Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models
Abstract
:1. Introduction
2. AUD and Neuroplasticity
3. Alcohol Tolerance—A Critical Endophenotype of AUD
4. Invertebrates as A Model System to Study AUD
5. Molecular Pathways Involved in Functional Tolerance Relating to Plasticity
5.1. Neurotransmitters and Peptides
5.1.1. Octopamine
5.1.2. NPR-1
5.1.3. GABA
5.2. Ion Channels
5.2.1. NMDAR
5.2.2. KCNQ
5.2.3. BK Channel
5.3. Synaptic Proteins
5.3.1. Dlg1
5.3.2. CASK
5.3.3. Homer
5.3.4. Shibire
5.3.5. Syntaxin 1A
5.3.6. Synapsin
5.3.7. SEB-3
5.3.8. GPRK2
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcohol Use Disorder (AUD) in the United States: Age Groups and Demographic Characteristics | National Institute on Alcohol Abuse and Alcoholism (NIAAA). Available online: https://www.niaaa.nih.gov/alcohols-effects-health/alcohol-topics/alcohol-facts-and-statistics/alcohol-use-disorder-aud-united-states-age-groups-and-demographic-characteristics (accessed on 30 May 2024).
- NCDAS: Substance Abuse and Addiction Statistics. 2023. Available online: https://drugabusestatistics.org/ (accessed on 30 May 2024).
- Gao, B.; Bataller, R. Alcoholic Liver Disease: Pathogenesis and New Therapeutic Targets. Gastroenterology 2011, 141, 1572–1585. [Google Scholar] [CrossRef] [PubMed]
- Mann, R.E.; Smart, R.G.; Govoni, R. The Epidemiology of Alcoholic Liver Disease. Alcohol. Res. Health 2003, 27, 209–219. [Google Scholar] [PubMed]
- O’Keefe, J.H.; Bhatti, S.K.; Bajwa, A.; DiNicolantonio, J.J.; Lavie, C.J. Alcohol and Cardiovascular Health: The Dose Makes the Poison…or the Remedy. Mayo Clin. Proc. 2014, 89, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Rocco, A.; Compare, D.; Angrisani, D.; Sanduzzi Zamparelli, M.; Nardone, G. Alcoholic Disease: Liver and Beyond. World J. Gastroenterol. 2014, 20, 14652–14659. [Google Scholar] [CrossRef] [PubMed]
- Mukamal, K.J. Alcohol Use and Prognosis in Patients with Coronary Heart Disease. Prev. Cardiol. 2003, 6, 93–98. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, E.L.; DiNicolantonio, J.J.; O’Keefe, J.H.; Lavie, C.J. Alcohol and CV Health: Jekyll and Hyde J-Curves. Prog. Cardiovasc. Dis. 2018, 61, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of Alcohol Consumption with Selected Cardiovascular Disease Outcomes: A Systematic Review and Meta-Analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef] [PubMed]
- Järvenpää, T.; Rinne, J.O.; Koskenvuo, M.; Räihä, I.; Kaprio, J. Binge Drinking in Midlife and Dementia Risk. Epidemiology 2005, 16, 766–771. [Google Scholar] [CrossRef]
- Solfrizzi, V.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Gagliardi, G.; Santamato, A.; Baldassarre, G.; Capurso, A.; Panza, F. Lifestyle-Related Factors, Alcohol Consumption, and Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2007, 55, 1679–1681. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Yin, Q.; Zhu, W.; Zhang, R.; Fan, X. Alcohol Consumption and Transition of Mild Cognitive Impairment to Dementia. Psychiatry Clin. Neurosci. 2009, 63, 43–49. [Google Scholar] [CrossRef]
- Chandler, L.J.; Harris, R.A.; Crews, F.T. Ethanol Tolerance and Synaptic Plasticity. Trends Pharmacol. Sci. 1998, 19, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Fadda, F.; Rossetti, Z.L. Chronic Ethanol Consumption:From Neuroadaptation to Neurodegeneration. Prog. Neurobiol. 1998, 56, 385–431. [Google Scholar] [CrossRef] [PubMed]
- Elvig, S.K.; McGinn, M.A.; Smith, C.; Arends, M.A.; Koob, G.F.; Vendruscolo, L.F. Tolerance to Alcohol: A Critical Yet Understudied Factor in Alcohol Addiction. Pharmacol. Biochem. Behav. 2021, 204, 173155. [Google Scholar] [CrossRef] [PubMed]
- Kattimani, S.; Bharadwaj, B. Clinical Management of Alcohol Withdrawal: A Systematic Review. Ind. Psychiatry J. 2013, 22, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Fowler, T.; Lifford, K.; Shelton, K.; Rice, F.; Thapar, A.; Neale, M.C.; McBride, A.; van den Bree, M.B.M. Exploring the Relationship between Genetic and Environmental Influences on Initiation and Progression of Substance Use. Addiction 2007, 102, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, J.R.; van Doornen, L.J.; Boomsma, D.I. Association between Alcohol Use and Smoking in Adolescent and Young Adult Twins: A Bivariate Genetic Analysis. Alcohol. Clin. Exp. Res. 1997, 21, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, J.R.; Slutske, W.S.; van Baal, G.C.; Boomsma, D.I. The Influence of Religion on Alcohol Use Initiation: Evidence for Genotype X Environment Interaction. Behav. Genet. 1999, 29, 445–453. [Google Scholar] [CrossRef]
- Koopmans, J.R.; Boomsma, D.I. Familial Resemblances in Alcohol Use: Genetic or Cultural Transmission? J. Stud. Alcohol. 1996, 57, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Pagan, J.L.; Rose, R.J.; Viken, R.J.; Pulkkinen, L.; Kaprio, J.; Dick, D.M. Genetic and Environmental Influences on Stages of Alcohol Use across Adolescence and into Young Adulthood. Behav. Genet. 2006, 36, 483–497. [Google Scholar] [CrossRef]
- American Psychiatric Publishing, Inc. Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Arlington, VA, USA, 2013; ISBN 978-0-89042-554-1. [Google Scholar]
- Flint, J.; Timpson, N.; Munafò, M. Assessing the Utility of Intermediate Phenotypes for Genetic Mapping of Psychiatric Disease. Trends Neurosci. 2014, 37, 733–741. [Google Scholar] [CrossRef]
- Salvatore, J.E.; Gottesman, I.I.; Dick, D.M. Endophenotypes for Alcohol Use Disorder: An Update on the Field. Curr. Addict. Rep. 2015, 2, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.C.; Lusk, R.; Saba, L.M. Alcohol Sensitivity as an Endophenotype of Alcohol Use Disorder: Exploring Its Translational Utility between Rodents and Humans. Brain Sci. 2020, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, N.W.; Koob, G.F. Neurobiology of Alcohol Dependence. Alcohol. Res. Health 2008, 31, 185–195. [Google Scholar] [PubMed]
- Tabakoff, B.; Cornell, N.; Hoffman, P.L. Alcohol Tolerance. Ann. Emerg. Med. 1986, 15, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.H.; Cherek, D.R.; Spiga, R. Acute and Chronic Alcohol Tolerance in Humans: Effects of Dose and Consecutive Days of Exposure. Alcohol. Clin. Exp. Res. 1993, 17, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Casbon, T.S.; Curtin, J.J.; Lang, A.R.; Patrick, C.J. Deleterious Effects of Alcohol Intoxication: Diminished Cognitive Control and Its Behavioral Consequences. J. Abnorm. Psychol. 2003, 112, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.; Mustard, J.A. Invertebrate Models of Alcoholism. Curr. Top. Behav. Neurosci. 2011, 13, 433–457. [Google Scholar] [CrossRef]
