hu, J.; Guo, K. Application of RNA Interference in the Pinewood Nematode, Bursaphelenchus xylophilus. J. Vis. Exp. 2022, 181, e63645. [Google Scholar]
- Kang, J.S.; Lee, D.W.; Koh, Y.H.; Lee, S.H. A soluble acetylcholinesterase provides chemical defense against xenobiotics in the pinewood nematode. PLoS ONE 2011, 6, e19063. [Google Scholar] [CrossRef]
- Li, X.-D.; Zhuo, K.; Luo, M.; Sun, L.-H.; Liao, J.-L. Molecular cloning and characterization of a calreticulin cDNA from the pinewood nematode Bursaphelenchus xylophilus. Exp. Parasitol. 2011, 128, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Hogenhout, A.S.; Van der Hoorn, L.A.R.; Terauchi, R.; Kamoun, S. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 2009, 22, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.L.; Hussey, R.S.; Mitchum, M.G.; Baum, T.J. Parasitism proteins in nematode–plant interactions. Curr. Opin. Plant Biol. 2008, 11, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Vieira, P.; Myers, R.Y.; Pellegrin, C.; Wram, C.; Hesse, C.; Maier, T.R.; Shao, J.; Koutsovoulos, G.D.; Zasada, I.; Matsumoto, T.; et al. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog. 2021, 17, e1010036. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-L.; Lin, B.-R.; Wang, H.-H.; Chen, J.-S.; Liao, J.-L.; Zhuo, K. Transcriptome and Candidate Effectors Analysis of Pratylenchus brachyurus. Biol. Bull. 2023, 39, 254–266. [Google Scholar]
- Huang, X.; Xu, C.-L.; Yang, S.-H.; Li, J.-Y.; Wang, H.-L.; Zhang, Z.-X.; Chen, C.; Xie, H. Life-stage specific transcriptomes of a migratory endoparasitic plant nematode, Radopholus similis elucidate a different parasitic and life strategy of plant parasitic nematodes. Sci. Rep. 2019, 9, 6277. [Google Scholar] [CrossRef] [PubMed]
- Channale, S.; Kalavikatte, D.; Thompson, J.P.; Kudapa, H.; Bajaj, P.; Varshney, R.K.; Zwart, R.S.; Thudi, M. Transcriptome analysis reveals key genes associated with root-lesion nematode Pratylenchus thornei resistance in chickpea. Sci.Rep. 2021, 11, 17491. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, D.-L.; Wang, Z.-Y.; Dong, A.-R.; Liu, L.-H.; Wang, B.-Y.; Chen, Q.-L.; Liu, X.-H. Transcriptomic analysis of the rice white tip nematode, Aphelenchoides besseyi (Nematoda: Aphelenchoididae). PLoS ONE 2017, 9, e91591. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.N.; Hussey, R.S.; Davis, E.L.; Smant, G.; Baum, T.J.; Abad, P.; Mitchum, M.G. Nematode effector proteins: Targets and functions in plant parasitism. In Effectors in Plant–Microbe Interactions, 1st ed.; Martin, F., Kamoun, S., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 327–354. [Google Scholar]
- Huang, X. Life Stage-Specific Transcriptomes Analysis of Radopholus similis and RNAi Analysis of Six Pathogenic Genes. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2018. [Google Scholar]
- Huang, X.; Chi, Y.-K.; Birhan, A.A.; Zhao, W.-B.; Qi, R.-D.; Peng, D.-L. The new effector AbSCP1 of foliar nematode (Aphelenchoides besseyi) is required for parasitism rice. J. Integr. Agric. 2022, 214, 1084–1093. [Google Scholar] [CrossRef]
- Kikuchi, T.; Jones, J.T.; Aikawa, T.; Kosaka, H.; Ogura, N. A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus. FEBS Lett. 2004, 572, 201–205. [Google Scholar] [CrossRef]
- Chang, Q.; Yang, Y.-W.; Hong, B.; Zhao, M.-X.; Han, S.-S.; Zhang, F.; Peng, H.; Peng, D.-L.; Li, Y.-M. A variant of the venom allergen-like protein, DdVAP2, is required for the migratory endoparasitic plant nematode Ditylenchus destructor parasitism of plants. Front. Plant Sci. 2023, 14, 1322902. [Google Scholar] [CrossRef] [PubMed]
