Single-Domain Antibodies—Novel Tools to Study and Treat Allergies
Abstract
:1. Introduction
2. In Vitro Characterization of Allergen-Specific Nanobodies
2.1. Importance of Cross-Reactivity to Related Allergens
2.2. Importance of Affinity to Specific and Related Allergens
2.3. Importance of Epitope Specificity and the Potential to Block the IgE–Allergen Binding
3. Diverse Application of Nanobodies in Allergy Research and Treatment
3.1. Nanobodies as Tools for the Determination of Allergen Concentration in Food, Air Samples, and Crude Allergen Extracts
3.2. Passive Immunization with Allergen-Specific Nanobodies
3.3. Targeting IgE and Type 2 Cytokines
4. Challenges and Perspectives
4.1. Half-Life of Nanobodies
4.2. Immunogenicity and Humanization Strategies
4.3. Local Allergy Treatment—A Glance into the Future
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Valenta, R.; Karaulov, A.; Niederberger, V.; Gattinger, P.; van Hage, M.; Flicker, S.; Linhart, B.; Campana, R.; Focke-Tejkl, M.; Curin, M.; et al. Molecular Aspects of Allergens and Allergy. Adv. Immunol. 2018, 138, 195–256. [Google Scholar] [CrossRef]
- Peters, R.L.; Koplin, J.J.; Gurrin, L.C.; Dharmage, S.C.; Wake, M.; Ponsonby, A.L.; Tang, M.L.K.; Lowe, A.J.; Matheson, M.; Dwyer, T.; et al. The prevalence of food allergy and other allergic diseases in early childhood in a population-based study: HealthNuts age 4-year follow-up. J. Allergy Clin. Immunol. 2017, 140, 145–153.e148. [Google Scholar] [CrossRef]
- Westman, M.; Åberg, K.; Apostolovic, D.; Lupinek, C.; Gattinger, P.; Mittermann, I.; Andersson, N.; Melén, E.; Bergström, A.; Antó, J.M.; et al. Sensitization to grass pollen allergen molecules in a birth cohort-natural Phl p 4 as an early indicator of grass pollen allergy. J. Allergy Clin. Immunol. 2020, 145, 1174–1181.e1176. [Google Scholar] [CrossRef]
- Melén, E.; Standl, M.; Gehring, U.; Altug, H.; Antó, J.M.; Berdel, D.; Bergström, A.; Bousquet, J.; Heinrich, J.; Koppelman, G.H.; et al. Air pollution and IgE sensitization in 4 European birth cohorts-the MeDALL project. J. Allergy Clin. Immunol. 2021, 147, 713–722. [Google Scholar] [CrossRef]
- Cooper, P.J.; Ster, I.C.; Chico, M.E.; Vaca, M.; Barreto, M.L.; Strachan, D.P. Patterns of allergic sensitization and factors associated with emergence of sensitization in the rural tropics early in the life course: Findings of an Ecuadorian birth cohort. Front. Allergy 2021, 2, 687073. [Google Scholar] [CrossRef]
- Ying, X.; Qi, X.; Yin, Y.; Wang, H.; Zhang, H.; Jiang, H.; Yang, L.; Wu, J. Allergens sensitization among children with allergic diseases in Shanghai, China: Age and sex difference. Respir. Res. 2022, 23, 95. [Google Scholar] [CrossRef]
- Zuberbier, T.; Lötvall, J.; Simoens, S.; Subramanian, S.V.; Church, M.K. Economic burden of inadequate management of allergic diseases in the European Union: A GA(2) LEN review. Allergy 2014, 69, 1275–1279. [Google Scholar] [CrossRef]
- Shamji, M.H.; Valenta, R.; Jardetzky, T.; Verhasselt, V.; Durham, S.R.; Würtzen, P.A.; van Neerven, R.J.J. The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 2021, 76, 3627–3641. [Google Scholar] [CrossRef]
- Selb, R.; Eckl-Dorna, J.; Neunkirchner, A.; Schmetterer, K.; Marth, K.; Gamper, J.; Jahn-Schmid, B.; Pickl, W.F.; Valenta, R.; Niederberger, V. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells. J. Allergy Clin. Immunol. 2017, 139, 290–299.e294. [Google Scholar] [CrossRef]
- Kawauchi, H.; Yanai, K.; Wang, D.Y.; Itahashi, K.; Okubo, K. Antihistamines for Allergic Rhinitis Treatment from the Viewpoint of Nonsedative Properties. Int. J. Mol. Sci. 2019, 20, 213. [Google Scholar] [CrossRef]
- Dorofeeva, Y.; Shilovskiy, I.; Tulaeva, I.; Focke-Tejkl, M.; Flicker, S.; Kudlay, D.; Khaitov, M.; Karsonova, A.; Riabova, K.; Karaulov, A.; et al. Past, present, and future of allergen immunotherapy vaccines. Allergy 2021, 76, 131–149. [Google Scholar] [CrossRef]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef]
- Zemelka-Wiacek, M.; Agache, I.; Akdis, C.A.; Akdis, M.; Casale, T.B.; Dramburg, S.; Jahnz-Różyk, K.; Kosowska, A.; Matricardi, P.M.; Pfaar, O.; et al. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024, 79, 823–842. [Google Scholar] [CrossRef]
- Floyd, M.L.; Adams, K.E.; Golden, D.B.K. Updates and Recent Advances on Venom Immunotherapy. Curr Treat. Options Allergy 2023, 10, 196–214. [Google Scholar] [CrossRef]
- Pfaar, O.; Ankermann, T.; Augustin, M.; Bubel, P.; Böing, S.; Brehler, R.; Eng, P.A.; Fischer, P.J.; Gerstlauer, M.; Hamelmann, E.; et al. Guideline on allergen immunotherapy in IgE-mediated allergic diseases: S2K Guideline of the German Society of Allergology and Clinical Immunology (DGAKI), Society of Pediatric Allergology and Environmental Medicine (GPA), Medical Association of German Allergologists (AeDA), Austrian Society of Allergology and Immunology (ÖGAI), Swiss Society for Allergology and Immunology (SSAI), German Dermatological Society (DDG), German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), German Society of Pediatrics and Adolescent Medicine (DGKJ), Society of Pediatric Pulmonology (GPP), German Respiratory Society (DGP), German Professional Association of Otolaryngologists (BVHNO), German Association of Paediatric and Adolescent Care Specialists (BVKJ), Federal Association of Pneumologists, Sleep and Respiratory Physicians (BdP), Professional Association of German Dermatologists (BVDD). Allergol. Sel. 2022, 6, 167–232. [Google Scholar] [CrossRef]
- Rodríguez Del Río, P.; Álvaro-Lozano, M.; Arasi, S.; Bazire, R.; Escudero, C.; Patel, N.; Sandoval-Ruballos, M.; Vazquez-Ortiz, M.; Nowak-Wegrzyn, A.; Blümchen, K.; et al. Evaluation of clinical outcomes of efficacy in food allergen immunotherapy trials, COFAITH EAACI task force. Allergy 2024, 79, 793–822. [Google Scholar] [CrossRef]
- Shamji, M.H.; Durham, S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol. 2017, 140, 1485–1498. [Google Scholar] [CrossRef]
- Gadermaier, E.; Staikuniene, J.; Scheiblhofer, S.; Thalhamer, J.; Kundi, M.; Westritschnig, K.; Swoboda, I.; Flicker, S.; Valenta, R. Recombinant allergen–based monitoring of antibody responses during injection grass pollen immunotherapy and after 5 years of discontinuation. Allergy 2011, 66, 1174–1182. [Google Scholar] [CrossRef]
- Gurgel, R.K.; Baroody, F.M.; Damask, C.C.; Mims, J.W.; Ishman, S.L.; Baker, D.P., Jr.; Contrera, K.J.; Farid, F.S.; Fornadley, J.A.; Gardner, D.D.; et al. Clinical Practice Guideline: Immunotherapy for Inhalant Allergy. Otolaryngol. Head Neck Surg. 2024, 170 (Suppl. S1), S1–S42. [Google Scholar] [CrossRef]
- James, C.; Bernstein, D.I. Allergen immunotherapy: An updated review of safety. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 55–59. [Google Scholar] [CrossRef]
- Schmidlin, K.A.; Bernstein, D.I. Safety of allergen immunotherapy in children. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 514–519. [Google Scholar] [CrossRef]
- van Hoffen, E.; Peeters, K.A.; van Neerven, R.J.; van der Tas, C.W.; Zuidmeer, L.; van Ieperen-van Dijk, A.G.; Bruijnzeel-Koomen, C.A.; Knol, E.F.; van Ree, R.; Knulst, A.C. Effect of birch pollen-specific immunotherapy on birch pollen-related hazelnut allergy. J. Allergy Clin. Immunol. 2011, 127, 100–101.e3. [Google Scholar] [CrossRef]
- Grilo, J.R.; Kitzmüller, C.; Aglas, L.; Sánchez Acosta, G.; Vollmann, U.; Ebner, C.; Horak, F.; Kinaciyan, T.; Radauer, C.; Ferreira, F.; et al. IgE-cross-blocking antibodies to Fagales following sublingual immunotherapy with recombinant Bet v 1. Allergy 2021, 76, 2555–2564. [Google Scholar] [CrossRef]
- Sánchez Acosta, G.; Kinaciyan, T.; Kitzmüller, C.; Möbs, C.; Pfützner, W.; Bohle, B. IgE-blocking antibodies following SLIT with recombinant Mal d 1 accord with improved apple allergy. J. Allergy Clin. Immunol. 2020, 146, 894–900.e892. [Google Scholar] [CrossRef]
- Polak, D.; Vollmann, U.; Grilo, J.; Bogdanov, I.V.; Aglas, L.; Ovchinnikova, T.V.; Ferreira, F.; Bohle, B. Bet v 1-independent sensitization to major allergens in Fagales pollen: Evidence at the T-cell level. Allergy 2023, 78, 743–751. [Google Scholar] [CrossRef]