- Wolf, F.W.; Heberlein, U. Invertebrate Models of Drug Abuse. J. Neurobiol. 2003, 54, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Imeh-Nathaniel, A.; Orfanakos, V.; Wormack, L.; Huber, R.; Nathaniel, T.I. The Crayfish Model (Orconectes Rusticus), Epigenetics and Drug Addiction Research. Pharmacol. Biochem. Behav. 2019, 183, 38–45. [Google Scholar] [CrossRef]
- Søvik, E.; Barron, A.B. Invertebrate Models in Addiction Research. Brain Behav. Evol. 2013, 82, 153–165. [Google Scholar] [CrossRef]
- van Staaden, M.J.; Huber, R. Crayfish Learning: Addiction and the Ganglionic Brain. Perspect. Behav. Sci. 2018, 41, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Engleman, E.A.; Katner, S.N.; Neal-Beliveau, B.S. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. Prog. Mol. Biol. Transl. Sci. 2016, 137, 229–252. [Google Scholar] [CrossRef] [PubMed]
- Katner, S.N.; Bredhold, K.E.; Steagall, K.B.; Bell, R.L.; Neal-Beliveau, B.S.; Cheong, M.C.; Engleman, E.A. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Behav. Brain Res. 2019, 365, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Hong, M.; Choi, M.S.; Kang, S.; Duke, K.; Kim, S.; Lee, S.; Lee, J. Ethanol-Response Genes and Their Regulation Analyzed by a Microarray and Comparative Genomic Approach in the Nematode Caenorhabditis Elegans. Genomics 2004, 83, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Grotewiel, M.; Bettinger, J.C. Drosophila and Caenorhabditis elegans as Discovery Platforms for Genes Involved in Human Alcohol Use Disorder. Alcohol. Clin. Exp. Res. 2015, 39, 1292–1311. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.G.; Sedensky, M.M. Mutations Affecting Sensitivity to Ethanol in the Nematode, Caenorhabditis Elegans. Alcohol. Clin. Exp. Res. 1995, 19, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.G.; Bettinger, J.C.; Thiele, T.R.; Judy, M.E.; McIntire, S.L. Natural Variation in the Npr-1 Gene Modifies Ethanol Responses of Wild Strains of C. elegans. Neuron 2004, 42, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, J.T.; Davis, S.J.; Song, S.S.; Burnette, C.R.; Grotewiel, M.; Shelton, K.L.; Pierce-Shimomura, J.T.; Davies, A.G.; Bettinger, J.C. Ethanol Metabolism and Osmolarity Modify Behavioral Responses to Ethanol in C. elegans. Alcohol. Clin. Exp. Res. 2012, 36, 1840–1850. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.G.; Pierce-Shimomura, J.T.; Kim, H.; VanHoven, M.K.; Thiele, T.R.; Bonci, A.; Bargmann, C.I.; McIntire, S.L. A Central Role of the BK Potassium Channel in Behavioral Responses to Ethanol in C. elegans. Cell 2003, 115, 655–666. [Google Scholar] [CrossRef]
- Lee, J.; Jee, C.; McIntire, S.L. Ethanol Preference in C. elegans. Genes. Brain Behav. 2009, 8, 578–585. [Google Scholar] [CrossRef]
- Singh, C.M.; Heberlein, U. Genetic Control of Acute Ethanol-Induced Behaviors in Drosophila. Alcohol. Clin. Exp. Res. 2000, 24, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Bainton, R.J.; Tsai, L.T.-Y.; Singh, C.M.; Moore, M.S.; Neckameyer, W.S.; Heberlein, U. Dopamine Modulates Acute Responses to Cocaine, Nicotine and Ethanol in Drosophila. Curr. Biol. 2000, 10, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Parr, J.; Large, A.; Wang, X.; Fowler, S.C.; Ratzlaff, K.L.; Ruden, D.M. The Inebri-Actometer: A Device for Measuring the Locomotor Activity of Drosophila Exposed to Ethanol Vapor. J. Neurosci. Methods 2001, 107, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Devineni, A.V.; Heberlein, U. Preferential Ethanol Consumption in Drosophila Models Features of Addiction. Curr. Biol. 2009, 19, 2126–2132. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Tran, T.; Atkinson, N.S. Monitoring Food Preference in Drosophila by Oligonucleotide Tagging. Proc. Natl. Acad. Sci. USA 2018, 115, 9020–9025. [Google Scholar] [CrossRef] [PubMed]
- Peru Y Colón de Portugal, R.L.; Ojelade, S.A.; Penninti, P.S.; Dove, R.J.; Nye, M.J.; Acevedo, S.F.; Lopez, A.; Rodan, A.R.; Rothenfluh, A. Long-Lasting, Experience-Dependent Alcohol Preference in Drosophila. Addict. Biol. 2014, 19, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Cohan, F.M.; Graf, J.-D. Latitudinal cline in Drosophila melanogaster for knockdown resistance to ethanol fumes and for rates of response to selection for further resistance. Evolution 1985, 39, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H. Influence of the Biogenic Amine Tyramine on Ethanol-Induced Behaviors in Drosophila. J. Neurobiol. 2005, 63, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.; Ramond, J.; Singh, C.M.; Heberlein, U. Functional Ethanol Tolerance in Drosophila. Neuron 2000, 28, 261–271. [Google Scholar] [CrossRef]
- Robinson, B.G.; Khurana, S.; Kuperman, A.; Atkinson, N.S. Neural Adaptation Leads to Cognitive Ethanol Dependence. Curr. Biol. 2012, 22, 2338–2341. [Google Scholar] [CrossRef]
- del Valle Rodríguez, A.; Didiano, D.; Desplan, C. Power Tools for Gene Expression and Clonal Analysis in Drosophila. Nat. Methods 2012, 9, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Weasner, B.M.; Zhu, J.; Kumar, J.P. FLPing Genes On and Off in Drosophila. Methods Mol. Biol. 2017, 1642, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Diao, F.; Scott, R.L.; White, B.H. The Drosophila Split Gal4 System for Neural Circuit Mapping. Front. Neural Circuits 2020, 14, 603397. [Google Scholar] [CrossRef] [PubMed]
- Ewen-Campen, B.; Luan, H.; Xu, J.; Singh, R.; Joshi, N.; Thakkar, T.; Berger, B.; White, B.H.; Perrimon, N. Split-Intein Gal4 Provides Intersectional Genetic Labeling that Is Repressible by Gal80. Proc. Natl. Acad. Sci. USA 2023, 120, e2304730120. [Google Scholar] [CrossRef] [PubMed]
- Port, F.; Strein, C.; Stricker, M.; Rauscher, B.; Heigwer, F.; Zhou, J.; Beyersdörffer, C.; Frei, J.; Hess, A.; Kern, K.; et al. A Large-Scale Resource for Tissue-Specific CRISPR Mutagenesis in Drosophila. eLife 2020, 9, e53865. [Google Scholar] [CrossRef] [PubMed]
- Heigwer, F.; Port, F.; Boutros, M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018, 208, 853–874. [Google Scholar] [CrossRef] [PubMed]
- Rodan, A.R.; Kiger, J.A.; Heberlein, U. Functional Dissection of Neuroanatomical Loci Regulating Ethanol Sensitivity in Drosophila. J. Neurosci. 2002, 22, 9490–9501. [Google Scholar] [CrossRef] [PubMed]
- Peru Y Colón de Portugal, R.L.; Acevedo, S.F.; Rodan, A.R.; Chang, L.Y.; Eaton, B.A.; Rothenfluh, A. Adult Neuronal Arf6 Controls Ethanol-Induced Behavior with Arfaptin Downstream of Rac1 and RhoGAP18B. J. Neurosci. 2012, 32, 17706–17713. [Google Scholar] [CrossRef] [PubMed]
- Rothenfluh, A.; Threlkeld, R.J.; Bainton, R.J.; Tsai, L.T.-Y.; Lasek, A.W.; Heberlein, U. Distinct Behavioral Responses to Ethanol Are Regulated by Alternate RhoGAP18B Isoforms. Cell 2006, 127, 199–211. [Google Scholar] [CrossRef]
- Chvilicek, M.M.; Titos, I.; Rothenfluh, A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front. Behav. Neurosci. 2020, 14, 607700. [Google Scholar] [CrossRef] [PubMed]