- Vicente, C.S.L.; Nemchinov, L.G.; Mota, M.; Eisenback, J.D.; Kamo, K.; Vieira, P. Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetrans. PLoS ONE 2019, 14, e0212540. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.-Y.; Wu, X.-Q.; Hu, L.-J.; Qiu, Y.-J.; Rui, L.; Zhang, Y.; Ding, X.L.; Ye, J.R. A novel pine wood nematode effector, BxSCD1, suppresses plant immunity and interacts with an ethylene-forming enzyme in pine. Mol. Plant Pathol. 2021, 22, 1399–1412. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, E.; Troccoli, A.; Picardi, E.; Pousis, C.; Luca, D.F. Molecular characterization and functional analysis of four beta-1,4-endoglucanases from the root-lesion nematode Pratylenchus vulnus. Plant Pathol. 2014, 63, 1436–1445. [Google Scholar] [CrossRef]
- Ding, S.-W.; Cheng, X.; Wang, D.-W.; Chen, C.; Yang, S.-H.; Wang, J.-F.; Xu, C.-L.; Xie, H. Aphelenchoides besseyi Ab-FAR-1 Interacts with Arabidopsis thaliana AtADF3 to interfere with actin cytoskeleton, and promotes nematode parasitism and pathogenicity. Int. J. Mol. Sci. 2022, 23, 12280. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Hu, W.-Q.; Huang, W.-K.; He, W.-T.; Peng, D.-L. Cloning and localization analysis of a novel FMRFamide-like neuropeptide Gene (Dd-flp-1) from Migration Plant-parasitic Nematode (Ditylenchus destructor) on Sweetpotato in China. J. Agric. Biotechnol. 2011, 19, 924–931. [Google Scholar]
- Wang, K.; Li, Y.; Huang, X.; Wang, D.-W.; Xu, C.-L.; Xie, H. The cathepsin S cysteine proteinase of the burrowing nematode Radopholus similis is essential for the reproduction and invasion. Cell Biosci. 2016, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Jaouannet, M.; Rosso, M.N. Effectors of root sedentary nematodes target diverse plant cell compartments to manipulate plant functions and promote infection. Plant Signal Behav. 2013, 8, e25507. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-L.; Zhuo, K.; Lin, B.-R.; Liao, J.-L. The research progress of methods on function analysis of effectors from plant-parasitic nematode. Chin. Biotechnol. 2016, 36, 101–108. [Google Scholar]
- Vieira, P.; Vicente, C.S.L.; Branco, J.; Buchan, G.; Mota, M.; Nemchinov, L.G. The root lesion nematode effector Ppen10370 is essential for parasitism of Pratylenchus penetrans. Mol. Plant Microbe Interact. 2021, 34, 645–657. [Google Scholar] [CrossRef]
- Vieira, P.; Gleason, C. Plant-parasitic nematode effectors—Insights into their diversity and new tools for their identification. Curr. Opin. Plant Biol. 2019, 50, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Grundler, F.M. Parasitic nematodes manipulate plant development to establish feeding sites. Curr. Opin. Microbiol. 2018, 46, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Reny, M.; Opperman, C.H. The genome of the migratory nematode, Radopholus similis, reveals signatures of close association to the sedentary cyst nematodes. PLoS ONE 2019, 14, e0224391. [Google Scholar]
- Wieczorek, K. Cell Wall Alterations in Nematode-Infected Roots. Adv. Bot. Res. 2015, 73, 61–90. [Google Scholar]
- Bird, D.M.; Williamson, V.M.; Abad, P.; McCarter, J.; Danchin, E.G.; Castagnone-Sereno, P.; Opperman, C.H. The genomes of root-knot nematodes. Annu. Rev. Phytopathol. 2009, 47, 333–351. [Google Scholar] [CrossRef] [PubMed]
- Smant, G.; Stokkermans, G.W.P.J.; Yan, Y.-T.; de Boer, J.-M.; Baum, T.J.; Wang, X.-H.; Hussey, S.R.; Gommers, J.F.; Henrissat, B.; Davis, L.E.; et al. Endogenous cellulases in animals: Isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 1998, 95, 4906–4911. [Google Scholar] [CrossRef] [PubMed]
