Neutrophil PAD4 Expression and Its Pivotal Role in Assessment of Alcohol-Related Liver Disease
Abstract
:1. Introduction
2. Results
2.1. Study and Control Group
2.2. Gender-Based Comparison
2.3. The Severity of Liver Failure
3. Discussion
3.1. PAD4 in Liver Disease
3.2. PAD4 in Sepsis
3.3. PAD4 in Rheumatoid Arthritis
3.4. PAD4 in Cancer
3.5. PAD4 in Colitis
3.6. Proinflammatory Cytokines in NETosis
3.7. Limitations of the Study
4. Materials and Methods
4.1. Study Population
- (1)
- Gender;
- (2)
- The severity of liver failure classified by the following:
- -
- Child–Turcotte–Pugh (CTP) score,
- -
- Model for End-stage Liver Disease-Sodium (MELD-Na) score,
- -
- Modified Maddrey Discriminant Function (mDF) score;
- (3)
- ALD decompensation symptoms, such as ascites, HE, EV, and kidney dysfunction.
4.2. ALD Decompensation
4.3. Procedures
4.4. Statistical Analysis
4.5. Ethical Requirements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thursz, M.; Gual, A.; Lackner, C.; Mathurin, P.; Moreno, C.; Spahr, L.; Sterneck, M.; Cortez-Pinto, H. EASL Clinical Practice Guidelines: Management of Alcohol-Related Liver Disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef] [PubMed]
- Ganne-Carrié, N.; Nahon, P. Hepatocellular Carcinoma in the Setting of Alcohol-Related Liver Disease. J. Hepatol. 2019, 70, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Rocco, A.; Compare, D.; Angrisani, D.; Sanduzzi Zamparelli, M.; Nardone, G. Alcoholic Disease: Liver and Beyond. World J. Gastroenterol. 2014, 20, 14652–14659. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Fan, X.; Miyata, T.; Kim, A.; Cajigas-Du Ross, C.K.; Ray, S.; Huang, E.; Taiwo, M.; Arya, R.; Wu, J.; et al. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. Annu. Rev. Pathol. 2023, 18, 411–438. [Google Scholar] [CrossRef]
- Bukong, T.N.; Cho, Y.; Iracheta-Vellve, A.; Saha, B.; Lowe, P.; Adejumo, A.; Furi, I.; Ambade, A.; Gyongyosi, B.; Catalano, D.; et al. Abnormal Neutrophil Traps and Impaired Efferocytosis Contribute to Liver Injury and Sepsis Severity after Binge Alcohol Use. J. Hepatol. 2018, 69, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Fan, X.; Shen, Y.; Shen, M.; Yang, L. Neutrophil Subsets in Noncancer Liver Diseases: Cellular Crosstalk and Therapeutic Targets. Eur. J. Immunol. 2023, 53, 2250324. [Google Scholar] [CrossRef]
- Brinkmann, V.; Zychlinsky, A. Neutrophil Extracellular Traps: Is Immunity the Second Function of Chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [PubMed]
- de Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, Complement, and Coagulation: A Triangular Relationship. Cell Mol. Immunol. 2019, 16, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, Y.; Sun, R.; Hu, H.; Liu, Y.; Herrmann, M.; Zhao, Y.; Muñoz, L.E. Receptor-Mediated NETosis on Neutrophils. Front. Immunol. 2021, 12, 775267. [Google Scholar] [CrossRef]
- Liu, X.; Arfman, T.; Wichapong, K.; Reutelingsperger, C.P.M.; Voorberg, J.; Nicolaes, G.A.F. PAD4 Takes Charge during Neutrophil Activation: Impact of PAD4 Mediated NET Formation on Immune-mediated Disease. J. Thromb. Haemost. 2021, 19, 1607–1617. [Google Scholar] [CrossRef]
- Zhu, D.; Lu, Y.; Wang, Y.; Wang, Y. PAD4 and Its Inhibitors in Cancer Progression and Prognosis. Pharmaceutics 2022, 14, 2414. [Google Scholar] [CrossRef] [PubMed]
- Thiam, H.R.; Wong, S.L.; Wagner, D.D.; Waterman, C.M. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef]