- Bier, E. Drosophila, the Golden Bug, Emerges as a Tool for Human Genetics. Nat. Rev. Genet. 2005, 6, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-H.; Chou, C.-Y.; Ch’ang, L.-Y.; Liu, C.-S.; Lin, W. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics. Genome Res. 2000, 10, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.A.; Jia, T.; Pinzón, J.H.; Acevedo, S.F.; Ojelade, S.A.; Xu, B.; Tay, N.; Desrivières, S.; Hernandez, J.L.; Banaschewski, T.; et al. The Arf6 Activator Efa6/PSD3 Confers Regional Specificity and Modulates Ethanol Consumption in Drosophila and Humans. Mol. Psychiatry 2018, 23, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Murnane, K.S.; Edinoff, A.N.; Cornett, E.M.; Kaye, A.D. Updated Perspectives on the Neurobiology of Substance Use Disorders Using Neuroimaging. Subst. Abuse Rehabil. 2023, 14, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Nieto, S.J.; Grodin, E.N.; Aguirre, C.G.; Izquierdo, A.; Ray, L.A. Translational Opportunities in Animal and Human Models to Study Alcohol Use Disorder. Transl. Psychiatry 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Roeder, T. Octopamine in Invertebrates. Prog. Neurobiol. 1999, 59, 533–561. [Google Scholar] [CrossRef] [PubMed]
- Claßen, G.; Scholz, H. Octopamine Shifts the Behavioral Response From Indecision to Approach or Aversion in Drosophila Melanogaster. Front. Behav. Neurosci. 2018, 12, 131. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.; Ruppert, M.; Hendrich, O.; Giang, T.; Ogueta, M.; Hampel, S.; Vollbach, M.; Büschges, A.; Scholz, H. Neuronal Basis of Innate Olfactory Attraction to Ethanol in Drosophila. PLoS ONE 2012, 7, e52007. [Google Scholar] [CrossRef] [PubMed]
- Tabakoff, B.; Ritzmann, R.F. The Effects of 6-Hydroxydopamine on Tolerance to and Dependence on Ethanol. J. Pharmacol. Exp. Ther. 1977, 203, 319–331. [Google Scholar] [PubMed]
- de Bono, M.; Bargmann, C.I. Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans. Cell 1998, 94, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Soto, R.; Goetting, D.L.; Van Buskirk, C. NPR-1 Modulates Plasticity in C. elegans Stress-Induced Sleep. iScience 2019, 19, 1037–1047. [Google Scholar] [CrossRef] [PubMed]
- Kacsoh, B.Z.; Lynch, Z.R.; Mortimer, N.T.; Schlenke, T.A. Fruit Flies Medicate Offspring after Seeing Parasites. Science 2013, 339, 947–950. [Google Scholar] [CrossRef] [PubMed]
- Shohat-Ophir, G.; Kaun, K.R.; Azanchi, R.; Mohammed, H.; Heberlein, U. Sexual Deprivation Increases Ethanol Intake in Drosophila. Science 2012, 335, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Parrish, C.A.; Xu, D.; Wu, Q.; Shen, P. Drosophila Neuropeptide F and Its Receptor, NPFR1, Define a Signaling Pathway that Acutely Modulates Alcohol Sensitivity. Proc. Natl. Acad. Sci. USA 2005, 102, 2141–2146. [Google Scholar] [CrossRef] [PubMed]
- Thorsell, A.; Mathé, A.A. Neuropeptide Y in Alcohol Addiction and Affective Disorders. Front. Endocrinol. 2017, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Gilpin, N.W.; Misra, K.; Herman, M.A.; Cruz, M.T.; Koob, G.F.; Roberto, M. Neuropeptide Y Opposes Alcohol Effects on GABA Release in Amygdala and Blocks the Transition to Alcohol Dependence. Biol. Psychiatry 2011, 69, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Davies, M. The Role of GABAA Receptors in Mediating the Effects of Alcohol in the Central Nervous System. J. Psychiatry Neurosci. 2003, 28, 263–274. [Google Scholar] [PubMed]
- Kulonen, E. Ethanol and GABA. Med. Biol. 1983, 61, 147–167. [Google Scholar] [PubMed]
- Daack, C.W.; Yeh, D.; Busch, M.; Kliethermes, C.L. GABAergic Regulation of Locomotion before and during an Ethanol Exposure in Drosophila Melanogaster. Behav. Brain Res. 2021, 410, 113369. [Google Scholar] [CrossRef] [PubMed]
- Dimitrijevic, N.; Dzitoyeva, S.; Satta, R.; Imbesi, M.; Yildiz, S.; Manev, H. Drosophila GABAB Receptors Are Involved in Behavioral Effects of γ-Hydroxybutyric Acid (GHB). Eur. J. Pharmacol. 2005, 519, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Dzitoyeva, S.; Dimitrijevic, N.; Manev, H. γ-Aminobutyric Acid B Receptor 1 Mediates Behavior-Impairing Actions of Alcohol in Drosophila: Adult RNA Interference and Pharmacological Evidence. Proc. Natl. Acad. Sci. USA 2003, 100, 5485–5490. [Google Scholar] [CrossRef] [PubMed]
- Ranson, D.C.; Ayoub, S.S.; Corcoran, O.; Casalotti, S.O. Pharmacological Targeting of the GABA B Receptor Alters Drosophila’s Behavioural Responses to Alcohol. Addict. Biol. 2020, 25, e12725. [Google Scholar] [CrossRef] [PubMed]
- Sterken, M.G.; van Wijk, M.H.; Quamme, E.C.; Riksen, J.A.G.; Carnell, L.; Mathies, L.D.; Davies, A.G.; Kammenga, J.E.; Bettinger, J.C. Transcriptional Analysis of the Response of C. elegans to Ethanol Exposure. Sci. Rep. 2021, 11, 10993. [Google Scholar] [CrossRef] [PubMed]
- Agabio, R.; Maccioni, P.; Carai, M.A.M.; Luigi Gessa, G.; Froestl, W.; Colombo, G. The Development of Medications for Alcohol-Use Disorders Targeting the GABAB Receptor System. Recent Pat. CNS Drug Discov. 2012, 7, 113–128. [Google Scholar] [CrossRef] [PubMed]
- Agabio, R.; Colombo, G. GABAB Receptor Ligands for the Treatment of Alcohol Use Disorder: Preclinical and Clinical Evidence. Front. Neurosci. 2014, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Cousins, M.S.; Roberts, D.C.S.; de Wit, H. GABAB Receptor Agonists for the Treatment of Drug Addiction: A Review of Recent Findings. Drug Alcohol Depend. 2002, 65, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Zaleski, M.J.; Nunes Filho, J.R.; Lemos, T.; Morato, G.S. GABA(B) Receptors Play a Role in the Development of Tolerance to Ethanol in Mice. Psychopharmacology 2001, 153, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Allgaier, C. Ethanol Sensitivity of NMDA Receptors. Neurochem. Int. 2002, 41, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.L.; Rabe, C.S.; Grant, K.A.; Valverius, P.; Hudspith, M.; Tabakoff, B. Ethanol and the NMDA Receptor. Alcohol 1990, 7, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J. Alcohol Related Changes in Regulation of NMDA Receptor Functions. Curr. Neuropharmacol. 2008, 6, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Troutwine, B.; Park, A.; Velez-Hernandez, M.E.; Lew, L.; Mihic, S.J.; Atkinson, N.S. F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol-Induced Behaviors in Drosophila. Alcohol. Clin. Exp. Res. 2019, 43, 2480–2493. [Google Scholar] [CrossRef] [PubMed]
- Maiya, R.; Lee, S.; Berger, K.H.; Kong, E.C.; Slawson, J.B.; Griffith, L.C.; Takamiya, K.; Huganir, R.L.; Margolis, B.; Heberlein, U. DlgS97/SAP97, a Neuronal Isoform of Discs Large, Regulates Ethanol Tolerance. PLoS ONE 2012, 7, e48967. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.A.; Frye, G.D.; Griffith, W.H. Acute Tolerance to Ethanol Inhibition of NMDA-Mediated EPSPs in the CA1 Region of the Rat Hippocampus. Brain Res. 1994, 642, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yaka, R.; Phamluong, K.; Ron, D. Scaffolding of Fyn Kinase to the NMDA Receptor Determines Brain Region Sensitivity to Ethanol. J. Neurosci. 2003, 23, 3623–3632. [Google Scholar] [CrossRef] [PubMed]