- Mitreva, M.; Smant, G.; Helder, J. Role of horizontal gene transfer in the evolution of plant parasitism among nematodes. Methods Mol. Biol. 2009, 532, 517–535. [Google Scholar] [PubMed]
- Nicol, P.; Gill, R.; Fosu-Nyarko, J.; Jones, M.G. de novo analysis and functional classification of the transcriptome of the root lesion nematode, Pratylenchus thornei, after 454 GS FLX sequencing. Int. J. Parasitol. 2012, 42, 225–237. [Google Scholar] [CrossRef]
- Luo, X.; Chen, G.-H.; Dai, L.-Y.; Lu, C.-H.; Yang, Y.-H.; Xie, B.-Y. Cloning and characterization of β-1,4-endoglucanse gene from burrowing nematode Radopholus simili. Acta Hortic. Sin. 2008, 35, 1431–1440. [Google Scholar]
- Lander, B.; Haegeman, A.; Kyndt, T.; Gheysen, G. Analysis of the transcriptome of Hirschmanniella oryzae to explore potential survival strategies and host-nematode interactions. Mol. Plant Pathol. 2014, 15, 352–363. [Google Scholar]
- Kikuchi, T.; Shibuya, H.; Aikawa, T.; Jones, J.T. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact. 2006, 19, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, J.D. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Seo, J.B.; Kang, J.S.; Koh, S.H.; Lee, S.H.; Koh, Y.H. Identification and characterization of expansins from Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Plant Pathol. J. 2012, 28, 409–417. [Google Scholar] [CrossRef]
- Peng, H.; Gao, B.-L.; Kong, L.-A.; Yu, Q.; Huang, W.-K.; He, X.F.; Long, H.-B.; Peng, D.-L. Exploring the host parasitism of the migratory plant-parasitic nematode Ditylenchus destructor by expressed sequence tags analysis. PLoS ONE 2017, 8, e69579. [Google Scholar]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Mantelin, S.; Thorpe, P.; Jones, J.T. Suppression of plant defences by plant-parasitic nematodes. Adv. Bot. Res. 2015, 73, 325–337. [Google Scholar]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-Y.; Xu, C.-L.; Yang, S.-H.; Chen, C.; Tang, S.-Q.; Wang, J.-F.; Xie, H. A venom allergen-like protein, RsVAP, the first discovered effector protein of Radopholus similis that inhibits plant defense and facilitates parasitism. Int. J. Mol. Sci. 2021, 22, 4782. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-H.; Li, J.-Y.; Yang, S.; Tang, S.-Q.; Wang, H.-Z.; Xu, C.-L.; Xie, H. A chorismate mutase from Radopholus similis plays an essential role in pathogenicity. J. Integr. Agric. 2024, 23, 923–937. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wu, X.-Q.; Wen, T.-Y.; Qiu, Y.-J.; Rui, L.; Zhang, Y.; Ye, J.-R. A Bursaphelenchus xylophilus Effector, BxSCD3, Suppresses Plant defense and contributes to virulence. Int. J. Mol. Sci. 2022, 23, 6417. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wu, X.-Q.; Ding, X.-L.; Ye, J.-R. Comparative transcriptomic analysis of candidate effectors to explore the infection and survival strategy of Bursaphelenchus xylophilus during different interaction stages with pine trees. BMC Plant Biol. 2021, 21, 224. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-W.; Wang, H.-H.; Cao, Y.-Q.; Shan, X.-L.; He, X.-X.; Huang, Q.-L.; Zhuo, K.; Liao, J.-L.; Lin, B.-R. A Bursaphelenchus xylophilus effector BxICD1 inducing plant cell death, concurrently contributes to nematode virulence and migration. Front. Plant Sci. 2024, 15, 1357141. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.-J.; Wu, X.-Q.; Wen, T.-Y.; Hu, L.-J.; Rui, L.; Zhang, Y.; Ye, J.-R. The Bursaphelenchus xylophilus candidate effector BxLip-3 targets the class I chitinases to suppress immunity in pine. Mol. Plant Pathol. 2023, 24, 1033–1046. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.-H. Isolation and Identification of Pratylenchus Species and Function Study of Effector Proteins PC-CZ, PC-CD. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2022. [Google Scholar]