- Biedermann, T.; Winther, L.; Till, S.J.; Panzner, P.; Knulst, A.; Valovirta, E. Birch pollen allergy in Europe. Allergy 2019, 74, 1237–1248. [Google Scholar] [CrossRef]
- Atanasio, A.; Franklin, M.C.; Kamat, V.; Hernandez, A.R.; Badithe, A.; Ben, L.H.; Jones, J.; Bautista, J.; Yancopoulos, G.D.; Olson, W.; et al. Targeting immunodominant Bet v 1 epitopes with monoclonal antibodies prevents the birch allergic response. J. Allergy Clin. Immunol. 2022, 149, 200–211. [Google Scholar] [CrossRef]
- Gevaert, P.; De Craemer, J.; De Ruyck, N.; Rottey, S.; de Hoon, J.; Hellings, P.W.; Volckaert, B.; Lesneuck, K.; Orengo, J.M.; Atanasio, A.; et al. Novel antibody cocktail targeting Bet v 1 rapidly and sustainably treats birch allergy symptoms in a phase 1 study. J. Allergy Clin. Immunol. 2022, 149, 189–199. [Google Scholar] [CrossRef]
- Orengo, J.M.; Radin, A.R.; Kamat, V.; Badithe, A.; Ben, L.H.; Bennett, B.L.; Zhong, S.; Birchard, D.; Limnander, A.; Rafique, A.; et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat. Commun. 2018, 9, 1421. [Google Scholar] [CrossRef]
- Shamji, M.H.; Singh, I.; Layhadi, J.A.; Ito, C.; Karamani, A.; Kouser, L.; Sharif, H.; Tang, J.; Handijiev, S.; Parkin, R.V.; et al. Passive Prophylactic Administration with a Single Dose of Anti-Fel d 1 Monoclonal Antibodies REGN1908-1909 in Cat Allergen-induced Allergic Rhinitis: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 23–33. [Google Scholar] [CrossRef]
- Atanasio, A.; Orengo, J.M.; Sleeman, M.A.; Stahl, N. Biologics as novel therapeutics for the treatment of allergy: Challenges and opportunities. Front. Allergy 2022, 3, 1019255. [Google Scholar] [CrossRef]
- Chung, C.; Kudchodkar, S.B.; Chung, C.N.; Park, Y.K.; Xu, Z.; Pardi, N.; Abdel-Mohsen, M.; Muthumani, K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies 2023, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hamers, C.; Songa, E.B.; Bendahman, N.; Hamers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.K.; Desmyter, A.; Muyldermans, S. Functional heavy-chain antibodies in Camelidae. Adv. Immunol. 2001, 79, 261–296. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Avila, D.; Hughes, M.; Hughes, A.; McKinney, E.C.; Flajnik, M.F. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995, 374, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Rast, J.P.; Amemiya, C.T.; Litman, R.T.; Strong, S.J.; Litman, G.W. Distinct patterns of IgH structure and organization in a divergent lineage of chrondrichthyan fishes. Immunogenetics 1998, 47, 234–245. [Google Scholar] [CrossRef]
- Nuttall, S.D.; Krishnan, U.V.; Hattarki, M.; De Gori, R.; Irving, R.A.; Hudson, P.J. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 2001, 38, 313–326. [Google Scholar] [CrossRef]
- Muyldermans, S. A guide to: Generation and design of nanobodies. FEBS J. 2021, 288, 2084–2102. [Google Scholar] [CrossRef]
- Pardon, E.; Laeremans, T.; Triest, S.; Rasmussen, S.G.; Wohlkonig, A.; Ruf, A.; Muyldermans, S.; Hol, W.G.; Kobilka, B.K.; Steyaert, J. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 2014, 9, 674–693. [Google Scholar] [CrossRef]
- Nolte, F.; Eden, T.; Wesolowski, J. VHH-Containing Heavy Chain Antibody and Production Thereof. EP 3 332 637 A1, 13 June 2018. [Google Scholar]
- Janssens, R.; Dekker, S.; Hendriks, R.W.; Panayotou, G.; van Remoortere, A.; San, J.K.; Grosveld, F.; Drabek, D. Generation of heavy-chain-only antibodies in mice. Proc. Natl. Acad. Sci. USA 2006, 103, 15130–15135. [Google Scholar] [CrossRef]
- Zimmermann, I.; Egloff, P.; Hutter, C.A.J.; Kuhn, B.T.; Bräuer, P.; Newstead, S.; Dawson, R.J.P.; Geertsma, E.R.; Seeger, M.A. Generation of synthetic nanobodies against delicate proteins. Nat. Protoc. 2020, 15, 1707–1741. [Google Scholar] [CrossRef] [PubMed]
- Valdés-Tresanco, M.S.; Molina-Zapata, A.; Pose, A.G.; Moreno, E. Structural Insights into the Design of Synthetic Nanobody Libraries. Molecules 2022, 27, 2198. [Google Scholar] [CrossRef] [PubMed]
- Zettl, I.; Ivanova, T.; Strobl, M.R.; Weichwald, C.; Goryainova, O.; Khan, E.; Rutovskaya, M.V.; Focke-Tejkl, M.; Drescher, A.; Bohle, B.; et al. Isolation of nanobodies with potential to reduce patients’ IgE binding to Bet v 1. Allergy 2022, 77, 1751–1760. [Google Scholar] [CrossRef]
- Bauernfeind, C.; Zettl, I.; Ivanova, T.; Goryainova, O.; Weijler, A.M.; Pranz, B.; Drescher, A.; Focke-Tejkl, M.; Pavkov-Keller, T.; Eckl-Dorna, J.; et al. Trimeric Bet v 1-specific nanobodies cause strong suppression of IgE binding. Front. Immunol. 2024, 15, 1343024. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, S.; Wang, Y.; Lin, J.; Sun, Y.; Zhang, C.; Gu, J.; Yang, F.; Lv, H.; Ji, X.; et al. Unbiased Immunization Strategy Yielding Specific Nanobodies against Macadamia Allergen of Vicilin-like Protein for Immunoassay Development. J. Agric. Food Chem. 2021, 69, 5178–5188. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, C.; Lin, J.; Wang, Y.; Wu, S.; Sun, Y.; Zhang, B.; Lv, H.; Ji, X.; Lu, Y.; et al. Selection of specific nanobodies against peanut allergen through unbiased immunization strategy and the developed immuno-assay. Food Sci. Hum. Wellness 2023, 12, 745–754. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, C.; Yang, F.; Lin, J.; Wang, Y.; Wu, S.; Sun, Y.; Zhang, B.; Lv, H.; Ji, X.; et al. Selection of Specific Nanobodies against Lupine Allergen Lup an 1 for Immunoassay Development. Foods 2021, 10, 2428. [Google Scholar] [CrossRef]
- Gadermaier, E.; James, L.K.; Shamji, M.H.; Blatt, K.; Fauland, K.; Zieglmayer, P.; Garmatiuk, T.; Focke-Tejkl, M.; Villalba, M.; Beavil, R.; et al. Epitope specificity determines cross-protection of a SIT-induced IgG4 antibody. Allergy 2016, 71, 36–46. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Nie, L.; Lin, J.; Wu, S.; Li, S.; Wu, J.; Ji, X.; Lv, H.; Muyldermans, S.; et al. Exploration of Specific Nanobodies As Immunological Reagents to Detect Milk Allergen of β-Lactoglobulin without Interference of Hydrolytic Peptides. J. Agric. Food Chem. 2022, 70, 15271–15282. [Google Scholar] [CrossRef]
- Chen, F.; Ma, H.; Li, Y.; Wang, H.; Samad, A.; Zhou, J.; Zhu, L.; Zhang, Y.; He, J.; Fan, X.; et al. Screening of Nanobody Specific for Peanut Major Allergen Ara h 3 by Phage Display. J. Agric. Food Chem. 2019, 67, 11219–11229. [Google Scholar] [CrossRef]
- Gadermaier, E.; Marth, K.; Lupinek, C.; Campana, R.; Hofer, G.; Blatt, K.; Smiljkovic, D.; Roder, U.; Focke-Tejkl, M.; Vrtala, S.; et al. Isolation of a high-affinity Bet v 1-specific IgG-derived ScFv from a subject vaccinated with hypoallergenic Bet v 1 fragments. Allergy 2018, 73, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Gieras, A.; Cejka, P.; Blatt, K.; Focke-Tejkl, M.; Linhart, B.; Flicker, S.; Stoecklinger, A.; Marth, K.; Drescher, A.; Thalhamer, J.; et al. Mapping of conformational IgE epitopes with peptide-specific monoclonal antibodies reveals simultaneous binding of different IgE antibodies to a surface patch on the major birch pollen allergen, Bet v 1. J. Immunol. 2011, 186, 5333–5344. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.K.; Odongo, S.; Radwanska, M.; Magez, S. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int. J. Mol. Sci. 2023, 24, 5994. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Song, M.; Xu, J.; Liu, Z.; Peng, M.; Qin, H.; Wang, S.; Wang, Z.; Liu, K. Long-Acting Strategies for Antibody Drugs: Structural Modification, Controlling Release, and Changing the Administration Route. Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 295–316. [Google Scholar] [CrossRef] [PubMed]
- Batra, S.K.; Jain, M.; Wittel, U.A.; Chauhan, S.C.; Colcher, D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr. Opin. Biotechnol. 2002, 13, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Rossotti, M.A.; Belanger, K.; Henry, K.A.; Tanha, J. Immunogenicity and humanization of single-domain antibodies. FEBS J. 2022, 289, 4304–4327. [Google Scholar] [CrossRef] [PubMed]
- Ramon, A.; Ali, M.; Atkinson, M.; Saturnino, A.; Didi, K.; Visentin, C.; Ricagno, S.; Xu, X.; Greenig, M.; Sormanni, P. Assessing antibody and nanobody nativeness for hit selection and humanization with AbNatiV. Nat. Mach. Intell. 2024, 6, 74–91. [Google Scholar] [CrossRef]
