Adipokines—A Cohort Prospective Study in Children with Severe Burns
Abstract
:1. Introduction
2. Results
- -
- Adiponectin and resistin (p = 0.001, R = 0.560), leptin (p = 0.035, R = −0.379), TNF-α (p = 0.012, R = −0.447) or PAI-1 (p < 0.001, R = 0.699);
- -
- Resistin and leptin (p = 0.024, R = −0.404), CRP (p = 0.005, R = 0.490), TNF-α (p = 0.001, R = −0.572) or PAI-1 (p < 0.001, R = 0.805);
- -
- TNF-α and leptin (p = 0.018, R = 0.423);
- -
- PAI-1 and leptin (p = 0.017, R = −0.425);
- -
- TNF-α and PAI-1 (p < 0.001, R = −0.715).
- -
- Adiponectin and resistin (p = 0.015, R = 0.447), PAI-1 (p < 0.001, R = 0.774) or triglycerides (p = 0.039, R = 0.392);
- -
- Resistin and CRP (p = 0.011, R = 0.465) or PAI-1 (p < 0.001, R = 0.640);
- -
- Triglycerides and CRP (p < 0.001, R = 0.615) or PAI-1 (p = 0.015, R = 0.457).
3. Discussion
3.1. Adiponectin
- a.
- adiponectin–resistin interplay influences the metabolic profile in severely burned patients (as these adipokines have opposite actions upon the systemic inflammatory response and upon metabolism);
- b.
- adiponectin–PAI-1 interplay influences the systemic inflammatory response, the peripheral insulin sensitivity, and the pro/anti-coagulant status in severely burned children (adiponectin is anti-inflammatory and decreases insulin resistance, meanwhile PAI-1 is pro-inflammatory, increases insulin resistance, and has antifibrinolytic and procoagulant action) [42,43].
3.2. Resistin
3.3. Leptin
3.4. Triglycerides
- Single-center experience.
- Rather limited volume of the target group (due to the COVID-19 pandemic).
- Study conducted only three weeks post burn; lack of compliance for follow-up after this discharge.
- Unidentical values of median age in the target group and the reference group.Perspectives for the following studies:
- -
- multi-center study;
- -
- both children and adult patients;
- -
- larger target group;
- -
- longer follow-up after discharge.
4. Materials and Methods
4.1. Patients Included in this Research
4.2. Inclusion and Exclusion Criteria for the Children with a Burn (Study Group)
4.2.1. Inclusion Criteria: Children with a Burn (Study Group)
- -
- Age below 18 years old;
- -
- Thermal burns involving at least 25% TBSA;
- -
- Patients admitted to the burn unit in less than 48 h from the moment of burn infliction;
- -
- The patient’s parents or legal guardian read, understood, and signed the informed consent that states their agreement for the enrolment of their child/children into the present study;
- -
- Patient agreement to be part of this study.
4.2.2. Exclusion Criteria: Children with a Burn (Study Group)
- -
- Pre-existing autoimmune health condition;
- -
- Local or systemic infection at the moment of admission into the burn unit;
- -
- Pre-existing oncologic condition;
- -
- Patients who have been receiving hormonal treatment;
- -
- Patients who have been receiving oncologic treatment;
- -
- Patients who have been receiving immunosuppressive therapy;
- -
- Refusal of the parents or legal guardians to enroll the patient into the present study;
- -
- Refusal of the patient to be included in this study.
4.3. Inclusion and Exclusion Criteria for the Control Group
4.3.1. Inclusion Criteria: Control Group
- -
- Age below 18 years old;
- -
- The individual agrees to be included in the control group;
- -
- The patient’s parents or legal guardians read, understood, and signed the informed consent that states their agreement for the enrolment of their child/children into the present study.
4.3.2. Exclusion Criteria: Control Group
- -
- Inflammatory systemic condition;
- -
- Autoimmune health condition;
- -
- Local or systemic infection;
- -
- Oncologic condition;
- -
- Individual under hormonal treatment, or oncologic treatment, or immunosuppressive therapy;
- -
- Individuals with oral health conditions (teeth, gums, mucosa);
- -
- Refusal of the parents or legal guardians to enroll the patient in the present study;
- -
- Refusal of the individual to be part of this study.
4.4. Sample Collection
4.4.1. Sample Collection in the Study Group
- -
- Forty-eight hours after the burn trauma (T1);
- -
- Ten days after the burn trauma (T2);
- -
- Twenty-one days after the burn trauma (T3).