- Hu, Y.-J. Identification of Pratylenchus from Rhizosphere of Corn and Function Study of Two Genes of P. coffeae. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2022. [Google Scholar]
- Sun, M.R. Function Study of Effector Proteins PC-NEXs in Pratylenchus coffeae. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2023. [Google Scholar]
- Li, Y.; Wu, X.-Q.; Hu, L.-J. Prokaryotic expression and activity research of Bursaphelenchus xylophilus effector protein Bx-FAR-1. J. South Agric. 2020, 51, 2731. [Google Scholar]
- Hu, L.-J.; Wu, X.-Q.; Li, H.-Y.; Wang, Y.-C.; Huang, X.; Wang, Y.; Li, Y. BxCDP1 from the pine wood nematode Bursaphelenchus xylophilus is recognized as a novel molecular pattern. Mol. Plant Pathol. 2020, 21, 923–935. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Wang, Y.; Liu, Z.-Y.; Jia, X.-Z.; Zhang, X.-Y.; Wang, X.; Lu, Q. Functional analysis of the venom allergen-like protein gene from pine wood nematode Bursaphelenchus xylophilus using a baculovirus expression system. Physiol. Mol. Plant Pathol. 2016, 93, 58–66. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wu, X.-Q.; Li, H.-Y.; Zhao, Q.; Wang, Y.-C.; Ye, J.-R. An effector, BxSapB1, induces cell death and contributes to virulence in the pine wood nematode Bursaphelenchus xylophilus. Mol. Plant-Microbe Interact. 2018, 32, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Xu, C.-L.; Chen, C.; Ding, S.-W.; Li, J.-Y.; Yang, S.-H.; Xie, H. A novel ATPase gene, Ab-atps, plays an important role in the interaction of rice and white tip nematode, Aphelenchoides besseyi. Sci. Rep. 2021, 11, 18521. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Cheng, X.; Ding, S.-W.; Wang, D.-W.; Chen, C.; Xu, C.-L.; Xie, H. Molecular identification and functional characterization of the cathepsin B gene (Ab-cb-1) in the plant parasitic nematode Aphelenchoides besseyi. PLoS ONE 2018, 13, e0199935. [Google Scholar] [CrossRef]
- Feng, H.; Wei, L.-H.; Chen, H.-G.; Zhou, Y.-J. Calreticulin is required for responding to stress, foraging, and fertility in the white-tip nematode, Aphelenchoides besseyi. Exp. Parasitol 2015, 155, 58–67. [Google Scholar] [CrossRef]
- Xue, Q.; Wu, X.-Q.; Zhang, W.-J.; Deng, L.-N.; Wu, M.-M. Cathepsin L-like cysteine proteinase genes are associated with the development and pathogenicity of pine wood nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci. 2019, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, K.; Xie, H.; Wang, Y.-T.; Wang, D.-W.; Xu, C.-L.; Huang, X.; Wang, D.-S. A nematode calreticulin, Rs-CRT, is a key effector in reproduction and pathogenicity of Radopholus similis. PLoS ONE 2015, 10, e0129351. [Google Scholar]
- Qiu, X.; Yang, L.; Ye, J.; Wang, W.; Zhao, T.; Hu, H.; Zhou, G. Silencing of cyp-33C9 Gene affects the reproduction and pathogenicity of the pine wood nematode, Bursaphelenchus xylophilus. Int. J. Mol. Sci. 2019, 20, 4520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, T.-Y.; Wu, X.-Q.; Hu, L.-J.; Qiu, Y.-J.; Rui, L. The Bursaphelenchus xylophilus effector BxML1 targets the cyclophilin protein (CyP) to promote parasitism and virulence in pine. BMC Plant Biol. 2022, 22, 216. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.-Y.; Wu, X.-Q.; Ye, J.-R.; Qiu, Y.