- Vincke, C.; Loris, R.; Saerens, D.; Martinez-Rodriguez, S.; Muyldermans, S.; Conrath, K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 2009, 284, 3273–3284. [Google Scholar] [CrossRef] [PubMed]
- Saldanha, J.W. Humanization Strategies. In Handbook of Therapeutic Antibodies, 2nd ed.; Dübel, S., Reichert, J.M., Eds.; Wiley-VCH Verlag: Hoboken, NJ, USA, 2014; pp. 89–114. [Google Scholar]
- Jovčevska, I.; Muyldermans, S. The Therapeutic Potential of Nanobodies. BioDrugs 2020, 34, 11–26. [Google Scholar] [CrossRef]
- Wang, J.; Kang, G.; Yuan, H.; Cao, X.; Huang, H.; de Marco, A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front. Immunol. 2021, 12, 838082. [Google Scholar] [CrossRef]
- Duggan, S. Caplacizumab: First Global Approval. Drugs 2018, 78, 1639–1642. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C. Nanobody approval gives domain antibodies a boost. Nat. Rev. Drug Discov. 2019, 18, 485–487. [Google Scholar] [CrossRef] [PubMed]
- Völker, L.A.; Brinkkoetter, P.T.; Cataland, S.R.; Masias, C. Five years of caplacizumab—Lessons learned and remaining controversies in immune-mediated thrombotic thrombocytopenic purpura. J. Thromb. Haemost. 2023, 21, 2718–2725. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Trifonova, D.; Tulaeva, I.; Riabova, K.; Karsonova, A.; Kozlov, E.; Elisyutina, O.; Khaitov, M.; Focke-Tejkl, M.; Chen, T.H.; et al. Albumins represent highly cross-reactive animal allergens. Front. Immunol. 2023, 14, 1241518. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, X.; Li, F.; He, S.; Liu, M.; Li, M.; Xia, F.; Su, W.; Liu, G. Animal-derived food allergen: A review on the available crystal structure and new insights into structural epitope. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13340. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chang, C.; Guan, K. Birch Pollen Allergens. Curr. Protein Pept. Sci. 2022, 23, 731–743. [Google Scholar] [CrossRef]
- Niederberger, V.; Pauli, G.; Grönlund, H.; Fröschl, R.; Rumpold, H.; Kraft, D.; Valenta, R.; Spitzauer, S. Recombinant birch pollen allergens (rBet v 1 and rBet v 2) contain most of the IgE epitopes present in birch, alder, hornbeam, hazel, and oak pollen: A quantitative IgE inhibition study with sera from different populations. J. Allergy Clin. Immunol. 1998, 102, 579–591. [Google Scholar] [CrossRef]
- Raith, M.; Swoboda, I. Birch pollen-The unpleasant herald of spring. Front. Allergy 2023, 4, 1181675. [Google Scholar] [CrossRef]
- Werfel, T.; Asero, R.; Ballmer-Weber, B.K.; Beyer, K.; Enrique, E.; Knulst, A.C.; Mari, A.; Muraro, A.; Ollert, M.; Poulsen, L.K.; et al. Position paper of the EAACI: Food allergy due to immunological cross-reactions with common inhalant allergens. Allergy 2015, 70, 1079–1090. [Google Scholar] [CrossRef]
- Flicker, S.; Zettl, I.; Tillib, S.V. Nanobodies-Useful Tools for Allergy Treatment? Front. Immunol. 2020, 11, 576255. [Google Scholar] [CrossRef]
- Lis, K.; Ukleja-Sokołowska, N.; Adamczak, R.; Bartuzi, Z. Experimental Research Models to Assess the Cross-Reactivity between Can f 5 and Human PSA-Two Different Perspectives. Int. J. Mol. Sci. 2022, 23, 11223. [Google Scholar] [CrossRef] [PubMed]
- Karsonova, A.; Riabova, K.; Villazala-Merino, S.; Campana, R.; Niederberger, V.; Eckl-Dorna, J.; Fröschl, R.; Perkmann, T.; Zhernov, Y.V.; Elisyutina, O.G.; et al. Highly sensitive ELISA-based assay for quantification of allergen-specific IgE antibody levels. Allergy 2020, 75, 2668–2670. [Google Scholar] [CrossRef] [PubMed]
- Lupinek, C.; Wollmann, E.; Baar, A.; Banerjee, S.; Breiteneder, H.; Broecker, B.M.; Bublin, M.; Curin, M.; Flicker, S.; Garmatiuk, T.; et al. Advances in allergen-microarray technology for diagnosis and monitoring of allergy: The MeDALL allergen-chip. Methods 2014, 66, 106–119. [Google Scholar] [CrossRef] [PubMed]
- van Hage, M.; Hamsten, C.; Valenta, R. ImmunoCAP assays: Pros and cons in allergology. J. Allergy Clin. Immunol. 2017, 140, 974–977. [Google Scholar] [CrossRef] [PubMed]
- Lupinek, C.; Wollmann, E.; Valenta, R. Monitoring Allergen Immunotherapy Effects by Microarray. Curr. Treat. Options Allergy 2016, 3, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Singh, A.; Wu, H.; Kroe-Barrett, R. Comparison of biosensor platforms in the evaluation of high affinity antibody-antigen binding kinetics. Anal. Biochem. 2016, 508, 78–96. [Google Scholar] [CrossRef] [PubMed]
- Jabs, F.; Plum, M.; Laursen, N.S.; Jensen, R.K.; Mølgaard, B.; Miehe, M.; Mandolesi, M.; Rauber, M.M.; Pfützner, W.; Jakob, T.; et al. Trapping IgE in a closed conformation by mimicking CD23 binding prevents and disrupts FcεRI interaction. Nat. Commun. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Gevenois, P.J.Y.; De Pauw, P.; Schoonooghe, S.; Delporte, C.; Sebti, T.; Amighi, K.; Muyldermans, S.; Wauthoz, N. Development of Neutralizing Multimeric Nanobody Constructs Directed against IL-13: From Immunization to Lead Optimization. J. Immunol. 2021, 207, 2608–2620. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, A.; Lv, H.; Ji, X.; Hu, Y.; Wang, S. Nanobody-based food allergen surveillance: Current status and prospects. Food Qual. Saf. 2024, 8, fyae018. [Google Scholar] [CrossRef]
- Abbott, W.M.; Damschroder, M.M.; Lowe, D.C. Current approaches to fine mapping of antigen-antibody interactions. Immunology 2014, 142, 526–535. [Google Scholar] [CrossRef]
- Dang, X.; Guelen, L.; Lutje Hulsik, D.; Ermakov, G.; Hsieh, E.J.; Kreijtz, J.; Stammen-Vogelzangs, J.; Lodewijks, I.; Bertens, A.; Bramer, A.; et al. Epitope mapping of monoclonal antibodies: A comprehensive comparison of different technologies. mAbs 2023, 15, 2285285. [Google Scholar] [CrossRef] [PubMed]
- Luparelli, A.; Losito, I.; De Angelis, E.; Pilolli, R.; Lambertini, F.; Monaci, L. Tree Nuts and Peanuts as a Source of Beneficial Compounds and a Threat for Allergic Consumers: Overview on Methods for Their Detection in Complex Food Products. Foods 2022, 11, 728. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, Y.; Lin, J.; Wu, S.; Muyldermans, S.; Wang, S. Versatile Application of Nanobodies for Food Allergen Detection and Allergy Immunotherapy. J. Agric. Food Chem. 2022, 70, 8901–8912. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Xie, X.; He, Z.; Sun, Z.; Wang, Z.; Zhang, S.; Cao, H.; Hammock, B.D.; Liu, X. Lateral Flow Immunochromatographic Assay for Competitive Detection of Crustacean Allergen Tropomyosin Using Phage-Displayed Shark Single-Domain Antibody. J. Agric. Food Chem. 2024, 72, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Chen, X.; He, Z.; Wu, L.; Xie, X.; Sun, Z.; Zhang, S.; Cao, H.; Hammock, B.D.; Liu, X. Colorimetric and surface-enhanced Raman scattering dual-mode lateral flow immunosensor using phage-displayed shark nanobody for the detection of crustacean allergen tropomyosin. J. Hazard. Mater. 2024, 468, 133821. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gu, G.; Yin, R.; Fu, J.; Jing, M.; Shen, Z.; Lai, D.; Wang, B.; Zhou, L. A Nanobody-Based Immunoassay for Detection of Ustilaginoidins in Rice Samples. Toxins 2022, 14, 659. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Sun, Y.; Gu, J.; Yang, F.; Wu, S.; Zhang, C.; Ji, X.; Lv, H.; Muyldermans, S.; Wang, S. Selection of specific nanobodies to develop an immuno-assay detecting Staphylococcus aureus in milk. Food Chem. 2021, 353, 129481. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Song, Z.; Zhou, C.; Ma, P.; Li, C.; Lu, Q.; Liao, Z.; Huang, Z.; Tang, Y.; Li, H.; et al. Development of nanobody-horseradish peroxidase-based sandwich ELISA to detect Salmonella Enteritidis in milk and in vivo colonization in chicken. J. Nanobiotechnol. 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Chen, Q.; Li, Y.; Xiong, Y.; Xu, Y.; Hu, N.; Tao, Y. Identification and characterization of species-specific nanobodies for the detection of Listeria monocytogenes in milk. Anal. Biochem. 2016, 493, 1–7. [Google Scholar] [CrossRef]
- Aagaard, J.B.; Sivelle, C.; Fischer, M.; Byskov, K.; Laursen, N.S.; Pfützner, W.; Jakob, T.; Möbs, C.; Miehe, M.; Spillner, E. Nanobody-based human antibody formats act as IgE surrogate in hymenoptera venom allergy. Allergy 2022, 77, 2859–2862. [Google Scholar] [CrossRef]