- Guo, W.; Gong, Q.; Zong, X.; Wu, D.; Li, Y.; Xiao, H.; Song, J.; Zhang, S.; Fu, S.; Feng, Z.; et al. GPR109A Controls Neutrophil Extracellular Traps Formation and Improve Early Sepsis by Regulating ROS/PAD4/Cit-H3 Signal Axis. Exp. Hematol. Oncol. 2023, 12, 15. [Google Scholar] [CrossRef]
- Ariño, S.; Aguilar-Bravo, B.; Coll, M.; Lee, W.-Y.; Peiseler, M.; Cantallops-Vilà, P.; Sererols-Viñas, L.; de la Torre, R.A.M.-G.; Martínez-Sánchez, C.; Pedragosa, J.; et al. Ductular Reaction-Associated Neutrophils Promote Biliary Epithelium Proliferation in Chronic Liver Disease. J. Hepatol. 2023, 79, 1025–1036. [Google Scholar] [CrossRef]
- Mutua, V.; Gershwin, L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin. Rev. Allergy Immunol. 2021, 61, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.K.; Mathurin, P. Diagnosis and Treatment of Alcohol-Associated Liver Disease: A Review. JAMA 2021, 326, 165–176. [Google Scholar] [CrossRef]
- Costa, N.A.; Gut, A.L.; Azevedo, P.S.; Polegato, B.F.; Magalhães, E.S.; Ishikawa, L.L.W.; Bruder, R.d.C.S.; da Silva, E.A.; Gonçalves, R.B.; Tanni, S.E.; et al. Peptidylarginine Deiminase 4 Concentration, but Not PADI4 Polymorphisms, Is Associated with ICU Mortality in Septic Shock Patients. J. Cell Mol. Med. 2018, 22, 4732–4737. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Liu, B.; Zhao, T.; Chong, W.; Wang, Y.; Alam, H.B. Citrullinated Histone H3—A Novel Target for Treatment of Sepsis. Surgery 2014, 156, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Martinod, K.; Fuchs, T.A.; Zitomersky, N.L.; Wong, S.L.; Demers, M.; Gallant, M.; Wang, Y.; Wagner, D.D. PAD4-Deficiency Does Not Affect Bacteremia in Polymicrobial Sepsis and Ameliorates Endotoxemic Shock. Blood 2015, 125, 1948–1956. [Google Scholar] [CrossRef]
- Biron, B.M.; Chung, C.-S.; O’Brien, X.M.; Chen, Y.; Reichner, J.S.; Ayala, A. Cl-Amidine Prevents Histone 3 Citrullination and Neutrophil Extracellular Trap Formation, and Improves Survival in a Murine Sepsis Model. J. Innate Immun. 2017, 9, 22–32. [Google Scholar] [CrossRef]
- Sun, S.; Duan, Z.; Wang, X.; Chu, C.; Yang, C.; Chen, F.; Wang, D.; Wang, C.; Li, Q.; Ding, W. Neutrophil Extracellular Traps Impair Intestinal Barrier Functions in Sepsis by Regulating TLR9-Mediated Endoplasmic Reticulum Stress Pathway. Cell Death Dis. 2021, 12, 606. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Xi, Q.; Cui, H.; Zhang, P.; Huang, R.; Wang, T.; Wang, D. Liang-Ge Decoction Ameliorates Coagulation Dysfunction in Cecal Ligation and Puncture-Induced Sepsis Model Rats through Inhibiting PAD4-Dependent Neutrophil Extracellular Trap Formation. Evid. Based Complement. Alternat Med. 2023, 2023, 5042953. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Qu, S.; Alam, H.B.; Williams, A.M.; Wu, Z.; Deng, Q.; Pan, B.; Zhou, J.; Liu, B.; Duan, X.; et al. Peptidylarginine Deiminase 2 Has Potential as Both a Biomarker and Therapeutic Target of Sepsis. JCI Insight 2020, 5, e138873. [Google Scholar] [CrossRef] [PubMed]