- Khanna, J.; Wu, P.H.; Weiner, J.; Kalant, H. NMDA Antagonist Inhibits Rapid Tolerance to Ethanol. Brain Res. Bull. 1991, 26, 643–645. [Google Scholar] [CrossRef] [PubMed]
- Khanna, J.M.; Kalant, H.; Shah, G.; Chau, A. Effect of (+)MK-801 and Ketamine on Rapid Tolerance to Ethanol. Brain Res. Bull. 1992, 28, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Szabó, G.; Tabakoff, B.; Hoffman, P.L. The NMDA Receptor Antagonist Dizocilpine Differentially Affects Environment-Dependent and Environment-Independent Ethanol Tolerance. Psychopharmacology 1994, 113, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Wulff, H.; Castle, N.A.; Pardo, L.A. Voltage-Gated Potassium Channels as Therapeutic Drug Targets. Nat. Rev. Drug Discov. 2009, 8, 982–1001. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, S.; Gillespie, J.M.; Hodge, J.J.L. KCNQ Channels Show Conserved Ethanol Block and Function in Ethanol Behaviour. PLoS ONE 2012, 7, e50279. [Google Scholar] [CrossRef]
- Kendler, K.S.; Kalsi, G.; Holmans, P.A.; Sanders, A.R.; Aggen, S.H.; Dick, D.M.; Aliev, F.; Shi, J.; Levinson, D.F.; Gejman, P.V. Association Analysis of Symptoms of Alcohol Dependence in the Molecular Genetics of Schizophrenia (MGS2) Control Sample. Alcohol. Clin. Exp. Res. 2011, 35, 963–975. [Google Scholar] [CrossRef]
- Rinker, J.A.; Fulmer, D.B.; Trantham-Davidson, H.; Smith, M.L.; Williams, R.W.; Lopez, M.F.; Randall, P.K.; Chandler, L.J.; Miles, M.F.; Becker, H.C.; et al. Differential Potassium Channel Gene Regulation in BXD Mice Reveals Novel Targets for Pharmacogenetic Therapies to Reduce Heavy Alcohol Drinking. Alcohol 2017, 58, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Li, J.; Zuo, W.; Fu, R.; Gregor, D.; Krnjevic, K.; Bekker, A.; Ye, J.-H. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-Type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017, 42, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Knapp, C.M.; O’Malley, M.; Datta, S.; Ciraulo, D.A. The Kv7 Potassium Channel Activator Retigabine Decreases Alcohol Consumption in Rats. Am. J. Drug Alcohol Abuse 2014, 40, 244–250. [Google Scholar] [CrossRef] [PubMed]
- McGuier, N.S.; Griffin, W.C.; Gass, J.T.; Padula, A.E.; Chesler, E.J.; Mulholland, P.J. Kv7 Channels in the Nucleus Accumbens Are Altered by Chronic Drinking and Are Targets for Reducing Alcohol Consumption. Addict. Biol. 2016, 21, 1097–1112. [Google Scholar] [CrossRef] [PubMed]
- Ancatén-González, C.; Segura, I.; Alvarado-Sánchez, R.; Chávez, A.E.; Latorre, R. Ca2+- and Voltage-Activated K+ (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int. J. Mol. Sci. 2023, 24, 3407. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, N.S.; Robertson, G.A.; Ganetzky, B. A Component of Calcium-Activated Potassium Channels Encoded by the Drosophila Slo Locus. Science 1991, 253, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Cowmeadow, R.B.; Krishnan, H.R.; Atkinson, N.S. The Slowpoke Gene Is Necessary for Rapid Ethanol Tolerance in Drosophila. Alcohol. Clin. Exp. Res. 2005, 29, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Cowmeadow, R.B.; Krishnan, H.R.; Ghezzi, A.; Al’Hasan, Y.M.; Wang, Y.Z.; Atkinson, N.S. Ethanol Tolerance Caused by Slowpoke Induction in Drosophila. Alcohol. Clin. Exp. Res. 2006, 30, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Adkins, A.E.; Hack, L.M.; Bigdeli, T.B.; Williamson, V.S.; McMichael, G.O.; Mamdani, M.; Edwards, A.; Aliev, F.; Chan, R.F.; Bhandari, P.; et al. Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-Response Behaviors in Model Organisms. Alcohol. Clin. Exp. Res. 2017, 41, 911–928. [Google Scholar] [CrossRef] [PubMed]
- Dopico, A.M.; Bukiya, A.N.; Martin, G.E. Ethanol Modulation of Mammalian BK Channels in Excitable Tissues: Molecular Targets and Their Possible Contribution to Alcohol-Induced Altered Behavior. Front. Physiol. 2014, 5, 120404. [Google Scholar] [CrossRef] [PubMed]
- Edenberg, H.J.; Koller, D.L.; Xuei, X.; Wetherill, L.; McClintick, J.N.; Almasy, L.; Bierut, L.J.; Bucholz, K.K.; Goate, A.; Aliev, F.; et al. Genome-Wide Association Study of Alcohol Dependence Implicates a Region on Chromosome 11. Alcohol. Clin. Exp. Res. 2010, 34, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, J.C.; Davies, A.G. The Role of the BK Channel in Ethanol Response Behaviors: Evidence from Model Organism and Human Studies. Front. Physiol. 2014, 5, 346. [Google Scholar] [CrossRef] [PubMed]
- Dopico, A.M.; Bukiya, A.N.; Kuntamallappanavar, G.; Liu, J. Modulation of BK Channels by Ethanol. Int. Rev. Neurobiol. 2016, 128, 239–279. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.E. Bk Channel and Alcohol, a Complicated Affair. In International Review of Neurobiology; Reilly, M.T., Lovinger, D.M., Eds.; Functional Plasticity and Genetic Variation: Insights into the Neurobiology of Alcoholism; Academic Press: Cambridge, MA, USA, 2010; Volume 91, pp. 321–338. [Google Scholar]
- Treistman, S.N.; Martin, G.E. BK Channels: Mediators and Models for Alcohol Tolerance. Trends Neurosci. 2009, 32, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, C.; Olguín, P.; Lafferte, G.; Thomas, U.; Ebitsch, S.; Gundelfinger, E.D.; Kukuljan, M.; Sierralta, J. Novel Isoforms of Dlg Are Fundamental for Neuronal Development in Drosophila. J. Neurosci. 2003, 23, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Woods, D.F.; Bryant, P.J. The Discs-Large Tumor Suppressor Gene of Drosophila Encodes a Guanylate Kinase Homolog Localized at Septate Junctions. Cell 1991, 66, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Bassand, P.; Bernard, A.; Rafiki, A.; Gayet, D.; Khrestchatisky, M. Differential Interaction of the tSXV Motifs of the NR1 and NR2A NMDA Receptor Subunits with PSD-95 and SAP97. Eur. J. Neurosci. 1999, 11, 2031–2043. [Google Scholar] [CrossRef] [PubMed]
- Niethammer, M.; Kim, E.; Sheng, M. Interaction between the C Terminus of NMDA Receptor Subunits and Multiple Members of the PSD-95 Family of Membrane-Associated Guanylate Kinases. J. Neurosci. 1996, 16, 2157–2163. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.S.; Hodge, J.J.L.; Mehren, J.; Sun, X.X.; Griffith, L.C. Regulation of the Ca2+/CaM-Responsive Pool of CaMKII by Scaffold-Dependent Autophosphorylation. Neuron 2003, 40, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Slawson, J.B.; Kuklin, E.A.; Ejima, A.; Mukherjee, K.; Ostrovsky, L.; Griffith, L.C. Central Regulation of Locomotor Behavior of Drosophila Melanogaster Depends on a CASK Isoform Containing CaMK-Like and L27 Domains. Genetics 2011, 187, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Zordan, M.A.; Massironi, M.; Ducato, M.G.; te Kronnie, G.; Costa, R.; Reggiani, C.; Chagneau, C.; Martin, J.-R.; Megighian, A. Drosophila CAKI/CMG Protein, a Homolog of Human CASK, Is Essential for Regulation of Neurotransmitter Vesicle Release. J. Neurophysiol. 2005, 94, 1074–1083. [Google Scholar] [CrossRef]