- Aagaard, J.B.; Fischer, M.; Lober, J.; Neumann, F.B.; Allahverdi, D.; Sivelle, C.; Miehe, M.; Spillner, E. Extract-Shaped Immune Repertoires as Source for Nanobody-Based Human IgE in Grass Pollen Allergy. Mol. Biotechnol. 2023, 65, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Khaled, A.Q.; Sana, Y.; Abdulrahman, R.; Raida, K.; Sami, A.H. Blocking of Histamine Release and IgE Binding to FcεRI on Human Basophils by Antibodies Produced in Camels. Allergy Asthma Immunol. Res. 2015, 7, 583–589. [Google Scholar] [CrossRef]
- Sana, Y.; Abdulrahman, R.; Raida, K.; Sami, A.H.; Khaled, A.Q. Production and Characterization of a Recombinant Camel Full Heavy Chain Antibody against Human IgE. Jordan J. Biol. Sci. 2015, 8, 257–262. [Google Scholar] [CrossRef]
- Ablynx, N.V. Immunoglobulin Single Variable Domains Directed against IgE. WO 2012/175740 A1, 25 June 2012. [Google Scholar]
- Rinaldi, M.; Denayer, T.; Thiolloy, S.; Perez Tosar, L.C.; Buyse, M.A.; De Decker, P.; De Witte, E.; Meerts, P.; Baumeister, J.; Holz, J.B. ALX-0962, an anti-IgE Nanobody® with a dual mode of action. Eur. Respir. J. 2013, 42, 1765. [Google Scholar]
- Deiteren, A.; Krupka, E.; Imberdis, K.; Patel, N.; Staudinger, B.; Suratt, B.T. Targeting of TSLP and IL-13 by the Novel NANOBODY® Molecule SAR443765 Reduces FeNO in Asthma Following Single Dose Exposure. Am. J. Respir. Crit. Care Med. 2023, 207, A6816. [Google Scholar]
- Ma, L.; Zhu, M.; Li, G.; Gai, J.; Li, Y.; Gu, H.; Qiao, P.; Li, X.; Ji, W.; Zhao, R.; et al. Preclinical development of a long-acting trivalent bispecific nanobody targeting IL-5 for the treatment of eosinophilic asthma. Respir. Res. 2022, 23, 316. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, E.; Jarvis, D.; Lam, H.; Davies, B.; Fecht, D.; Candeias, J.; Schmidt-Weber, C.B.; Douiri, A.; Slovick, A.; Scala, E.; et al. Phl p 5 levels more strongly associated than grass pollen counts with allergic respiratory health. J. Allergy Clin. Immunol. 2023, 153, 844–851. [Google Scholar] [CrossRef]
- Lara, B.; Rojo, J.; Costa, A.R.; Burgos-Montero, A.M.; Antunes, C.M.; Pérez-Badia, R. Atmospheric pollen allergen load and environmental patterns in central and southwestern Iberian Peninsula. Sci. Total Environ. 2023, 858, 159630. [Google Scholar] [CrossRef]
- Buters, J.; Prank, M.; Sofiev, M.; Pusch, G.; Albertini, R.; Annesi-Maesano, I.; Antunes, C.; Behrendt, H.; Berger, U.; Brandao, R.; et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J. Allergy Clin. Immunol. 2015, 136, 87–95.e86. [Google Scholar] [CrossRef]
- Paudel, B.; Chu, T.; Chen, M.; Sampath, V.; Prunicki, M.; Nadeau, K.C. Increased duration of pollen and mold exposure are linked to climate change. Sci. Rep. 2021, 11, 12816. [Google Scholar] [CrossRef]
- D’Amato, G.; Akdis, C.A. Global warming, climate change, air pollution and allergies. Allergy 2020, 75, 2158–2160. [Google Scholar] [CrossRef]
- Frank, U.; Ernst, D. Effects of NO2 and Ozone on Pollen Allergenicity. Front. Plant Sci. 2016, 7, 91. [Google Scholar] [CrossRef]
- Zhou, P.E.; Qian, Z.M.; McMillin, S.E.; Vaughn, M.G.; Xie, Z.Y.; Xu, Y.J.; Lin, L.Z.; Hu, L.W.; Yang, B.Y.; Zeng, X.W.; et al. Relationships between Long-Term Ozone Exposure and Allergic Rhinitis and Bronchitic Symptoms in Chinese Children. Toxics 2021, 9, 221. [Google Scholar] [CrossRef]
- Sitaru, S.; Wecker, H.; Buters, J.; Biedermann, T.; Zink, A. Social media to monitor prevalent diseases: Hay fever and Twitter activity in Germany. Allergy 2023, 78, 2777–2780. [Google Scholar] [CrossRef]
- Huang, H.J.; Campana, R.; Akinfenwa, O.; Curin, M.; Sarzsinszky, E.; Karsonova, A.; Riabova, K.; Karaulov, A.; Niespodziana, K.; Elisyutina, O.; et al. Microarray-Based Allergy Diagnosis: Quo Vadis? Front. Immunol. 2020, 11, 594978. [Google Scholar] [CrossRef]
- Heffler, E.; Puggioni, F.; Peveri, S.; Montagni, M.; Canonica, G.W.; Melioli, G. Extended IgE profile based on an allergen macroarray: A novel tool for precision medicine in allergy diagnosis. World Allergy Organ. J. 2018, 11, 7. [Google Scholar] [CrossRef]
- Mari, A.; Alessandri, C.; Giangrieco, I.; Tuppo, L.; Rafaiani, C.; Mitterer, G.; Ciancamerla, M.; Ferrara, R.; Bernardi, M.L.; Zennaro, D.; et al. Introducing FABER test for allergy diagnosis: Food molecule- and extract-based allergenic preparations in the newest and broadest nanotechnology IgE test. Clin. Transl. Allergy 2017, 7, OP11. [Google Scholar]
- Zimmer, J.; Schmidt, S.; Klos, J.; Döring, S.; Strecker, D.; Vieths, S.; Kaul, S. The method makes the extract: Comparative analysis of birch pollen allergen extracts. Clin. Exp. Allergy 2022, 52, 784–787. [Google Scholar] [CrossRef]
- Focke, M.; Marth, K.; Flicker, S.; Valenta, R. Heterogeneity of commercial timothy grass pollen extracts. Clin. Exp. Allergy 2008, 38, 1400–1408. [Google Scholar] [CrossRef]
- Unterwurzacher, V.; Pogner, C.; Berger, H.; Strauss, J.; Strauss-Goller, S.; Gorfer, M. Validation of a quantitative PCR based detection system for indoor mold exposure assessment in bioaerosols. Environ. Sci. Process. Impacts 2018, 20, 1454–1468. [Google Scholar] [CrossRef]
- Noon, L. Prophylactic Inoculation Against Hay Fever. Lancet 1911, 177, 1572–1573. [Google Scholar] [CrossRef]
- Cooke, R.A.; Barnard, J.H.; Hebald, S.; Stull, A. Serological Evidence of Immunity with Coexisting Sensitization in a Type of Human Allergy (Hay Fever). J. Exp. Med. 1935, 62, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Loveless, M.H. Immunological Studies of Pollinosis: I. The Presence of Two Antibodies Related to the Same Pollen-Antigen in the Serum of Treated Hay-Fever Patients. J. Immunol. 1940, 38, 25–50. [Google Scholar] [CrossRef]
- Lichtenstein, L.M.; Holtzman, N.A.; Burnett, L.S. A quantitative in vitro study of the chromatographic distribution and immunoglobulin characteristics of human blocking antibody. J. Immunol. 1968, 101, 317–324. [Google Scholar] [CrossRef]
- Flicker, S.; Linhart, B.; Wild, C.; Wiedermann, U.; Valenta, R. Passive immunization with allergen-specific IgG antibodies for treatment and prevention of allergy. Immunobiology 2013, 218, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, M.; Wuillemin, N.; Homère, V.; Bieli, D.; Köhli, A.; Ballmer-Weber, B.; Waeckerle-Men, Y.; Pengo, N.; Kündig, T.M.; Sonati, T.; et al. Targeting Ara h 2 with human-derived monoclonal antibodies prevents peanut-induced anaphylaxis in mice. Allergy 2023, 78, 1605–1614. [Google Scholar] [CrossRef]
- de Blay, F.J.; Gherasim, A.; Domis, N.; Meier, P.; Shawki, F.; Wang, C.Q.; Orengo, J.M.; DeVeaux, M.; Ramesh, D.; Jalbert, J.J.; et al. REGN1908/1909 prevented cat allergen-induced early asthmatic responses in an environmental exposure unit. J. Allergy Clin. Immunol. 2022, 150, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Kamal, M.A.; Dingman, R.; Wang, C.Q.; Lai, C.H.; Rajadhyaksha, M.; DeVeaux, M.; Orengo, J.M.; Radin, A.; Davis, J.D. REGN1908-1909 monoclonal antibodies block Fel d 1 in cat allergic subjects: Translational pharmacokinetics and pharmacodynamics. Clin. Transl. Sci. 2021, 14, 2440–2449. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, W.; Zhu, Z.; Aodeng, S.; Wang, L.; Liu, Y.; Li, J.; Zha, Y.; Wang, X.; Lv, W. Adverse Events for Monoclonal Antibodies in Patients with Allergic Rhinitis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Med. 2023, 12, 2848. [Google Scholar] [CrossRef]
- van Neerven, R.J.; Arvidsson, M.; Ipsen, H.; Sparholt, S.H.; Rak, S.; Würtzen, P.A. A double-blind, placebo-controlled birch allergy vaccination study: Inhibition of CD23-mediated serum-immunoglobulin E-facilitated allergen presentation. Clin. Exp. Allergy 2004, 34, 420–428. [Google Scholar] [CrossRef]
- Zieglmayer, P.; Focke-Tejkl, M.; Schmutz, R.; Lemell, P.; Zieglmayer, R.; Weber, M.; Kiss, R.; Blatt, K.; Valent, P.; Stolz, F.; et al. Mechanisms, safety and efficacy of a B cell epitope-based vaccine for immunotherapy of grass pollen allergy. eBioMedicine 2016, 11, 43–57. [Google Scholar] [CrossRef]