- Willis, V.C.; Gizinski, A.M.; Banda, N.K.; Causey, C.P.; Knuckley, B.; Cordova, K.N.; Luo, Y.; Levitt, B.; Glogowska, M.; Chandra, P.; et al. N-α-Benzoyl-N5-(2-Chloro-1-Iminoethyl)-L-Ornithine Amide, a Protein Arginine Deiminase Inhibitor, Reduces the Severity of Murine Collagen-Induced Arthritis. J. Immunol. 2011, 186, 4396–4404. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.-C. Association between Susceptibility to Rheumatoid Arthritis and PADI4 Polymorphisms: A Meta-Analysis. Clin. Rheumatol. 2016, 35, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Ito, S.; Kobayashi, D.; Shimada, A.; Narita, I.; Murasawa, A.; Nakazono, K.; Yoshie, H. Serum Immunoglobulin G Levels to Porphyromonas Gingivalis Peptidylarginine Deiminase Affect Clinical Response to Biological Disease-Modifying Antirheumatic Drug in Rheumatoid Arthritis. PLoS ONE 2016, 11, e0154182. [Google Scholar] [CrossRef] [PubMed]
- van der Windt, D.J.; Sud, V.; Zhang, H.; Varley, P.R.; Goswami, J.; Yazdani, H.O.; Tohme, S.; Loughran, P.; O’Doherty, R.M.; Minervini, M.I.; et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018, 68, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Münzer, P.; Negro, R.; Fukui, S.; di Meglio, L.; Aymonnier, K.; Chu, L.; Cherpokova, D.; Gutch, S.; Sorvillo, N.; Shi, L.; et al. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front. Immunol. 2021, 12, 683803. [Google Scholar] [CrossRef] [PubMed]
- Demers, M.; Wagner, D.D. NETosis: A New Factor in Tumor Progression and Cancer-Associated Thrombosis. Semin. Thromb. Hemost. 2014, 40, 277–283. [Google Scholar] [CrossRef]
- Cools-Lartigue, J.; Spicer, J.; Najmeh, S.; Ferri, L. Neutrophil Extracellular Traps in Cancer Progression. Cell Mol. Life Sci. 2014, 71, 4179–4194. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Xiang, X.-D.; Sun, F.; Xiao, B.-W.; Yan, M.-Y.; Peng, B.; Liu, D. Simvastatin Reduces NETosis to Attenuate Severe Asthma by Inhibiting PAD4 Expression. Oxid. Med. Cell Longev. 2023, 2023, 1493684. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Ling, Y.; Deng, Q.; Qiu, Y.; Shen, J.; Lai, H.; Chen, Z.; Huang, C.; Liang, L.; Li, X.; et al. HMGB1-Mediated Neutrophil Extracellular Trap Formation Exacerbates Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. J. Immunol. 2022, 208, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Wagner, D.D. Peptidylarginine Deiminase 4: A Nuclear Button Triggering Neutrophil Extracellular Traps in Inflammatory Diseases and Aging. FASEB J. 2018, 32, 6358–6370. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.L.; Demers, M.; Martinod, K.; Gallant, M.; Wang, Y.; Goldfine, A.B.; Kahn, C.R.; Wagner, D.D. Diabetes Primes Neutrophils to Undergo NETosis, Which Impairs Wound Healing. Nat. Med. 2015, 21, 815–819. [Google Scholar] [CrossRef]
- Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil Activation and NETosis Are the Major Drivers of Thrombosis in Heparin-Induced Thrombocytopenia. Nat. Commun. 2019, 10, 1322. [Google Scholar] [CrossRef]
- Elliott, W.; Guda, M.R.; Asuthkar, S.; Teluguakula, N.; Prasad, D.V.R.; Tsung, A.J.; Velpula, K.K. PAD Inhibitors as a Potential Treatment for SARS-CoV-2 Immunothrombosis. Biomedicines 2021, 9, 1867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Mei, Y.; Dong, W.; Wang, J.; Huang, F.; Wu, J. Evaluation of Protein Arginine Deiminase-4 Inhibitor in TNBS- Induced Colitis in Mice. Int. Immunopharmacol. 2020, 84, 106583. [Google Scholar] [CrossRef] [PubMed]
- Hann, J.; Bueb, J.-L.; Tolle, F.; Bréchard, S. Calcium Signaling and Regulation of Neutrophil Functions: Still a Long Way to Go. J. Leukoc. Biol. 2020, 107, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, L.; Li, X.; Zhuo, W. Neutrophil Extracellular Traps in Tumor Metastasis: Pathological Functions and Clinical Applications. Cancers 2021, 13, 2832. [Google Scholar] [CrossRef]