- Cały, A.; Ziółkowska, M.; Pagano, R.; Salamian, A.; Śliwińska, M.A.; Sotoudeh, N.; Bernaś, T.; Radwanska, K. Autophosphorylation of αCaMKII Regulates Alcohol Consumption by Controlling Sedative Effects of Alcohol and Alcohol-Induced Loss of Excitatory Synapses. Addict. Biol. 2023, 28, e13276. [Google Scholar] [CrossRef] [PubMed]
- Easton, A.C.; Lucchesi, W.; Lourdusamy, A.; Lenz, B.; Solati, J.; Golub, Y.; Lewczuk, P.; Fernandes, C.; Desrivieres, S.; Dawirs, R.R.; et al. αCaMKII Autophosphorylation Controls the Establishment of Alcohol Drinking Behavior. Neuropsychopharmacology 2013, 38, 1636–1647. [Google Scholar] [CrossRef] [PubMed]
- Hodge, J.J.L.; Mullasseril, P.; Griffith, L.C. Activity-Dependent Gating of CaMKII Autonomous Activity by Drosophila CASK. Neuron 2006, 51, 327–337. [Google Scholar] [CrossRef]
- Jeyifous, O.; Waites, C.L.; Specht, C.G.; Fujisawa, S.; Schubert, M.; Lin, E.; Marshall, J.; Aoki, C.; de Silva, T.; Montgomery, J.M.; et al. SAP97 and CASK Mediate Sorting of N-Methyl-D-Aspartate Receptors through a Novel Secretory Pathway. Nat. Neurosci. 2009, 12, 1011–1019. [Google Scholar] [CrossRef]
- Lin, E.I.; Jeyifous, O.; Green, W.N. CASK Regulates SAP97 Conformation and Its Interactions with AMPA and NMDA Receptors. J. Neurosci. 2013, 33, 12067–12076. [Google Scholar] [CrossRef]
- Sanhueza, M.; Lisman, J. The CaMKII/NMDAR Complex as a Molecular Memory. Mol. Brain 2013, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Ehrengruber, M.U.; Kato, A.; Inokuchi, K.; Hennou, S. Homer/Vesl Proteins and Their Roles in CNS Neurons. Mol. Neurobiol. 2004, 29, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Urizar, N.L.; Yang, Z.; Edenberg, H.J.; Davis, R.L. Drosophila Homer Is Required in a Small Set of Neurons Including the Ellipsoid Body for Normal Ethanol Sensitivity and Tolerance. J. Neurosci. 2007, 27, 4541–4551. [Google Scholar] [CrossRef] [PubMed]
- Castelli, V.; Brancato, A.; Cavallaro, A.; Lavanco, G.; Cannizzaro, C. Homer2 and Alcohol: A Mutual Interaction. Front. Psychiatry 2017, 8, 268. [Google Scholar] [CrossRef] [PubMed]
- Szumlinski, K.K.; Lominac, K.D.; Oleson, E.B.; Walker, J.K.; Mason, A.; Dehoff, M.H.; Klugman, M.; Cagle, S.; Welt, K.; During, M.; et al. Homer2 Is Necessary for EtOH-Induced Neuroplasticity. J. Neurosci. 2005, 25, 7054–7061. [Google Scholar] [CrossRef] [PubMed]
- van der Bliek, A.M.; Meyerowrtz, E.M. Dynamin-like Protein Encoded by the Drosophila Shibire Gene Associated with Vesicular Traffic. Nature 1991, 351, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.M.; De Camilli, P. Dynamin, a Membrane Remodelling GTPase. Nat. Rev. Mol. Cell Biol. 2012, 13, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.R.; Al-Hasan, Y.M.; Pohl, J.B.; Ghezzi, A.; Atkinson, N.S. A Role for Dynamin in Triggering Ethanol Tolerance. Alcohol. Clin. Exp. Res. 2012, 36, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Alexander-Kaufman, K.; Cordwell, S.; Harper, C.; Matsumoto, I. A Proteome Analysis of the Dorsolateral Prefrontal Cortex in Human Alcoholic Patients. Proteom.—Clin. Appl. 2007, 1, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, N.; Lewohl, J.M.; Mayfield, R.D.; Harris, R.A.; Dodd, P.R. Synaptic Proteome Changes in the Superior Frontal Gyrus and Occipital Cortex of the Alcoholic Brain. Proteom.—Clin. Appl. 2009, 3, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, N.; Mayfield, R.D.; Harris, R.A.; Dodd, P.R. Identifying Changes in the Synaptic Proteome of Cirrhotic Alcoholic Superior Frontal Gyrus. Curr. Neuropharmacol. 2011, 9, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Gorini, G.; Roberts, A.J.; Mayfield, R.D. Neurobiological Signatures of Alcohol Dependence Revealed by Protein Profiling. PLoS ONE 2013, 8, e82656. [Google Scholar] [CrossRef] [PubMed]
- Gorini, G.; Ponomareva, O.; Shores, K.S.; Person, M.D.; Harris, R.A.; Mayfield, R.D. Dynamin-1 Co-Associates with Native Mouse Brain BKCa Channels: Proteomics Analysis of Synaptic Protein Complexes. FEBS Lett. 2010, 584, 845. [Google Scholar] [CrossRef]
- Teng, F.Y.H.; Wang, Y.; Tang, B.L. The Syntaxins. Genome Biol. 2001, 2, reviews3012.1. [Google Scholar] [CrossRef]
- Bennett, M.K.; Calakos, N.; Scheller, R.H. Syntaxin: A Synaptic Protein Implicated in Docking of Synaptic Vesicles at Presynaptic Active Zones. Science 1992, 257, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Kashyap, S.; Rankin, K.; Barclay, J.W. Rab-3 and Unc-18 Interactions in Alcohol Sensitivity Are Distinct from Synaptic Transmission. PLoS ONE 2013, 8, e81117. [Google Scholar] [CrossRef] [PubMed]
- Kapfhamer, D.; Bettinger, J.C.; Davies, A.G.; Eastman, C.L.; Smail, E.A.; Heberlein, U.; McIntire, S.L. Loss of RAB-3/A in C. elegans and the Mouse Affects Behavioral Response to Ethanol. Genes. Brain Behav. 2008, 7, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Fehr, C.; Shirley, R.L.; Crabbe, J.C.; Belknap, J.K.; Buck, K.J.; Phillips, T.J. The Syntaxin Binding Protein 1 Gene (Stxbp1) Is a Candidate for an Ethanol Preference Drinking Locus on Mouse Chromosome 2. Alcohol. Clin. Exp. Res. 2005, 29, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.E.; Edwards, M.R.; Holden-Dye, L.; Morgan, A.; Burgoyne, R.D.; Barclay, J.W. UNC-18 Modulates Ethanol Sensitivity in Caenorhabditis Elegans. Mol. Biol. Cell 2009, 20, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Treadwell, J.A.; Pagniello, K.B.; Singh, S.M. Genetic Segregation of Brain Gene Expression Identifies Retinaldehyde Binding Protein 1 and Syntaxin 12 as Potential Contributors to Ethanol Preference in Mice. Behav. Genet. 2004, 34, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Symons, M.N.; Singh, S.M. Studies on Syntaxin 12 and Alcohol Preference Involving C57BL/6J and DBA/2J Strains of Mice. Behav. Genet. 2009, 39, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.T.; Porton, B.; Hilfiker, S.; Stefani, G.; Pieribone, V.A.; DeSalle, R.; Greengard, P. Molecular Evolution of the Synapsin Gene Family. J. Exp. Zool. 1999, 285, 360–377. [Google Scholar] [CrossRef]
- Bykhovskaia, M. Synapsin Regulation of Vesicle Organization and Functional Pools. Semin. Cell Dev. Biol. 2011, 22, 387–392. [Google Scholar] [CrossRef]
- Godenschwege, T.A.; Reisch, D.; Diegelmann, S.; Eberle, K.; Funk, N.; Heisenberg, M.; Hoppe, V.; Hoppe, J.; Klagges, B.R.E.; Martin, J.-R.; et al. Flies Lacking All Synapsins Are Unexpectedly Healthy but Are Impaired in Complex Behaviour. Eur. J. Neurosci. 2004, 20, 611–622. [Google Scholar] [CrossRef]