- Eckl-Dorna, J.; Weber, M.; Stanek, V.; Linhart, B.; Ristl, R.; Waltl, E.E.; Villazala-Merino, S.; Hummel, A.; Focke-Tejkl, M.; Froeschel, R.; et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG(4) response. eBioMedicine 2019, 50, 421–432. [Google Scholar] [CrossRef]
- van Neerven, R.J.; Wikborg, T.; Lund, G.; Jacobsen, B.; Brinch-Nielsen, A.; Arnved, J.; Ipsen, H. Blocking antibodies induced by specific allergy vaccination prevent the activation of CD4+ T cells by inhibiting serum-IgE-facilitated allergen presentation. J. Immunol. 1999, 163, 2944–2952. [Google Scholar] [CrossRef]
- Wachholz, P.A.; Soni, N.K.; Till, S.J.; Durham, S.R. Inhibition of allergen-IgE binding to B cells by IgG antibodies after grass pollen immunotherapy. J. Allergy Clin. Immunol. 2003, 112, 915–922. [Google Scholar] [CrossRef]
- Würtzen, P.A.; Lund, G.; Lund, K.; Arvidsson, M.; Rak, S.; Ipsen, H. A double-blind placebo-controlled birch allergy vaccination study II: Correlation between inhibition of IgE binding, histamine release and facilitated allergen presentation. Clin. Exp. Allergy 2008, 38, 1290–1301. [Google Scholar] [CrossRef]
- Holm, J.; Willumsen, N.; Würtzen, P.A.; Christensen, L.H.; Lund, K. Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity. J. Allergy Clin. Immunol. 2011, 127, 1029–1037. [Google Scholar] [CrossRef]
- Flicker, S.; Gadermaier, E.; Madritsch, C.; Valenta, R. Passive immunization with allergen-specific antibodies. Curr. Top. Microbiol. Immunol. 2011, 352, 141–159. [Google Scholar] [CrossRef]
- Eckl-Dorna, J.; Villazala-Merino, S.; Campion, N.J.; Byazrova, M.; Filatov, A.; Kudlay, D.; Karsonova, A.; Riabova, K.; Khaitov, M.; Karaulov, A.; et al. Tracing IgE-Producing Cells in Allergic Patients. Cells 2019, 8, 994. [Google Scholar] [CrossRef]
- Eckl-Dorna, J.; Villazala-Merino, S.; Linhart, B.; Karaulov, A.V.; Zhernov, Y.; Khaitov, M.; Niederberger-Leppin, V.; Valenta, R. Allergen-Specific Antibodies Regulate Secondary Allergen-Specific Immune Responses. Front. Immunol. 2018, 9, 3131. [Google Scholar] [CrossRef]
- Allen, C.D.C. Features of B Cell Responses Relevant to Allergic Disease. J. Immunol. 2022, 208, 257–266. [Google Scholar] [CrossRef]
- Nouri-Aria, K.T.; Wachholz, P.A.; Francis, J.N.; Jacobson, M.R.; Walker, S.M.; Wilcock, L.K.; Staple, S.Q.; Aalberse, R.C.; Till, S.J.; Durham, S.R. Grass pollen immunotherapy induces mucosal and peripheral IL-10 responses and blocking IgG activity. J. Immunol. 2004, 172, 3252–3259. [Google Scholar] [CrossRef]
- Shamji, M.H.; Layhadi, J.A.; Achkova, D.; Kouser, L.; Perera-Webb, A.; Couto-Francisco, N.C.; Parkin, R.V.; Matsuoka, T.; Scadding, G.; Ashton-Rickardt, P.G.; et al. Role of IL-35 in sublingual allergen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1131–1142.e1134. [Google Scholar] [CrossRef]
- Wollmann, E.; Lupinek, C.; Kundi, M.; Selb, R.; Niederberger, V.; Valenta, R. Reduction in allergen-specific IgE binding as measured by microarray: A possible surrogate marker for effects of specific immunotherapy. J. Allergy Clin. Immunol. 2015, 136, 806–809.e807. [Google Scholar] [CrossRef]
- Layhadi, J.A.; Lalioti, A.; Palmer, E.; van Zelm, M.C.; Wambre, E.; Shamji, M.H. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. J. Allergy Clin. Immunol. Pract. 2024, 12, 59–66. [Google Scholar] [CrossRef]
- Jardieu, P.M.; Fick, R.B., Jr. IgE inhibition as a therapy for allergic disease. Int. Arch. Allergy Immunol. 1999, 118, 112–115. [Google Scholar] [CrossRef]
- Lupinek, C.; Derfler, K.; Lee, S.; Prikoszovich, T.; Movadat, O.; Wollmann, E.; Cornelius, C.; Weber, M.; Fröschl, R.; Selb, R.; et al. Extracorporeal IgE Immunoadsorption in Allergic Asthma: Safety and Efficacy. eBioMedicine 2017, 17, 119–133. [Google Scholar] [CrossRef]
- Rodak, A.; Stadlbauer, K.; Bobbili, M.R.; Smrzka, O.; Rüker, F.; Wozniak Knopp, G. Development of a Cytotoxic Antibody-Drug Conjugate Targeting Membrane Immunoglobulin E-Positive Cells. Int. J. Mol. Sci. 2023, 24, 14997. [Google Scholar] [CrossRef]
- Guntern, P.; Eggel, A. Past, present, and future of anti-IgE biologics. Allergy 2020, 75, 2491–2502. [Google Scholar] [CrossRef]
- Incorvaia, C.; Mauro, M.; Makri, E.; Leo, G.; Ridolo, E. Two decades with omalizumab: What we still have to learn. Biologics 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Hanania, N.A.; Niven, R.; Chanez, P.; Antoine, D.; Pfister, P.; Garcia Conde, L.; Jaumont, X. Long-term effectiveness and safety of omalizumab in pediatric and adult patients with moderate-to-severe inadequately controlled allergic asthma. World Allergy Organ. J. 2022, 15, 100695. [Google Scholar] [CrossRef]
- Domingo, C.; Monserrate, D.R.; Sogo, A.; Mirapeix, R.M. The Incredible Adventure of Omalizumab. Int. J. Mol. Sci. 2024, 25, 3056. [Google Scholar] [CrossRef]
- Busse, W.; Corren, J.; Lanier, B.Q.; McAlary, M.; Fowler-Taylor, A.; Cioppa, G.D.; van As, A.; Gupta, N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J. Allergy Clin. Immunol. 2001, 108, 184–190. [Google Scholar] [CrossRef]
- Maurer, M.; Rosén, K.; Hsieh, H.J.; Saini, S.; Grattan, C.; Gimenéz-Arnau, A.; Agarwal, S.; Doyle, R.; Canvin, J.; Kaplan, A.; et al. Omalizumab for the treatment of chronic idiopathic or spontaneous urticaria. N. Engl. J. Med. 2013, 368, 924–935. [Google Scholar] [CrossRef]
- Cavaliere, C.; Begvarfaj, E.; Incorvaia, C.; Sposato, B.; Brunori, M.; Ciofalo, A.; Greco, A.; de Vincentiis, M.; Masieri, S. Long-term omalizumab efficacy in allergic rhinitis. Immunol. Lett. 2020, 227, 81–87. [Google Scholar] [CrossRef]
- Pennington, L.F.; Tarchevskaya, S.; Brigger, D.; Sathiyamoorthy, K.; Graham, M.T.; Nadeau, K.C.; Eggel, A.; Jardetzky, T.S. Structural basis of omalizumab therapy and omalizumab-mediated IgE exchange. Nat. Commun. 2016, 7, 11610. [Google Scholar] [CrossRef]
- Beck, L.A.; Marcotte, G.V.; MacGlashan, D.; Togias, A.; Saini, S. Omalizumab-induced reductions in mast cell Fce psilon RI expression and function. J. Allergy Clin. Immunol. 2004, 114, 527–530. [Google Scholar] [CrossRef]
- Lin, H.; Boesel, K.M.; Griffith, D.T.; Prussin, C.; Foster, B.; Romero, F.A.; Townley, R.; Casale, T.B. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J. Allergy Clin. Immunol. 2004, 113, 297–302. [Google Scholar] [CrossRef]
- Gasser, P.; Tarchevskaya, S.S.; Guntern, P.; Brigger, D.; Ruppli, R.; Zbären, N.; Kleinboelting, S.; Heusser, C.; Jardetzky, T.S.; Eggel, A. The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat. Commun. 2020, 11, 165. [Google Scholar] [CrossRef]
- Wood, R.A.; Chinthrajah, R.S.; Eggel, A.; Bottoli, I.; Gautier, A.; Woisetschlaeger, M.; Tassinari, P.; Altman, P. The rationale for development of ligelizumab in food allergy. World Allergy Organ. J. 2022, 15, 100690. [Google Scholar] [CrossRef]
- Ota, T.; Aoki-Ota, M.; Duong, B.H.; Nemazee, D. Suppression of IgE B cells and IgE binding to Fc(epsilon)RI by gene therapy with single-chain anti-IgE. J. Immunol. 2009, 182, 8110–8117. [Google Scholar] [CrossRef]
- Hu, J.; Chen, J.; Ye, L.; Cai, Z.; Sun, J.; Ji, K. Anti-IgE therapy for IgE-mediated allergic diseases: From neutralizing IgE antibodies to eliminating IgE(+) B cells. Clin. Transl. Allergy 2018, 8, 27. [Google Scholar] [CrossRef]
- Yang, B.C. Biologics to treat anaphylaxis. Curr. Opin. Allergy Clin. Immunol. 2023, 23, 370–375. [Google Scholar] [CrossRef]
- Nyborg, A.C.; Zacco, A.; Ettinger, R.; Jack Borrok, M.; Zhu, J.; Martin, T.; Woods, R.; Kiefer, C.; Bowen, M.A.; Suzanne Cohen, E.; et al. Development of an antibody that neutralizes soluble IgE and eliminates IgE expressing B cells. Cell Mol. Immunol. 2016, 13, 391–400. [Google Scholar] [CrossRef]
- Sheldon, E.; Schwickart, M.; Li, J.; Kim, K.; Crouch, S.; Parveen, S.; Kell, C.; Birrell, C. Pharmacokinetics, Pharmacodynamics, and Safety of MEDI4212, an Anti-IgE Monoclonal Antibody, in Subjects with Atopy: A Phase I Study. Adv. Ther. 2016, 33, 225–251. [Google Scholar] [CrossRef]
- Kuo, B.S.; Li, C.H.; Chen, J.B.; Shiung, Y.Y.; Chu, C.Y.; Lee, C.H.; Liu, Y.J.; Kuo, J.H.; Hsu, C.; Su, H.W.; et al. IgE-neutralizing UB-221 mAb, distinct from omalizumab and ligelizumab, exhibits CD23-mediated IgE downregulation and relieves urticaria symptoms. J. Clin. Investig. 2022, 132, e157765. [Google Scholar] [CrossRef]