4.4.2. Sample Collection in the Control Group
4.5. Sample Preservation
4.6. Sample Analyzing and Data Collecting Using Multiplex Technique
4.7. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, C.; Tompkins, R.G.; Finnerty, C.C.; Sidossis, L.S.; Suman, O.E.; Herndon, D.N. The metabolic stress response to burn trauma: Current understanding and therapies. Lancet 2016, 388, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Opriessnig, E.; Luze, H.; Smolle, C.; Draschl, A.; Zrim, R.; Giretzlehner, M.; Kamolz, L.-P.; Nischwitz, S.P. Epidemiology of burn injury and the ideal dressing in global burn care–Regional differences explored. Burns 2023, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Z.; Lu, G.-Z.; Zhao, H.-S.; Liu, L.-J.; Jin, J.; Wu, Y.-F.; Wu, J.; Zhao, F.-L.; Liu, N.; Liu, W.-M. Clinical features and mortality-related factors of extensive burns among young adults: The Kunshan disaster experience. Ann. Transl. Med. 2020, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Kelter, B.; Holavanahalli, R.; Suman, O.; Ryan, C.; Schneider, J. Recognizing the long-term sequelae of burns as a chronic medical condition. Burns 2020, 46, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Ehlting, C.; Wolf, S.D.; Bode, J.G. Acute-phase protein synthesis: A key feature of innate immune functions of the liver. Biol. Chem. 2021, 402, 1129–1145. [Google Scholar] [CrossRef] [PubMed]
- Onishi, S.; Matsuura, H.; Osuka, A.; Matsumoto, H.; Ebihara, T.; Ogura, H. Resistin forms a network with inflammatory cytokines and is associated with prognosis in major burns. Burns 2022, 48, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Badoiu, S.C.; Enescu, D.M.; Tatar, R.; Stanescu-Spinu, I.-I.; Miricescu, D.; Greabu, M.; Ionel, I.P.; Jinga, V. Serum Plasminogen Activator Inhibitor-1, α 1-Acid Glycoprotein, C-Reactive Protein, and Platelet Factor 4 Levels—Promising Molecules That Can Complete the “Puzzle” of the Biochemical Milieu in Severe Burns: Preliminary Results of a Cohort Prospective Study. J. Clin. Med. 2024, 13, 2794. [Google Scholar] [CrossRef] [PubMed]
- Al-Tarrah, K.; Jones, S.W.; Moiemen, N.; Lord, J.M. Potential role of adipose tissue and its hormones in burns and critically III patients. Burns 2020, 46, 259–266. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The role of adipokines in health and disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Choi, H.M.; Doss, H.M.; Kim, K.S. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Kamil, M.A.; Peeran, S.W.; Basheer, S.N.; Elhassan, A.; Alam, M.N.; Thiruneervannan, M. Role of Resistin in Various Diseases with Special Emphasis on Periodontal and Periapical Inflammation–A Review. J. Pharm. Bioallied Sci. 2023, 15, S31–S35. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.-M.; Cheng, J.-Y.; Xu, Z.; Liu, H.-Y.; Xu, D.-X.; Fu, L.; Zhao, H. Associations of serum resistin with the severity and prognosis in patients with community-acquired pneumonia. Front. Immunol. 2021, 12, 703515. [Google Scholar] [CrossRef]
- Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Brunetti, L.; Leone, S. Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Front. Physiol. 2020, 11, 578966. [Google Scholar]
- Ramirez, J.L.; Khetani, S.A.; Zahner, G.J.; Spaulding, K.A.; Schaller, M.S.; Gasper, W.J.; Hills, N.K.; Schafer, A.L.; Grenon, S.M. Serum resistin is associated with impaired endothelial function and a higher rate of adverse cardiac events in patients with peripheral artery disease. J. Vasc. Surg. 2019, 69, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Sivri, F.; Eryılmaz, U. Increased serum resistin levels associated with isolated coronary artery ectasia. Arch. Med. Sci. Atheroscler. Dis. 2022, 7, e124. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; Chen, N.; Zhang, Q.; Zhuo, L.; Wang, X.; Wang, D.; Jin, H. Resistin increases platelet P-selectin levels via p38 MAPK signal pathway. Diabetes Vasc. Dis. Res. 2014, 11, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Filková, M.; Haluzík, M.; Gay, S.; Šenolt, L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin. Immunol. 