- Engel, G.L.; Marella, S.; Kaun, K.R.; Wu, J.; Adhikari, P.; Kong, E.C.; Wolf, F.W. Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the Development of Alcohol Tolerance, Preference, and Reward. J. Neurosci. 2016, 36, 5241–5251. [Google Scholar] [CrossRef] [PubMed]
- Chvilicek, M.M.; Seguin, A.; Lathen, D.R.; Titos, I.; Cummins-Beebee, P.N.; Pabon, M.A.; Miščević, M.; Nickel, E.; Merrill, C.B.; Rodan, A.R.; et al. Large Analysis of Genetic Manipulations Reveals an Inverse Correlation between Initial Alcohol Resistance and Rapid Tolerance Phenotypes. Genes Brain Behav. 2024, 23, e12884. [Google Scholar] [CrossRef]
- Conti, A.C.; Maas, J.W.; Moulder, K.L.; Jiang, X.; Dave, B.A.; Mennerick, S.; Muglia, L.J. Adenylyl Cyclases 1 and 8 Initiate a Presynaptic Homeostatic Response to Ethanol Treatment. PLoS ONE 2009, 4, e5697. [Google Scholar] [CrossRef] [PubMed]
- Sadanandappa, M.K.; Blanco Redondo, B.; Michels, B.; Rodrigues, V.; Gerber, B.; VijayRaghavan, K.; Buchner, E.; Ramaswami, M. Synapsin Function in GABA-Ergic Interneurons Is Required for Short-Term Olfactory Habituation. J. Neurosci. 2013, 33, 16576–16585. [Google Scholar] [CrossRef] [PubMed]
- Jee, C.; Lee, J.; Lim, J.P.; Parry, D.; Messing, R.O.; McIntire, S.L. SEB-3, a CRF Receptor-like GPCR, Regulates Locomotor Activity States, Stress Responses and Ethanol Tolerance in Caenorhabditis Elegans. Genes. Brain Behav. 2013, 12, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Salim, C.; Kan, A.K.; Batsaikhan, E.; Patterson, E.C.; Jee, C. Neuropeptidergic Regulation of Compulsive Ethanol Seeking in C. elegans. Sci. Rep. 2022, 12, 1804. [Google Scholar] [CrossRef] [PubMed]
- Becker, H.C. Effects of Alcohol Dependence and Withdrawal on Stress Responsiveness and Alcohol Consumption. Alcohol. Res. 2012, 34, 448–458. [Google Scholar] [PubMed]
- Koob, G.F. A Role for Brain Stress Systems in Addiction. Neuron 2008, 59, 11–34. [Google Scholar] [CrossRef] [PubMed]
- Reiter, E.; Lefkowitz, R.J. GRKs and β-Arrestins: Roles in Receptor Silencing, Trafficking and Signaling. Trends Endocrinol. Metab. 2006, 17, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.Y.; Wachi, Y.; Engdorf, E.; Fumagalli, E.; Wang, Y.; Myers, J.; Massey, S.; Greiss, A.; Xu, S.; Roman, G. Normal Ethanol Sensitivity and Rapid Tolerance Require the G Protein Receptor Kinase 2 in Ellipsoid Body Neurons in Drosophila. Alcohol. Clin. Exp. Res. 2020, 44, 1686–1699. [Google Scholar] [CrossRef] [PubMed]
- Saland, L.C.; Chavez, J.B.; Lee, D.C.; Garcia, R.R.; Caldwell, K.K. Chronic Ethanol Exposure Increases the Association of Hippocampal Mu-Opioid Receptors with G-Protein Receptor Kinase 2 (GRK2). Alcohol 2008, 42, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liang, Y. Involvement of GRK2 in Modulating Nalfurafine-Induced Reduction of Excessive Alcohol Drinking in Mice. Neurosci. Lett. 2021, 760, 136092. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.H.; Kong, E.C.; Dubnau, J.; Tully, T.; Moore, M.S.; Heberlein, U. Ethanol Sensitivity and Tolerance in Long-Term Memory Mutants of Drosophila Melanogaster. Alcohol. Clin. Exp. Res. 2008, 32, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, X.; Cao, X.; Chu, D.; Chen, J.; Zhou, J. The Drosophila Homolog of Jwa Is Required for Ethanol Tolerance. Alcohol Alcohol. 2008, 43, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Mathies, L.D.; Lindsay, J.H.; Handal, A.P.; Blackwell, G.G.; Davies, A.G.; Bettinger, J.C. SWI/SNF Complexes Act through CBP-1 Histone Acetyltransferase to Regulate Acute Functional Tolerance to Alcohol. BMC Genom. 2020, 21, 646. [Google Scholar] [CrossRef] [PubMed]
- Pohl, J.B.; Ghezzi, A.; Lew, L.K.; Robles, R.B.; Cormack, L.; Atkinson, N.S. Circadian Genes Differentially Affect Tolerance to Ethanol in Drosophila. Alcohol. Clin. Exp. Res. 2013, 37, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Riley, B.P.; Kalsi, G.; Kuo, P.-H.; Vladimirov, V.; Thiselton, D.L.; Vittum, J.; Wormley, B.; Grotewiel, M.S.; Patterson, D.G.; Sullivan, P.F.; et al. Alcohol Dependence Is Associated with the ZNF699 Gene, a Human Locus Related to Drosophila Hangover, in the Irish Affected Sib Pair Study of Alcohol Dependence (IASPSAD) Sample. Mol. Psychiatry 2006, 11, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Sakharkar, A.J.; Zhang, H.; Tang, L.; Shi, G.; Pandey, S.C. Histone Deacetylases (HDAC)-Induced Histone Modifications in the Amygdala: A Role in Rapid Tolerance to the Anxiolytic Effects of Ethanol. Alcohol. Clin. Exp. Res. 2012, 36, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Scholz, H.; Franz, M.; Heberlein, U. The Hangover Gene Defines a Stress Pathway Required for Ethanol Tolerance Development. Nature 2005, 436, 845–847. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Althoff, D.M. Different Genetic Basis for Alcohol Dehydrogenase Activity and Plasticity in a Novel Alcohol Environment for Drosophila Melanogaster. Heredity 2020, 125, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Thiele, T.E.; Marsh, D.J.; Ste. Marie, L.; Bernstein, I.L.; Palmiter, R.D. Ethanol Consumption and Resistance Are Inversely Related to Neuropeptide Y Levels. Nature 1998, 396, 366–369. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.W.; Liang, J. Role of GABAA Receptors in Alcohol Use Disorders Suggested by Chronic Intermittent Ethanol (CIE) Rodent Model. Mol. Brain 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.D.; Velazquez, J.; French, S.W.; Lu, S.C.; Ticku, M.K.; Zakhari, S. Emerging Role of Epigenetics in the Actions of Alcohol. Alcohol. Clin. Exp. Res. 2008, 32, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Roman, M.E.; Billini, C.E.; Ghezzi, A. Epigenetic Mechanisms of Alcohol Neuroadaptation: Insights from Drosophila. J. Exp. Neurosci. 2018, 12, 1179069518779809. [Google Scholar] [CrossRef] [PubMed]
- Mathies, L.D.; Blackwell, G.G.; Austin, M.K.; Edwards, A.C.; Riley, B.P.; Davies, A.G.; Bettinger, J.C. SWI/SNF Chromatin Remodeling Regulates Alcohol Response Behaviors in Caenorhabditis elegans and Is Associated with Alcohol Dependence in Humans. Proc. Natl. Acad. Sci. USA 2015, 112, 3032–3037. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.C.; Thomas, K.N.; Mehta, N.A.; Veazey, K.J.; Parnell, S.E.; Golding, M.C. Programmed Suppression of Oxidative Phosphorylation and Mitochondrial Function by Gestational Alcohol Exposure Correlate with Widespread Increases in H3K9me2 that Do Not Suppress Transcription. Epigenetics Chromatin 2021, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, H.R.; Li, X.; Ghezzi, A.; Atkinson, N.S. A DNA Element in the Slo Gene Modulates Ethanol Tolerance. Alcohol 2016, 51, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, D.C.; Messaoudi, I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front. Immunol. 2022, 13, 911951. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, Y.; Ren, J. Epigenetic Modification in Alcohol Use Disorder and Alcoholic Cardiomyopathy: From Pathophysiology to Therapeutic Opportunities. Metabolism 2021, 125, 154909. [Google Scholar] [CrossRef] [PubMed]