- Gierlikowska, B.; Stachura, A.; Gierlikowski, W.; Demkow, U. The Impact of Cytokines on Neutrophils’ Phagocytosis and NET Formation during Sepsis—A Review. Int. J. Mol. Sci. 2022, 23, 5076. [Google Scholar] [CrossRef]
- Yaqinuddin, A.; Kashir, J. Novel Therapeutic Targets for SARS-CoV-2-Induced Acute Lung Injury: Targeting a Potential IL-1β/Neutrophil Extracellular Traps Feedback Loop. Med. Hypotheses 2020, 143, 109906. [Google Scholar] [CrossRef] [PubMed]
- Abrams, S.T.; Morton, B.; Alhamdi, Y.; Alsabani, M.; Lane, S.; Welters, I.D.; Wang, G.; Toh, C.-H. A Novel Assay for Neutrophil Extracellular Trap Formation Independently Predicts Disseminated Intravascular Coagulation and Mortality in Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2019, 200, 869–880. [Google Scholar] [CrossRef]
- Barbu, E.A.; Mendelsohn, L.; Samsel, L.; Thein, S.L. Pro-Inflammatory Cytokines Associate with NETosis during Sickle Cell Vaso-Occlusive Crises. Cytokine 2020, 127, 154933. [Google Scholar] [CrossRef] [PubMed]
- Navrátilová, A.; Andrés Cerezo, L.; Hulejová, H.; Bečvář, V.; Tomčík, M.; Komarc, M.; Veigl, D.; Tegzová, D.; Závada, J.; Olejárová, M.; et al. IL-40: A New B Cell-Associated Cytokine Up-Regulated in Rheumatoid Arthritis Decreases Following the Rituximab Therapy and Correlates With Disease Activity, Autoantibodies, and NETosis. Front. Immunol. 2021, 12, 745523. [Google Scholar] [CrossRef]
- Ngo, A.T.P.; Gollomp, K. Building a Better NET: Neutrophil Extracellular Trap Targeted Therapeutics in the Treatment of Infectious and Inflammatory Disorders. Res. Pract. Thromb. Haemost. 2022, 6, e12808. [Google Scholar] [CrossRef]
- World Health Organization, Regional Office for Europe. Food-Based Dietary Guidelines in the WHO European Region; WHO, Regional Office for Europe: Copenhagen, Denmark, 2003; Available online: https://iris.who.int/handle/10665/107490 (accessed on 8 July 2024).
- Kasztelan-Szczerbinska, B.; Adamczyk, K.; Surdacka, A.; Rolinski, J.; Michalak, A.; Bojarska-Junak, A.; Szczerbinski, M.; Cichoz-Lach, H. Gender-Related Disparities in the Frequencies of PD-1 and PD-L1 Positive Peripheral Blood T and B Lymphocytes in Patients with Alcohol-Related Liver Disease: A Single Center Pilot Study. PeerJ 2021, 9, e10518. [Google Scholar] [CrossRef]
- Kasztelan-Szczerbinska, B.; Surdacka, A.; Slomka, M.; Rolinski, J.; Celinski, K.; Cichoz-Lach, H.; Madro, A.; Szczerbinski, M. Angiogenesis-Related Biomarkers in Patients with Alcoholic Liver Disease: Their Association with Liver Disease Complications and Outcome. Mediat. Inflamm. 2014, 2014, 673032. [Google Scholar] [CrossRef] [PubMed]
- Kasztelan-Szczerbińska, B.; Surdacka, A.; Celiński, K.; Roliński, J.; Zwolak, A.; Miącz, S.; Szczerbiński, M. Prognostic Significance of the Systemic Inflammatory and Immune Balance in Alcoholic Liver Disease with a Focus on Gender-Related Differences. PLoS ONE 2015, 10, e0128347. [Google Scholar] [CrossRef]
- Rycyk-Bojarzyńska, A.; Kasztelan-Szczerbińska, B.; Cichoż-Lach, H.; Surdacka, A.; Roliński, J. Human Neutrophil Alpha-Defensins Promote NETosis and Liver Injury in Alcohol-Related Liver Cirrhosis: Potential Therapeutic Agents. J. Clin. Med. 2024, 13, 1237. [Google Scholar] [CrossRef]
- Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. The AUDIT Alcohol Consumption Questions (AUDIT-C): An Effective Brief Screening Test for Problem Drinking. Ambulatory Care Quality Improvement Project (ACQUIP). Alcohol Use Disorders Identification Test. Arch. Intern. Med. 1998, 158, 1789–1795. [Google Scholar] [CrossRef]
- Källmén, H.; Elgán, T.H.; Wennberg, P.; Berman, A.H. Concurrent Validity of the Alcohol Use Disorders Identification Test (AUDIT) in Relation to Alcohol Use Disorder (AUD) Severity Levels According to the Brief DSM-5 AUD Diagnostic Assessment Screener. Nord. J. Psychiatry 2019, 73, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Khadjesari, Z.; White, I.R.; McCambridge, J.; Marston, L.; Wallace, P.; Godfrey, C.; Murray, E. Validation of the AUDIT-C in Adults Seeking Help with Their Drinking Online. Addict. Sci. Clin. Pract. 2017, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.B.; Aasland, O.G.; Babor, T.F.; de la Fuente, J.R.; Grant, M. Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO Collaborative Project on Early Detection of Persons with Harmful Alcohol Consumption--II. Addiction 1993, 88, 791–804. [Google Scholar] [CrossRef] [PubMed]
- Elghezewi, A.; Hammad, M.; El-Dallal, M.; Mohamed, M.; Sherif, A.; Frandah, W. Trends in Hospitalizations of Esophageal Varices From 2011 to 2018: A United States Nationwide Study. Gastroenterol. Res. 2023, 16, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, M.; Córdoba, J.; Doval, E.; Jacas, C.; Pujadas, F.; Esteban, R.; Guardia, J. Development of a Clinical Hepatic Encephalopathy Staging Scale. Aliment. Pharmacol. Ther. 2007, 26, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Stickel, F.; Datz, C.; Hampe, J.; Bataller, R. Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver 2017, 11, 173–188. [Google Scholar] [CrossRef]
- Córdoba, J. New Assessment of Hepatic Encephalopathy. J. Hepatol. 2011, 54, 1030–1040. [Google Scholar] [CrossRef]
- Patel, P.V.; Flamm, S.L. Alcohol-Related Liver Disease Including New Developments. Clin. Liver Dis. 2023, 27, 157–172. [Google Scholar] [CrossRef]
Variable | Males ALD n = 51 | Females ALD n = 11 | p | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
Age (years) a | 47.00 | 33.00–64.00 | 56.00 | 26.00–61.00 | 0.28 |
ALT (U/L) a | 42.00 | 17.50–228.25 | 38.00 | 22.00–480.00 | 0.93 |
AST (U/L) a | 101.00 | 34.40–360.40 | 112.00 | 43.00–550.00 | 0.74 |
ALP (U/L) a | 153.00 | 56.50–405.15 | 121.00 | 73.00–411.00 | 0.76 |
GGT (U/L) a | 378.00 | 43.20–2558.20 | 444.00 | 155.00–2193.00 | 0.16 |
Bilirubin (mg/dL) a | 2.90 | 0.60–16.57 | 1.70 | 0.60–34.10 | 0.82 |
Albumin (g/dL) a | 3.08 | 2.00–4.13 | 2.94 | 2.43–4.62 | 0.73 |
INR a | 1.29 | 0.93–2.23 | 1.33 | 0.60–2.54 | 0.87 |
Creatinine (mg/dL) a | 0.80 | 0.42–1.57 | 0.60 | 0.40–2.90 | 0.14 |
CRP (mg/L) a | 20.23 | 1.69–144.82 | 23.90 | 0.53–109.70 | 0.74 |
WBCs (×109/L) a | 7.00 | 3.24–15.94 | 5.79 | 4.07–13.55 | 0.94 |
NEUs (×109/L) a | 4.52 | 1.51–13.85 | 3.57 | 2.74–12.52 | 0.86 |
LYMs (×109/L) a | 1.06 | 0.44–2.37 | 0.92 | 0.46–1.55 | 0.39 |
NLR a | 3.98 | 1.47–14.81 | 4.03 | 2.06–27.22 | 0.68 |
CTP (pkt.) a | 8.00 | 5.00–13.00 | 8.00 | 5.00–13.00 | 0.78 |
MELD-Na (pkt.) a | 15.00 | 6.25–25.00 | 11.00 | 7.00–39.00 | 0.89 |
mDF (pkt.) a | 24.40 | 2.21–75.39 | 15.40 | 1.06–102.44 | 0.88 |
Ascites, n (%) b | 26 (50.98) | 5 (45.45) | 0.65 | ||
Encephalopathy, n (%) b | 16 (31.37) | 2 (18.18) | 0.67 | ||
Esophageal varices, n (%) b | 24 (47.05) | 4 (36.36) | 1.00 | ||