-J.; Rui, L.; Zhang, Y. Two novel Bursaphelenchus xylophilus kunitz effector proteins using different infection and survival strategies to suppress immunity in pine. Phytopathology 2023, 113, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, L.-J.; Wu, X.-Q.; Ye, J.-R. A Bursaphelenchus xylophilus effector, Bx-FAR-1, suppresses plant defense and affects nematode infection of pine trees. Eur. J. Plant Pathol. 2020, 157, 637–650. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- van der Hoorn, R.A.; Kamoun, S. From guard to decoy: A new model for perception of plant pathogen effectors. Plant Cell 2008, 20, 2009–2017. [Google Scholar] [CrossRef]
- Bauters, L.; Gheysen, G. How the Plant-Parasitic Nematode Hirschmanniella oryzae Is Able to Subdue the Defense System of Rice: A Molecular Analysis; Universiteit Gent: Gent, Belgium, 2015; pp. 12–13. [Google Scholar]
- Abd-Elgawad, M.M.M. Understanding molecular plant–nematode interactions to develop alternative approaches for nematode control. Plants 2022, 11, 2141. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Exploiting plant–phytonematode interactions to upgrade safe and effective nematode control. Life 2022, 12, 1916. [Google Scholar] [CrossRef] [PubMed]
- Eves-van den Akker, S.; Stojilković, B.; Gheysen, G. Recent applications of biotechnological approaches to elucidate the biology of plant–nematode interactions. Curr. Opin. Biotechnol. 2021, 70, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Bali, S.; Gleason, C. Unveiling the diversity: Plant parasitic nematode effectors and their plant interaction partners. Mol. Plant Microbe Interact. 2024, 37, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, D.D.; Brandizzi, F. Plant endomembranes and cytoskeleton: Moving targets in immunity. Curr. Opin. Plant Biol. 2020, 58, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-S.; Jelenska, J.; Cecchini, N.M.; Li, Y.-J.; Lee, M.W.; Kovar, D.R.; Greenberg, J.T. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog. 2014, 10, e1004232. [Google Scholar] [CrossRef] [PubMed]
- Gheysen, G.; Mitchum, M.G. How nematodes manipulate plant development pathways for infection. Curr. Opin. Plant Biol. 2011, 14, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Bauters, L.; Kyndt, T.; De Meyer, T.; Morreel, K.; Boerjan, W.; Lefevere, H.; Gheysen, G. Chorismate mutase and isochorismatase, two potential effectors of the migratory nematode Hirschmanniella oryzae, increase host susceptibility by manipulating secondary metabolite content of rice. Mol. Plant Pathol. 2020, 21, 1634–1646. [Google Scholar] [CrossRef] [PubMed]
- Kud, J.; Wang, W.; Gross, R.; Fan, Y.; Huang, L.; Yuan, Y.; Gray, A.; Duarte, A.; Kuhl, J.C.; Caplan, A.; et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog. 2019, 15, e1007720. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wu, X.-Q.; Wen, T.-Y.; Ye, J.-R.; Qiu, Y.-J.; Rui, L.; Zhang, Y. The key molecular pattern BxCDP1 of Bursaphelenchus xylophilus induces plant immunity and enhances plant defense response via two small peptide regions. Front. Plant Sci. 2022, 13, 937473. [Google Scholar] [CrossRef]
Nematode | Effector ID | Tissue Localization | References |
---|---|---|---|
Radopholus similis | Rs-Pel-1/2/3/4/5 | esophageal glands | [43] |
Rs-scp-1 | procorpus, esophageal glands, and intestine | [28] | |
Rs-cps | esophageal glands, ovaries, testes, vas deferens, and egg | [52] | |
Rs-eng-1 | esophageal glands | [64] | |
RsVAP | esophageal glands | [73] | |
RsCM | esophageal glands | [74] | |
Rs-CRT | esophageal glands, gonad, intestine, and egg | [90] | |
Pratylenchus penetrans | Pp-pme | esophageal glands | [47] |
Ppen10370 | esophageal glands | [55] | |