- Bozler, J.; Kacsoh, B.Z.; Bosco, G. Transgenerational Inheritance of Ethanol Preference Is Caused by Maternal NPF Repression. eLife 2019, 8, e45391. [Google Scholar] [CrossRef] [PubMed]
- Mokashi, S.S.; Shankar, V.; MacPherson, R.A.; Hannah, R.C.; Mackay, T.F.C.; Anholt, R.R.H. Developmental Alcohol Exposure in Drosophila: Effects on Adult Phenotypes and Gene Expression in the Brain. Front. Psychiatry 2021, 12, 699033. [Google Scholar] [CrossRef] [PubMed]
- McClure, K.D.; French, R.L.; Heberlein, U. A Drosophila Model for Fetal Alcohol Syndrome Disorders: Role for the Insulin Pathway. Dis. Model. Mech. 2011, 4, 335–346. [Google Scholar] [CrossRef]
- Guzman, D.M.; Chakka, K.; Shi, T.; Marron, A.; Fiorito, A.E.; Rahman, N.S.; Ro, S.; Sucich, D.G.; Pierce, J.T. Transgenerational Effects of Alcohol on Behavioral Sensitivity to Alcohol in Caenorhabditis Elegans. PLoS ONE 2022, 17, e0271849. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Ge, C.-L.; Wang, H.; Ge, M.-H.; He, Q.-Q.; Zhang, Y.; Tian, W.; Wu, Z.-X. GCY-35/GCY-36-TAX-2/TAX-4 Signalling in O2 Sensory Neurons Mediates Acute Functional Ethanol Tolerance in Caenorhabditis Elegans. Sci. Rep. 2018, 8, 3020. [Google Scholar] [CrossRef] [PubMed]
- Lê, A.D.; Poulos, C.X.; Cappell, H. Conditioned Tolerance to the Hypothermic Effect of Ethyl Alcohol. Science 1979, 206, 1109–1110. [Google Scholar] [CrossRef] [PubMed]
- Ozburn, A.R.; Harris, R.A.; Blednov, Y.A. Chronic Voluntary Alcohol Consumption Results in Tolerance to Sedative/Hypnotic and Hypothermic Effects of Alcohol in Hybrid Mice. Pharmacol. Biochem. Behav. 2013, 104, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Rustay, N.R.; Boehm, S.L.; Schafer, G.L.; Browman, K.E.; Erwin, V.G.; Crabbe, J.C. Sensitivity and Tolerance to Ethanol-Induced Incoordination and Hypothermia in HAFT and LAFT Mice. Pharmacol. Biochem. Behav. 2001, 70, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Lovinger, D.M.; Kash, T.L. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis. Alcohol. Res. 2015, 37, 109–124. [Google Scholar] [PubMed]
- Witkiewitz, K.; Litten, R.Z.; Leggio, L. Advances in the Science and Treatment of Alcohol Use Disorder. Sci. Adv. 2019, 5, eaax4043. [Google Scholar] [CrossRef]
- Pandey, S.C. A Critical Role of Brain-Derived Neurotrophic Factor in Alcohol Consumption. Biol. Psychiatry 2016, 79, 427–429. [Google Scholar] [CrossRef]
- Peregud, D.I.; Baronets, V.Y.; Terebilina, N.N.; Gulyaeva, N.V. Role of BDNF in Neuroplasticity Associated with Alcohol Dependence. Biochem. Mosc. 2023, 88, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Liran, M.; Rahamim, N.; Ron, D.; Barak, S. Growth Factors and Alcohol Use Disorder. Cold Spring Harb. Perspect. Med. 2020, 10, a039271. [Google Scholar] [CrossRef] [PubMed]
Name | Invertebrate Model | Gene | Gene Function | Mutant | AUD-Related Behavior in Invertebrates | Assay | Dose | Phenotype in Mammals | References |
---|---|---|---|---|---|---|---|---|---|
Octopamine | Fly | tyramine β-hydroxylase (TβH) | Rate-limiting enzyme for octopamine synthesis. | LOF mutant [TβHnM18] | LOF mutants exhibit reduced rapid tolerance. | Inebriometer | 50/45 ethanol/air | Norepinephrine depletion in the brain before exposure prevents the development of tolerance in mice. | [52,72] |
Neuropeptide Receptor | Worm | npr-1 | Neuropeptide Y-like receptor. | LOF mutant [npr-1] | LOF mutants show increased acute functional tolerance (AFT). | Rate of locomotion | 500 mM ethanol exposure for 10, 30, or 50 min | NPY-deficient mice show increased alcohol consumption, are less sensitive to the effects of alcohol, and make a quick recovery after alcohol sedation. NPY overexpression shows low preference for alcohol and is more sensitive to the sedative effects of alcohol. | [40,77,175] |
Fly | NPF/NPFR | Neuropeptide F receptor. | NPY-deficient flies show decreased alcohol sensitivity, whereas overexpression leads to increased sensitivity to the effects of alcohol. | Time to sedation [Ethanol pipetted in Kim wipes and placed at the bottom of a fly bottle]. | 10%, 31%, 54%, or 100% ethanol vapor until complete sedation | ||||
GABA | Worm | unc-25, unc-49, unc-47 | Synthesis enzyme for GABA (glutamate decarboxylate), GABA receptor, and GABA transporter, respectively. | Genes that encode components of GABA signaling become downregulated after alcohol exposure. | Microarray | 400 mM ethanol exposure | Acute alcohol exposure increases GABAA receptor activity, resulting in increased neuronal inhibition and sedation. GABA agonist Baclofen has been shown to reduce alcohol consumption and craving and inhibit the development of rapid tolerance to ethanol in mice, while GABAB antagonists facilitate rapid tolerance in a dose-dependent manner. | [82,85,86,87,90,176] | |
Fly | GABAA contributes to ethanol-induced locomotor stimulation. Administration of GABAB agonists decreased sensitivity and increased tolerance, while GABAB antagonists increased alcohol sensitivity. | Booz-o-mat: Pharmacological administration followed by measurement of time to sedation | 60% saturated ethanol vapor; 100% ethanol for 24 min | ||||||
NMDAR | Fly | nmdar1 | NMDA receptor 1. | F654A and K558Q; LOF mutant | Two different point mutations in NMDAR1 showed altered sensitivity to alcohol sedation, while loss of function mutation reduced rapid tolerance. | Inebriator; inebriometer | 100% ethanol heated to 65 °C and a flow of 15 mL/min; 60/40 ethanol vapor/humidified air for 30 min | Administration of NMDAR antagonists has been shown to block the development of rapid tolerance in mammals. Chronic alcohol exposure has been shown to increase the expression of the NMDAR subunits (NR1 and NR2). | [93,94,95,99,100] |
KCNQ | Fly | KCNQ | Voltage-gated potassium channel. | Null mutant [KCNQ186] | Ethanol has been shown to reduce KCNQ current and loss of KCNQ function in Drosophila increases sensitivity and tolerance to the sedative effects of ethanol. | Time to sedation [Ethanol pipetted in Kim wipes and placed at the bottom of a fly bottle]. | 40% ethanol for 90 min | KCNQ2, KCNQ3, and KCNQ5 have been associated with ethanol consumption and preference in rodents and humans. Administration of potassium channel opener retigabine significantly decreases alcohol drinking in rodents and alleviates alcohol-induced anxiety during withdrawal. | [102,103,104,105,106] |