- Tong, P.; Wesemann, D.R. Molecular Mechanisms of IgE Class Switch Recombination. Curr. Top. Microbiol. Immunol. 2015, 388, 21–37. [Google Scholar] [CrossRef]
- Hamilton, J.D.; Harel, S.; Swanson, B.N.; Brian, W.; Chen, Z.; Rice, M.S.; Amin, N.; Ardeleanu, M.; Radin, A.; Shumel, B.; et al. Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases. Clin. Exp. Allergy 2021, 51, 915–931. [Google Scholar] [CrossRef]
- Busse, W.W.; Maspero, J.F.; Lu, Y.; Corren, J.; Hanania, N.A.; Chipps, B.E.; Katelaris, C.H.; FitzGerald, J.M.; Quirce, S.; Ford, L.B.; et al. Efficacy of dupilumab on clinical outcomes in patients with asthma and perennial allergic rhinitis. Ann. Allergy Asthma Immunol. 2020, 125, 565–576.e561. [Google Scholar] [CrossRef]
- Nettis, E.; Patella, V.; Lombardo, C.; Detoraki, A.; Macchia, L.; Di Leo, E.; Carbonara, M.; Canonica, G.W.; Bonzano, L. Efficacy of dupilumab in atopic comorbidities associated with moderate-to-severe adult atopic dermatitis. Allergy 2020, 75, 2653–2661. [Google Scholar] [CrossRef]
- Komlósi, Z.I.; van de Veen, W.; Kovács, N.; Szűcs, G.; Sokolowska, M.; O’Mahony, L.; Akdis, M.; Akdis, C.A. Cellular and molecular mechanisms of allergic asthma. Mol. Aspects Med. 2022, 85, 100995. [Google Scholar] [CrossRef]
- Anto, J.M.; Bousquet, J.; Akdis, M.; Auffray, C.; Keil, T.; Momas, I.; Postma, D.S.; Valenta, R.; Wickman, M.; Cambon-Thomsen, A.; et al. Mechanisms of the Development of Allergy (MeDALL): Introducing novel concepts in allergy phenotypes. J. Allergy Clin. Immunol. 2017, 139, 388–399. [Google Scholar] [CrossRef]
- Arturson, G.; Wallenius, G. The Renal Clearance of Dextran of Different Molecular Sizes in Normal Humans. Scand. J. Clin. Lab. Investig. 1964, 16, 81–86. [Google Scholar] [CrossRef]
- Graham, R.C., Jr.; Karnovsky, M.J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J. Exp. Med. 1966, 124, 1123–1134. [Google Scholar] [CrossRef]
- Venkatachalam, M.A.; Rennke, H.G. The structural and molecular basis of glomerular filtration. Circ. Res. 1978, 43, 337–347. [Google Scholar] [CrossRef]
- Igawa, T.; Tsunoda, H.; Tachibana, T.; Maeda, A.; Mimoto, F.; Moriyama, C.; Nanami, M.; Sekimori, Y.; Nabuchi, Y.; Aso, Y.; et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng. Des. Sel. 2010, 23, 385–392. [Google Scholar] [CrossRef]
- Li, B.; Tesar, D.; Boswell, C.A.; Cahaya, H.S.; Wong, A.; Zhang, J.; Meng, Y.G.; Eigenbrot, C.; Pantua, H.; Diao, J.; et al. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. mAbs 2014, 6, 1255–1264. [Google Scholar] [CrossRef]
- van Faassen, H.; Ryan, S.; Henry, K.A.; Raphael, S.; Yang, Q.; Rossotti, M.A.; Brunette, E.; Jiang, S.; Haqqani, A.S.; Sulea, T.; et al. Serum albumin-binding V(H) Hs with variable pH sensitivities enable tailored half-life extension of biologics. FASEB J. 2020, 34, 8155–8171. [Google Scholar] [CrossRef]
- Harmsen, M.M.; Ackerschott, B.; de Smit, H. Serum immunoglobulin or albumin binding single-domain antibodies that enable tailored half-life extension of biologics in multiple animal species. Front. Immunol. 2024, 15, 1346328. [Google Scholar] [CrossRef]
- Ulrichts, H.; Silence, K.; Schoolmeester, A.; de Jaegere, P.; Rossenu, S.; Roodt, J.; Priem, S.; Lauwereys, M.; Casteels, P.; Van Bockstaele, F.; et al. Antithrombotic drug candidate ALX-0081 shows superior preclinical efficacy and safety compared with currently marketed antiplatelet drugs. Blood 2011, 118, 757–765. [Google Scholar] [CrossRef]
- Sargentini-Maier, M.L.; De Decker, P.; Tersteeg, C.; Canvin, J.; Callewaert, F.; De Winter, H. Clinical pharmacology of caplacizumab for the treatment of patients with acquired thrombotic thrombocytopenic purpura. Expert Rev. Clin. Pharmacol. 2019, 12, 537–545. [Google Scholar] [CrossRef]
- Holz, J.B. The TITAN trial--assessing the efficacy and safety of an anti-von Willebrand factor Nanobody in patients with acquired thrombotic thrombocytopenic purpura. Transfus. Apher. Sci. 2012, 46, 343–346. [Google Scholar] [CrossRef]
- Sadeghi, A.; Behdani, M.; Muyldermans, S.; Habibi-Anbouhi, M.; Kazemi-Lomedasht, F. Development of a mono-specific anti-VEGF bivalent nanobody with extended plasma half-life for treatment of pathologic neovascularization. Drug Test Anal. 2020, 12, 92–100. [Google Scholar] [CrossRef]
- Mullin, M.; McClory, J.; Haynes, W.; Grace, J.; Robertson, N.; van Heeke, G. Applications and challenges in designing VHH-based bispecific antibodies: Leveraging machine learning solutions. mAbs 2024, 16, 2341443. [Google Scholar] [CrossRef]
- Tillib, S.V.; Ivanova, T.I.; Vasilev, L.A.; Rutovskaya, M.V.; Saakyan, S.A.; Gribova, I.Y.; Tutykhina, I.L.; Sedova, E.S.; Lysenko, A.A.; Shmarov, M.M.; et al. Formatted single-domain antibodies can protect mice against infection with influenza virus (H5N2). Antivir. Res. 2013, 97, 245–254. [Google Scholar] [CrossRef]
- Güttler, T.; Aksu, M.; Dickmanns, A.; Stegmann, K.M.; Gregor, K.; Rees, R.; Taxer, W.; Rymarenko, O.; Schünemann, J.; Dienemann, C.; et al. Neutralization of SARS-CoV-2 by highly potent, hyperthermostable, and mutation-tolerant nanobodies. EMBO J. 2021, 40, e107985. [Google Scholar] [CrossRef]
- Alvarez-Cienfuegos, A.; Nuñez-Prado, N.; Compte, M.; Cuesta, A.M.; Blanco-Toribio, A.; Harwood, S.L.; Villate, M.; Merino, N.; Bonet, J.; Navarro, R.; et al. Intramolecular trimerization, a novel strategy for making multispecific antibodies with controlled orientation of the antigen binding domains. Sci. Rep. 2016, 6, 28643. [Google Scholar] [CrossRef]
- Detalle, L.; Stohr, T.; Palomo, C.; Piedra, P.A.; Gilbert, B.E.; Mas, V.; Millar, A.; Power, U.F.; Stortelers, C.; Allosery, K.; et al. Generation and Characterization of ALX-0171, a Potent Novel Therapeutic Nanobody for the Treatment of Respiratory Syncytial Virus Infection. Antimicrob. Agents Chemother. 2016, 60, 6–13. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, H.; Liu, X.; Xu, C.; Tian, M.; Shi, G.; Bai, C.; Li, Z.; Wang, J.; Liu, S. A panel of multivalent nanobodies broadly neutralizing Omicron subvariants and recombinant. J. Med. Virol. 2024, 96, e29528. [Google Scholar] [CrossRef]
- Caliceti, P.; Veronese, F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 2003, 55, 1261–1277. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Liu, M.; Jin, D.; Zhang, L.; Cheng, J.; Liu, Y. Conjugation of oxaliplatin with PEGylated-nanobody for enhancing tumor targeting and prolonging circulation. J. Inorg. Biochem. 2021, 223, 111553. [Google Scholar] [CrossRef]
- Griffiths, K.; Binder, U.; McDowell, W.; Tommasi, R.; Frigerio, M.; Darby, W.G.; Hosking, C.G.; Renaud, L.; Machacek, M.; Lloyd, P.; et al. Half-life extension and non-human primate pharmacokinetic safety studies of i-body AD-114 targeting human CXCR4. mAbs 2019, 11, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Gregoriadis, G.; Jain, S.; Papaioannou, I.; Laing, P. Improving the therapeutic efficacy of peptides and proteins: A role for polysialic acids. Int. J. Pharm. 2005, 300, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Bottau, P.; Calamelli, E.; Caimmi, S.; Crisafulli, G.; Franceschini, F.; Liotti, L.; Mori, F.; Paglialunga, C.; Saretta, F.; et al. Hypersensitivity to polyethylene glycol in adults and children: An emerging challenge. Acta Biomed. 2021, 92, e2021519. [Google Scholar] [CrossRef]
- Schlapschy, M.; Binder, U.; Börger, C.; Theobald, I.; Wachinger, K.; Kisling, S.; Haller, D.; Skerra, A. PASylation: A biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng. Des. Sel. 2013, 26, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.J.; Ramakrishnan, B.; Narayan, K.; Wollacott, A.M.; Babcock, G.J.; Shriver, Z.; Viswanathan, K. Extending human IgG half-life using structure-guided design. mAbs 2018, 10, 1098–1110. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Xiang, Y.; Vergara, S.; Chen, A.; Xiao, Z.; Santiago, U.; Jin, C.; Sang, Z.; Luo, J.; Chen, K.; et al. A resource of high-quality and versatile nanobodies for drug delivery. iScience 2021, 24, 103014. [Google Scholar] [CrossRef] [PubMed]