Pratylenchus vulnus | Pv-eng-5 | intestine | [49] |
Pratylenchus coffeae | Pc-CZ | esophageal glands | [79] |
Pc-CD | esophageal glands | [79] | |
Pc-CB | esophageal glands | [80] | |
Pc-CL | esophageal glands | [80] | |
Pc-NEX-1 | esophageal glands and egg | [81] | |
Pc-NEX-2 | esophageal glands | [81] | |
Ditylenchus destructor | DdVAP2 | subventral esophageal glands | [46] |
Dd-flp-1 | circumpharyngeal nerve ring, retrovesicular ganglion and ventral cord | [51] | |
DD-EXP-1, DD-EXP-2 | esophageal glands | [69] | |
Bursaphelenchus xylophilus | Bx-eng-1 | esophageal glands | [45] |
BxSCD1 | dorsal esophageal gland and intestine | [48] | |
Bx-pel-1, Bx-pel-2 | esophageal glands | [66] | |
BxICD1 | esophageal glands | [77] | |
BxLip-3 | esophageal glands and intestine | [78] | |
BxCDP1 | dorsal esophageal gland and intestine | [83] | |
BxSapB1 | subventral esophageal glands | [85] | |
Bx-cpl | intestine, egg, and seminal vesicle | [89] | |
BxML1 | dorsal esophageal gland and intestine | [92] | |
Bx-vap-1 | esophageal glands | [84] | |
BxKU1 | esophageal glands | [93] | |
BxKU2 | esophageal glands and ovaries | [93] | |
Bx-FAR-1 | glandular tissue, intestine, and seminal vesicles | [94] | |
Aphelenchoides besseyi | AbSCP1 | esophageal glands | [44] |
Ab-FAR-1 | body wall | [50] | |
Ab-atps | esophageal glands and reproductive system | [86] | |
Ab-CB-1 | intestine | [87] | |
AbCRT | esophageal glands and gonad | [88] | |
Hirschmanniella Oryzae | β-mannanase | esophageal glands | [65] |
HoCM | esophageal glands | [65] |
Nematode | Effector | Effector Subtype | Interactive Host | Interactive Protein | References |
---|---|---|---|---|---|
Radopholius similis | RsVAP | venom allergen-like protein | Lycopersicon esculentum | LeRabA1d | [73] |
Bursaphelenchus xylophilus | BxSCD1 | - | Pinus thunbergii | PtACO1 | [48] |
Bursaphelenchus xylophilus | BxLip-3 | lipase | Pinus thunbergii | PtChia1-3, PtChia1-4 | [78] |
Bursaphelenchus xylophilus | BxML1 | ML proteins | Pinus thunbergii | PtCyP1 | [92] |
Bursaphelenchus xylophilus | BxCDP1 | - | Pinus thunbergii | PtRHF1 | [108] |
Bursaphelenchus xylophilus | BxKU1 | Kunitz-type protease inhibitors | Pinus thunbergii | TLP4, PtcysP, PtCel2, phospho-2-dehydro-3-deoxyheptonate aldolase 1 | [93] |
Bursaphelenchus xylophilus | BxKU2 | Kunitz-type protease inhibitors | Pinus thunbergii | TLP4, extensin-like protein, PtChia1-1, PtMYB6 | [93] |
Aphelenchoides besseyi | Ab-FAR-1 | Fatty acid and retinol binding proteins | Arabidopsis thaliana | AtADF3 | [50] |
Aphelenchoides besseyi | Ab-atps | ATP synthase gene | Oryza sativa | OsRLK3 | [86] |
Pratylenchus coffeae | PC-NEX-1 | annexin gene | Zea mays | Zm Pi Fi | [81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Yang, S.; Chen, W.; Xie, H.; Xu, C. Advances in Migratory Plant Endoparasitic Nematode Effectors. Int. J. Mol. Sci. 2024, 25, 6435. https://doi.org/10.3390/ijms25126435
Lu Y, Yang S, Chen W, Xie H, Xu C. Advances in Migratory Plant Endoparasitic Nematode Effectors. International Journal of Molecular Sciences. 2024; 25(12):6435. https://doi.org/10.3390/ijms25126435
Chicago/Turabian StyleLu, Yang, Sihua Yang, Wenhao Chen, Hui Xie, and Chunling Xu. 2024. "Advances in Migratory Plant Endoparasitic Nematode Effectors" International Journal of Molecular Sciences 25, no. 12: 6435. https://doi.org/10.3390/ijms25126435
APA StyleLu, Y., Yang, S., Chen, W., Xie, H., & Xu, C. (2024). Advances in Migratory Plant Endoparasitic Nematode Effectors. International Journal of Molecular Sciences, 25(12), 6435. https://doi.org/10.3390/ijms25126435