BK channel | Worm | slo-1 (slowpoke) | Big potassium channel. | LOF mutant [slo-1], eg7, eg73, eg24, and eg142; gain of function mutants [ky389gf, ky399gf] | BK channel is one of the major targets of alcohol. Loss of function slo-1 mutants were resistant to the effect of ethanol. Ethanol activates the BK channel in vivo, leading to inhibition of neuronal activity, and hyperactivation of the BK channel leads to behavior similar to ethanol intoxication. Ethanol exposure downregulates slo-1 expression. | Forward genetics, microarray; locomotor, egg-laying; Electrophysiology (whole-cell current recording-patch clamp). | 400 mM ethanol exposure for 20 min | The mammalian ortholog of slo-1, KCNMA1, is associated with alcohol dependence in humans and other alcohol-related behaviors like sensitivity in rodents. | [42,86,103,110,111,112,114,116] |
Fly | slo-1 (slowpoke) | Big potassium channel. | Null mutant [slo4]; ash218 (neuronal deletion of slo) | Ethanol increases neuronal slo-1 gene expression, which leads to the development of rapid tolerance, while deletion of slo-1 results in loss of rapid tolerance. Artificial induction of slowpoke makes flies more resistant to the effect of ethanol. | Inebriator | 100% ethanol heated to 65 °C at flow of 15 mL/min | |||
Dlg1 | Fly | discs large 1 (dlg1) | Member of the membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins. | LOF mutants [dlg1]; dlgNP1102, dlgNP768 | LOF mutants show decreased tolerance to the sedative effects of alcohol. | Inebriometer | 60/40 ethanol vapor/humidified air for 30 min | Deletion of SAP97, a mammalian homolog of dlgS97, leads to an inability to develop rapid tolerance to the sedative effects of ethanol in mice. | [95] |
CASK (Calcium/calmodulin-dependent serine kinase) | Fly | CASK | Scaffolding protein (also known as Caki or Camguk). | LOF mutant [CASK]; CASKP18, CASKP46 | LOF mutants of CASK display increased sensitivity and decreased ethanol tolerance. | Inebriometer | 60/40 ethanol vapor/humidified air for 30 min | [95] | |
Homer | Fly | homer | Neuronal protein that regulates metabotropic glutamate receptor function. | null mutant [homerR102] | Ethanol exposure decreases the expression of homer mRNA in Drosophila. LOF mutants of homer exhibit increased sensitivity and reduced rapid tolerance to the sedative effect of ethanol. | Microarray, ethanol sensitivity, and tolerance assay | 56% ethanol at a flow of 160 mL/min for 50 min for sedation; 50–70% at a flow of 130 mL/min for 40 min for tolerance | An increase in Homer2 expression has been reported in rodent models of alcohol dependence and withdrawal. | [133,134,135] |
Shibire | Fly | shibire | Encodes the GTPase dynamin which enables actin-binding activity and synaptic vesicle recycling | Temperature-sensitive mutant allele [shits1, shits2]. | Temperature-sensitive endogenous mutation in shire prevents the development of tolerance. | Inebriator | 100% ethanol heated to 65 °C at flow of 15 mL/min | The expression of dynamin-1 is significantly changed in the mammalian brain including humans after alcohol consumption. | [138,139,140,141,142] |
Syntaxin 1A | Fly | syntaxin 1A | part of the SNARE protein complex and is required for vesicle fusion. | Temperature-sensitive mutant allele [Syx1A3−69]. | The temperature-sensitive mutant allele of syx1A failed to develop rapid tolerance. | Inebriator | 100% ethanol heated to 65 °C at flow of 15 mL/min | Syntaxin 12 has also been found to be associated with alcohol preference in mice. | [138,150,151] |
Synapsin | Fly | synapsin | Neuronal phosphoprotein involved in the regulation of neurotransmitter release. | null mutant [SAP97] | One study showed that deletion of the Synapsin gene (Syn) enhances rapid tolerance to ethanol without affecting initial sensitivity, while the other showed that the flies are resistant to the effect of ethanol during first exposure and showed reduced tolerance. Exposure to ethanol decreases Syn expression in the brain, and the expression is regulated by ethanol in a Sir2-dependent manner [histone deacetylases]. | Time to ST50 and tolerance; Booz-o-mat | 50% ethanol vapor in perforated 50mL falcon tube; 85/65 ethanol vapor/air. | Ethanol exposure increases the phosphorylation of synapsin in a PKA-dependent manner. | [154,155,157] |
SEB-3 | Worm | seb-3 | Encodes a corticotropin-releasing factor (CRF) receptor-like GPCR and is involved in stress response. | LOF mutant [seb-3 (tm1848)], GOF mutant [eg696] | Seb-3 signaling is required for the development of ethanol preference, compulsive ethanol seeking, and tremors during ethanol withdrawal. Loss of function mutants of seb-3 do not develop acute functional tolerance, whereas gain of function mutants show enhanced acute tolerance to ethanol. | Rate of locomotion | 500 mM ethanol exposure for 10, 30, or 50 min | Studies have shown that crf1 receptor antagonists attenuate stress-induced increases in ethanol consumption and decrease binge-like ethanol drinking in mice and rats. Chronic consumption of ethanol increases CRF release in the specific areas in the limbic system of alcohol-dependent rats during withdrawal. | [159,160,161,162] |
GPRK2 | Fly | GPRK2 | Encodes a member of the G protein-coupled receptor kinase family which modulates GPCR signaling activity. | LOF mutant [gprk2KO, gprk2del1] | LOF mutation of Gprk2 reduces rapid tolerance, increases alcohol-induced hyperactivity, and reduces sensitivity to the sedative effects of ethanol. | Loss of righting reflex (LORR) | EtOH/water vapor (1:1) at a flow rate of 250 mL/min | Chronic ethanol consumption in rats is associated with an increase in the binding of mu-opioid receptors with G-protein receptor kinase 2 (Grk2) in the hippocampus and is associated with the desensitization of the opioid receptor following chronic consumption. Chronic alcohol consumption increases Grk2 expression in the nucleus accumbens shell to reduce excessive drinking in mice. | [164,165,166] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandari, A.; Seguin, A.; Rothenfluh, A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. Int. J. Mol. Sci. 2024, 25, 6838. https://doi.org/10.3390/ijms25136838
Bhandari A, Seguin A, Rothenfluh A. Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. International Journal of Molecular Sciences. 2024; 25(13):6838. https://doi.org/10.3390/ijms25136838
Chicago/Turabian StyleBhandari, Aakriti, Alexandra Seguin, and Adrian Rothenfluh. 2024. "Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models" International Journal of Molecular Sciences 25, no. 13: 6838. https://doi.org/10.3390/ijms25136838
APA StyleBhandari, A., Seguin, A., & Rothenfluh, A. (2024). Synaptic Mechanisms of Ethanol Tolerance and Neuroplasticity: Insights from Invertebrate Models. International Journal of Molecular Sciences, 25(13), 6838. https://doi.org/10.3390/ijms25136838