- Hambach, J.; Fumey, W.; Stähler, T.; Gebhardt, A.J.; Adam, G.; Weisel, K.; Koch-Nolte, F.; Bannas, P. Half-Life Extended Nanobody-Based CD38-Specific Bispecific Killercell Engagers Induce Killing of Multiple Myeloma Cells. Front. Immunol. 2022, 13, 838406. [Google Scholar] [CrossRef] [PubMed]
- Ishiwatari-Ogata, C.; Kyuuma, M.; Ogata, H.; Yamakawa, M.; Iwata, K.; Ochi, M.; Hori, M.; Miyata, N.; Fujii, Y. Ozoralizumab, a Humanized Anti-TNFα NANOBODY(®) Compound, Exhibits Efficacy Not Only at the Onset of Arthritis in a Human TNF Transgenic Mouse but Also During Secondary Failure of Administration of an Anti-TNFα IgG. Front. Immunol. 2022, 13, 853008. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Chino, Y.; Kawanishi, M.; Nakanishi, M.; Watase, H.; Mano, Y.; Sato, Y.; Uchida, S.; Tanaka, Y. Efficacy and pharmacokinetics of ozoralizumab, an anti-TNFα NANOBODY(®) compound, in patients with rheumatoid arthritis: 52-week results from the OHZORA and NATSUZORA trials. Arthritis Res. Ther. 2023, 25, 60. [Google Scholar] [CrossRef]
- Takeuchi, T.; Chino, Y.; Mano, Y.; Kawanishi, M.; Sato, Y.; Uchida, S.; Tanaka, Y. Population Pharmacokinetics of Ozoralizumab in Patients with Rheumatoid Arthritis. J. Clin. Pharmacol. 2024, 64, 418–427. [Google Scholar] [CrossRef]
- Voronina, D.V.; Shcheblyakov, D.V.; Favorskaya, I.A.; Esmagambetov, I.B.; Dzharullaeva, A.S.; Tukhvatulin, A.I.; Zubkova, O.V.; Popova, O.; Kan, V.Y.; Bandelyuk, A.S.; et al. Cross-Reactive Fc-Fused Single-Domain Antibodies to Hemagglutinin Stem Region Protect Mice from Group 1 Influenza a Virus Infection. Viruses 2022, 14, 2485. [Google Scholar] [CrossRef] [PubMed]
- Burmistrova, D.A.; Tillib, S.V.; Shcheblyakov, D.V.; Dolzhikova, I.V.; Shcherbinin, D.N.; Zubkova, O.V.; Ivanova, T.I.; Tukhvatulin, A.I.; Shmarov, M.M.; Logunov, D.Y.; et al. Genetic Passive Immunization with Adenoviral Vector Expressing Chimeric Nanobody-Fc Molecules as Therapy for Genital Infection Caused by Mycoplasma hominis. PLoS ONE 2016, 11, e0150958. [Google Scholar] [CrossRef] [PubMed]
- Ackaert, C.; Smiejkowska, N.; Xavier, C.; Sterckx, Y.G.J.; Denies, S.; Stijlemans, B.; Elkrim, Y.; Devoogdt, N.; Caveliers, V.; Lahoutte, T.; et al. Immunogenicity Risk Profile of Nanobodies. Front. Immunol. 2021, 12, 632687. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Younis, M.H.; Lan, X.; Liu, J.; Cai, W. Single-Domain Antibody Theranostics on the Horizon. J. Nucl. Med. 2022, 63, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Gondry, O.; Caveliers, V.; Xavier, C.; Raes, L.; Vanhoeij, M.; Verfaillie, G.; Fontaine, C.; Glorieus, K.; Grève, J.D.; Joris, S.; et al. Phase II Trial Assessing the Repeatability and Tumor Uptake of [68Ga]Ga-HER2 Single-Domain Antibody PET/CT in Patients with Breast Carcinoma. J. Nucl. Med. 2024, 65, 178–184. [Google Scholar] [CrossRef] [PubMed]
- do Valle, N.C.H.; Janssen, S.; Stroet, M.C.M.; Pollenus, S.; Van den Block, S.; Devoogdt, N.; Debacker, J.M.; Hernot, S.; De Rooster, H. Safety assessment of fluorescently labeled anti-EGFR Nanobodies in healthy dogs. Front. Pharmacol. 2023, 14, 1266288. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.C.; Wurthner, J.U.; Morley, P.J.; Birchler, M.A.; Lambert, J.; Albayaty, M.; Serone, A.P.; Wilson, R.; Chen, Y.; Forrest, R.M.; et al. Autoantibodies to variable heavy (VH) chain Ig sequences in humans impact the safety and clinical pharmacology of a VH domain antibody antagonist of TNF-α receptor 1. J. Clin. Immunol. 2013, 33, 1192–1203. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.P.; Isaacs, R.; Bilic, S.; Kentsch, K.; Huet, H.A.; Hofmann, M.; Rasco, D.; Kundamal, N.; Tang, Z.; Cooksey, J.; et al. Unexpected hepatotoxicity in a phase I study of TAS266, a novel tetravalent agonistic Nanobody® targeting the DR5 receptor. Cancer Chemother. Pharmacol. 2015, 75, 887–895. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, A.; Bayliffe, A.; O’Kane, C.M.; Wright, T.; Serone, A.; Bareille, P.J.; Brown, V.; Hamid, U.I.; Chen, Y.; Wilson, R.; et al. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 2018, 73, 723–730. [Google Scholar] [CrossRef]
- Sang, Z.; Xiang, Y.; Bahar, I.; Shi, Y. Llamanade: An open-source computational pipeline for robust nanobody humanization. Structure 2022, 30, 418–429.e413. [Google Scholar] [CrossRef]
- Padayachee, Y.; Flicker, S.; Linton, S.; Cafferkey, J.; Kon, O.M.; Johnston, S.L.; Ellis, A.K.; Desrosiers, M.; Turner, P.; Valenta, R.; et al. Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. Front. Allergy 2021, 2, 668781. [Google Scholar] [CrossRef] [PubMed]
- Zettl, I.; Ivanova, T.; Zghaebi, M.; Rutovskaya, M.V.; Ellinger, I.; Goryainova, O.; Kollárová, J.; Villazala-Merino, S.; Lupinek, C.; Weichwald, C.; et al. Generation of high affinity ICAM-1-specific nanobodies and evaluation of their suitability for allergy treatment. Front. Immunol. 2022, 13, 1022418. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Pronzato, C.; Ricca, V.; Bagnasco, M.; Canonica, G.W. Evidence of intercellular adhesion molecule-1 expression on nasal epithelial cells in acute rhinoconjunctivitis caused by pollen exposure. J. Allergy Clin. Immunol. 1994, 94, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Madritsch, C.; Eckl-Dorna, J.; Blatt, K.; Ellinger, I.; Kundi, M.; Niederberger, V.; Valent, P.; Valenta, R.; Flicker, S. Antibody conjugates bispecific for intercellular adhesion molecule 1 and allergen prevent migration of allergens through respiratory epithelial cell layers. J. Allergy Clin. Immunol. 2015, 136, 490–493.e411. [Google Scholar] [CrossRef] [PubMed]
- Weichwald, C.; Zettl, I.; Ellinger, I.; Niespodziana, K.; Waltl, E.E.; Villazala-Merino, S.; Ivanov, D.; Eckl-Dorna, J.; Niederberger-Leppin, V.; Valenta, R.; et al. Antibody Conjugates Bispecific for Pollen Allergens and ICAM-1 with Potential to Prevent Epithelial Allergen Transmigration and Rhinovirus Infection. Int. J. Mol. Sci. 2023, 24, 2725. [Google Scholar] [CrossRef] [PubMed]
- Moller, W.; Saba, G.K.; Haussinger, K.; Becker, S.; Keller, M.; Schuschnig, U. Nasally inhaled pulsating aerosols: Lung, sinus and nose deposition. Rhinology 2011, 49, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Ciprandi, G.; Buscaglia, S.; Pesce, G.; Villaggio, B.; Bagnasco, M.; Canonica, G.W. Allergic subjects express intercellular adhesion molecule-1 (ICAM-1 or CD54) on epithelial cells of conjunctiva after allergen challenge. J. Allergy Clin. Immunol. 1993, 91, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Aydin, M.; Dietrich, J.; Witt, J.; Finkbeiner, M.S.C.; Park, J.J.; Wirth, S.; Engeland, C.E.; Paulsen, F.; Ehrhardt, A. The Communication between Ocular Surface and Nasal Epithelia in 3D Cell Culture Technology for Translational Research: A Narrative Review. Int. J. Mol. Sci. 2021, 22, 12994. [Google Scholar] [CrossRef] [PubMed]
- Bielory, L. Allergic conjunctivitis and the impact of allergic rhinitis. Curr. Allergy Asthma Rep. 2010, 10, 122–134. [Google Scholar] [CrossRef]
- Cingi, C.; Gevaert, P.; Mösges, R.; Rondon, C.; Hox, V.; Rudenko, M.; Muluk, N.B.; Scadding, G.; Manole, F.; Hupin, C.; et al. Multi-morbidities of allergic rhinitis in adults: European Academy of Allergy and Clinical Immunology Task Force Report. Clin. Transl. Allergy 2017, 7, 17. [Google Scholar] [CrossRef]
- Van Heeke, G.; Allosery, K.; De Brabandere, V.; De Smedt, T.; Detalle, L.; de Fougerolles, A. Nanobodies® as inhaled biotherapeutics for lung diseases. Pharmacol. Ther. 2017, 169, 47–56. [Google Scholar] [CrossRef]
- Cunningham, S.; Piedra, P.A.; Martinon-Torres, F.; Szymanski, H.; Brackeva, B.; Dombrecht, E.; Detalle, L.; Fleurinck, C. Nebulised ALX-0171 for respiratory syncytial virus lower respiratory tract infection in hospitalised children: A double-blind, randomised, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2021, 9, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Schoof, M.; Faust, B.; Saunders, R.A.; Sangwan, S.; Rezelj, V.; Hoppe, N.; Boone, M.; Billesbølle, C.B.; Puchades, C.; Azumaya, C.M.; et al. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020, 370, 1473–1479. [Google Scholar] [CrossRef]