Non-survival, n (%) b | 2 (3.92) | 1 (9.09) | 0.33 |
Variable (ng/mL) | ALD Patients n = 62 | Controls n = 24 | p a | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
PAD4 | 18.00 | 16.53–19.53 | 17.00 | 11.50–18.51 | 0.0009 |
Variable (ng/mL) | ALD Males n = 51 | ALD Females n = 11 | p a | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
PAD4 | 18.06 | 16.24–19.59 | 17.92 | 17.28–18.24 | 0.74 |
Variable (ng/mL) | ALD Males n = 51 | Males Control Group n = 15 | p1 a | ALD Females n = 11 | Females Control Group n = 9 | p2 a | ||||
---|---|---|---|---|---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | Median | 5–95 Percentile | Median | 5–95 Percentile | |||
PAD4 | 18.06 | 16.24–19.59 | 17.19 | 12.04–19.09 | 0.028 | 17.92 | 17.28–18.24 | 16.83 | 0.00–18.27 | 0.009 |
Variable (ng/mL) | ALD | p a | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTP Class A a n = 17 | CTP Class B a n = 25 | CTP Class C a n = 20 | |||||||||||
Median | Minimum | 25–75 Percentile | Maximum | Median | Minimum | 25–75 Percentile | Maximum | Median | Minimum | 25–75 Percentile | Maximum | ||
PAD4 | 17.93 | 16.49 | 17.56–18.44 | 19.88 | 18.11 | 7.73 | 17.64–18.56 | 19.61 | 17.95 | 16.83 | 17.29–18.46 | 19.55 | 0.95 |
Variable (ng/mL) | MELD-Na > 20 n = 13 | MELD-Na ≤ 20 n = 49 | p a | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
PAD4 | 18.08 | 17.60–19.22 | 17.89 | 17.58–18.19 | 0.24 |
Variable (ng/mL) | mDF > 32 n = 26 | mDF ≤ 32 n = 36 | p a | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
PAD4 | 18.08 | 17.53–18.44 | 17.84 | 17.58–18.19 | 0.40 |
Inflammatory Markers | PAD4 | |
---|---|---|
rho | p a | |
CRP (mg/L) | 0.40 | 0.01 |
WBCs (×109/L) | 0.39 | 0.01 |
NEUs (×109/L) | 0.36 | 0.02 |
NLR | 0.19 | 0.26 |
Variable (ng/mL) | WBCs > 15 (cells/µL) n = 7 | WBCs ≤ 15 (cells/µL) n = 55 | p a | ||
---|---|---|---|---|---|
Median | 5–95 Percentile | Median | 5–95 Percentile | ||
PAD4 | 19.58 | 18.20–19.82 | 17.88 | 16.40–18.86 | 0.0017 |
Group | Patients (n) | Description |
---|---|---|
Study group | 62 | Patients with alcohol-related liver disease (ALD) |
Control group | 24 | Healthy volunteers with alcohol consumption no more than 10 g ethanol per day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rycyk-Bojarzynska, A.; Kasztelan-Szczerbinska, B.; Cichoz-Lach, H.; Surdacka, A.; Rolinski, J. Neutrophil PAD4 Expression and Its Pivotal Role in Assessment of Alcohol-Related Liver Disease. Int. J. Mol. Sci. 2024, 25, 7597. https://doi.org/10.3390/ijms25147597
Rycyk-Bojarzynska A, Kasztelan-Szczerbinska B, Cichoz-Lach H, Surdacka A, Rolinski J. Neutrophil PAD4 Expression and Its Pivotal Role in Assessment of Alcohol-Related Liver Disease. International Journal of Molecular Sciences. 2024; 25(14):7597. https://doi.org/10.3390/ijms25147597
Chicago/Turabian StyleRycyk-Bojarzynska, Anna, Beata Kasztelan-Szczerbinska, Halina Cichoz-Lach, Agata Surdacka, and Jacek Rolinski. 2024. "Neutrophil PAD4 Expression and Its Pivotal Role in Assessment of Alcohol-Related Liver Disease" International Journal of Molecular Sciences 25, no. 14: 7597. https://doi.org/10.3390/ijms25147597
APA StyleRycyk-Bojarzynska, A., Kasztelan-Szczerbinska, B., Cichoz-Lach, H., Surdacka, A., & Rolinski, J. (2024). Neutrophil PAD4 Expression and Its Pivotal Role in Assessment of Alcohol-Related Liver Disease. International Journal of Molecular Sciences, 25(14), 7597. https://doi.org/10.3390/ijms25147597