- Gai, J.; Ma, L.; Li, G.; Zhu, M.; Qiao, P.; Li, X.; Zhang, H.; Zhang, Y.; Chen, Y.; Ji, W.; et al. A potent neutralizing nanobody against SARS-CoV-2 with inhaled delivery potential. MedComm 2021, 2, 101–113. [Google Scholar] [CrossRef]
- Nambulli, S.; Xiang, Y.; Tilston-Lunel, N.L.; Rennick, L.J.; Sang, Z.; Klimstra, W.B.; Reed, D.S.; Crossland, N.A.; Shi, Y.; Duprex, W.P. Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci. Adv. 2021, 7, eabh0319. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, K.; de Haard, H.; Beirnaert, E.; Dreier, T.; Lauwereys, M.; Huyck, L.; Van Huysse, J.; Demetter, P.; Steidler, L.; Remaut, E.; et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol. 2010, 3, 49–56. [Google Scholar] [CrossRef]
- Chiabai, M.J.; Almeida, J.F.; de Azevedo, M.G.D.; Fernandes, S.S.; Pereira, V.B.; de Castro, R.J.A.; Jerônimo, M.S.; Sousa, I.G.; de Souza Vianna, L.M.; Miyoshi, A.; et al. Mucosal delivery of Lactococcus lactis carrying an anti-TNF scFv expression vector ameliorates experimental colitis in mice. BMC Biotechnol. 2019, 19, 38. [Google Scholar] [CrossRef]
- Lynch, J.P.; González-Prieto, C.; Reeves, A.Z.; Bae, S.; Powale, U.; Godbole, N.P.; Tremblay, J.M.; Schmidt, F.I.; Ploegh, H.L.; Kansra, V.; et al. Engineered Escherichia coli for the in situ secretion of therapeutic nanobodies in the gut. Cell Host Microbe 2023, 31, 634–649.e638. [Google Scholar] [CrossRef]
- Yu, W.; Freeland, D.M.H.; Nadeau, K.C. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat. Rev. Immunol. 2016, 16, 751–765. [Google Scholar] [CrossRef]
- Scheurer, S.; Junker, A.C.; He, C.; Schülke, S.; Toda, M. The Role of IgA in the Manifestation and Prevention of Allergic Immune Responses. Curr. Allergy Asthma Rep. 2023, 23, 589–600. [Google Scholar] [CrossRef]
- Shamji, M.H.; Larson, D.; Eifan, A.; Scadding, G.W.; Qin, T.; Lawson, K.; Sever, M.L.; Macfarlane, E.; Layhadi, J.A.; Würtzen, P.A.; et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J. Allergy Clin. Immunol. 2021, 148, 1061–1071.e1011. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.G.; Zhang, B.; Martin, V.; Anthonypillai, J.; Kraft, M.; Grishin, A.; Grishina, G.; Catanzaro, J.R.; Chinthrajah, S.; Sindher, T.; et al. Food-specific immunoglobulin A does not correlate with natural tolerance to peanut or egg allergens. Sci. Transl. Med. 2022, 14, eabq0599. [Google Scholar] [CrossRef] [PubMed]
- Yamaki, K.; Yoshino, S. Therapeutic Potential of Monoclonal IgA Antibodies in Allergic Diseases: Suppressive Effect of IgA on Immune Responses Induced By Re-exposure to Antigen in Sensitized Mice by Monoclonal IgE Antibody That Binds to a Different Epitope of the Same Antigen. Monoclon. Antib. Immunodiagn. Immunother. 2015, 34, 83–89. [Google Scholar] [CrossRef] [PubMed]
- El Ansari, Y.S.; Kanagaratham, C.; Burton, O.T.; Santos, J.V.; Hollister, B.A.; Lewis, O.L.; Renz, H.; Oettgen, H.C. Allergen-Specific IgA Antibodies Block IgE-Mediated Activation of Mast Cells and Basophils. Front. Immunol. 2022, 13, 881655. [Google Scholar] [CrossRef]
- Li, Q.; Humphries, F.; Girardin, R.C.; Wallace, A.; Ejemel, M.; Amcheslavsky, A.; McMahon, C.T.; Schiller, Z.A.; Ma, Z.; Cruz, J.; et al. Mucosal nanobody IgA as inhalable and affordable prophylactic and therapeutic treatment against SARS-CoV-2 and emerging variants. Front. Immunol. 2022, 13, 995412. [Google Scholar] [CrossRef] [PubMed]
- Virdi, V.; Palaci, J.; Laukens, B.; Ryckaert, S.; Cox, E.; Vanderbeke, E.; Depicker, A.; Callewaert, N. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat. Biotechnol. 2019, 37, 527–530. [Google Scholar] [CrossRef]
- Amcheslavsky, A.; Wallace, A.L.; Ejemel, M.; Li, Q.; McMahon, C.T.; Stoppato, M.; Giuntini, S.; Schiller, Z.A.; Pondish, J.R.; Toomey, J.R.; et al. Anti-CfaE nanobodies provide broad cross-protection against major pathogenic enterotoxigenic Escherichia coli strains, with implications for vaccine design. Sci. Rep. 2021, 11, 2751. [Google Scholar] [CrossRef]
Nanobody | Conventional Antibody (IgG) | |
---|---|---|
Specificity | Highly specific [44,45,46,47,48] | Highly specific [27,49] |
Cross-reactivity | Broad cross-reactivity to related allergens [44,45,46,47,48] | Broad cross-reactivity to related allergens [27,49] |
Affinity | In the range of KD = 10−6 to 10−10 M [44,46,48,50,51] | In the range of KD = 10−6 to 10−11 M [27,29,52,53] |
Epitopes | Rigid, structured, concave epitopes [54] | Linear peptides, flat or convex surfaces [54] |
IgE blocking potential | Effective blocking potential, but more than one nanobody is needed for full IgE blocking [44,45] | Effective blocking potential, at least two antibodies are needed for full IgE blocking [27,29] |
Half-life in vivo | A few hours at most for monomeric nanobodies; can be increased by larger constructs or fusion to albumin/Fc/PEG [55] | Up to three weeks due to recycling via the neonatal receptor (FcRn) [56] |
Immunogenicity | Due to a high similarity to human VH, VHHs are considered low immunogenic [57] but need to be evaluated individually | (Non)-human antibodies can lead to the induction of anti-drug antibodies and cause severe adverse effects [58] |
Humanization | Only a few amino acids in the framework need to be exchanged, if necessary [59] | Exchanging or mutating Fc, CDR grafting on human framework region [60] |
Generation | Immunization and PBMC isolation of camelids, sharks or transgenic mice, construction of an immune library and selection therefrom; or selection from a synthetic library [38,39,40,41,42,43] | Immunization and PBMC isolation of animals or humanized mice, or PBMC isolation from AIT-treated donors; fusion to myeloma (hybridoma) or sorting of B cells [32] |
Production | In bacteria, yeast, plants, or eukaryotic cells [38] | In eukaryotic cells [32] |
Costs | Depending on the expression system; production costs are generally lower in prokaryotic than in eukaryotic cells [38] | Depending on eukaryotic cells for production implies higher costs [32] |
Name/Reference | Target | Application | Current Status |
---|---|---|---|
Nb16 [51] | Ara h 3 (peanut) | Allergen detection | Developed |
P43 [47] | Ara h 3 (peanut) | Allergen detection | Developed and validated |
Nb82 [50] | β-Lactoglobulin (milk) | Allergen detection | Developed and validated |
B91H/B40HA [48] | Lup an 1 (lupine) | Allergen detection | Developed and validated |
Nb139H/Nb68HA [46] | Mac i 1 (macadamia) | Allergen detection | Developed and validated |
VNAR14 [86,87] | Crustacean tropomyosin | Allergen detection | Developed and validated |
AM1-1, AM1-3; AM2-A1, AM2-C2 [92] | Api m 1, Api m 2 (honey bee venom) | Allergy diagnostic | Developed, in vitro testing |
G11, G24; G10 [93] | Phl p 4, Phl p 6 (timothy grass) | Allergy diagnostic | Developed, in vitro testing |
Nb32, Nb32ILZ [44,45] | Bet v 1 (birch) | Allergy treatment | Developed, in vitro testing |
Full HCAb [94,95] | IgE | Allergy treatment | Developed, in vitro testing, discontinued |
ALX-0962 (sdab026) [79,96,97] | IgE | Allergy treatment | Developed, in vitro testing, discontinued |
2IL43/2IL172/3ILT82 [80] | IL-13 | Allergy treatment | Developed, in vitro testing |
SAR443765 [98] | TSLP/IL-13 | Allergy treatment | Clinical trial phase I completed |
IL-5-HSA Nb [99] | IL-5/HSA | Allergy treatment | Preclinical phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zettl, I.; Bauernfeind, C.; Kollárová, J.; Flicker, S. Single-Domain Antibodies—Novel Tools to Study and Treat Allergies. Int. J. Mol. Sci. 2024, 25, 7602. https://doi.org/10.3390/ijms25147602
Zettl I, Bauernfeind C, Kollárová J, Flicker S. Single-Domain Antibodies—Novel Tools to Study and Treat Allergies. International Journal of Molecular Sciences. 2024; 25(14):7602. https://doi.org/10.3390/ijms25147602
Chicago/Turabian StyleZettl, Ines, Clarissa Bauernfeind, Jessica Kollárová, and Sabine Flicker. 2024. "Single-Domain Antibodies—Novel Tools to Study and Treat Allergies" International Journal of Molecular Sciences 25, no. 14: 7602. https://doi.org/10.3390/ijms25147602
APA StyleZettl, I., Bauernfeind, C., Kollárová, J., & Flicker, S. (2024). Single-Domain Antibodies—Novel Tools to Study and Treat Allergies. International Journal of Molecular Sciences, 25(14), 7602. https://doi.org/10.3390/ijms25147602