2009, 133, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-C.; Lin, C.-Y.; Kuo, S.-J.; Liu, S.-C.; Lu, Y.-C.; Chen, Y.-L.; Wang, S.-W.; Tang, C.-H. Resistin enhances VCAM-1 expression and monocyte adhesion in human osteoarthritis synovial fibroblasts by inhibiting MiR-381 expression through the PKC, p38, and JNK signaling pathways. Cells 2020, 9, 1369. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; De Matteis, R.; Pico, C.; Ceresi, E.; Obrador, A.; Maffeis, C.; Oliver, J.; Palou, A. Secretory granules of endocrine and chief cells of human stomach mucosa contain leptin. Int. J. Obes. 2000, 24, 789–793. [Google Scholar] [CrossRef]
- Inagaki-Ohara, K. Gastric leptin and tumorigenesis: Beyond obesity. Int. J. Mol. Sci. 2019, 20, 2622. [Google Scholar] [CrossRef]
- Lis-Kuberka, J.; Pupek, M.; Orczyk-Pawiłowicz, M. The Mother–Child Dyad Adipokine Pattern: A Review of Current Knowledge. Nutrients 2023, 15, 4059. [Google Scholar] [CrossRef] [PubMed]
- Basak, S.; Varma, S.; Duttaroy, A.K. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front. Endocrinol. 2023, 14, 1215353. [Google Scholar] [CrossRef] [PubMed]
- Picó, C.; Palou, M.; Pomar, C.A.; Rodríguez, A.M.; Palou, A. Leptin as a key regulator of the adipose organ. Rev. Endocr. Metab. Disord. 2022, 23, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.M. Leptin and the endocrine control of energy balance. Nat. Metab. 2019, 1, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Baver, S.B.; Hope, K.; Guyot, S.; Bjørbaek, C.; Kaczorowski, C.; O’Connell, K.M. Leptin modulates the intrinsic excitability of AgRP/NPY neurons in the arcuate nucleus of the hypothalamus. J. Neurosci. 2014, 34, 5486–5496. [Google Scholar] [CrossRef] [PubMed]
- Haspula, D.; Cui, Z. Neurochemical basis of inter-organ crosstalk in health and obesity: Focus on the hypothalamus and the brainstem. Cells 2023, 12, 1801. [Google Scholar] [CrossRef] [PubMed]
- Vilariño-García, T.; Polonio-González, M.L.; Pérez-Pérez, A.; Ribalta, J.; Arrieta, F.; Aguilar, M.; Obaya, J.C.; Gimeno-Orna, J.A.; Iglesias, P.; Navarro, J. Role of Leptin in Obesity, Cardiovascular Disease, and Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 2338. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, E.-J.; Tchernof, A.; Pelletier, M.; Joanisse, D.R.; Mauriège, P. Plasma adiponectin/leptin ratio associates with subcutaneous abdominal and omental adipose tissue characteristics in women. BMC Endocr. Disord. 2024, 24, 39. [Google Scholar] [CrossRef] [PubMed]
- Koltes, D.; Spurlock, M.; Spurlock, D. Adipose triglyceride lipase protein abundance and translocation to the lipid droplet increase during leptin-induced lipolysis in bovine adipocytes. Domest. Anim. Endocrinol. 2017, 61, 62–76. [Google Scholar] [CrossRef]
- Zeng, W.; Pirzgalska, R.M.; Pereira, M.M.; Kubasova, N.; Barateiro, A.; Seixas, E.; Lu, Y.-H.; Kozlova, A.; Voss, H.; Martins, G.G. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 2015, 163, 84–94. [Google Scholar] [CrossRef]
- Caron, A.; Lee, S.; Elmquist, J.K.; Gautron, L. Leptin and brain–adipose crosstalks. Nat. Rev. Neurosci. 2018, 19, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Tam, S.S.; Huang, Y.; Dubé, P.E.; Alhosh, R.; Girish, N.; Punit, S.; Nataneli, S.; Li, F.; Bender, J.M. TNF receptor 1 promotes early-life immunity and protects against colitis in mice. Cell Rep. 2020, 33, 108275. [Google Scholar] [CrossRef]
- Sethi, J.K.; Hotamisligil, G.S. Metabolic messengers: Tumour necrosis factor. Nat. Metab. 2021, 3, 1302–1312. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhao, G.; Li, H. Forward and reverse signaling mediated by transmembrane tumor necrosis factor-alpha and TNF receptor 2: Potential roles in an immunosuppressive tumor microenvironment. Front. Immunol. 2017, 8, 304082. [Google Scholar] [CrossRef] [PubMed]
- Heir, R.; Stellwagen, D. TNF-mediated homeostatic synaptic plasticity: From in vitro to in vivo models. Front. Cell. Neurosci. 2020, 14, 565841. [Google Scholar] [CrossRef] [PubMed]
- Gough, P.; Myles, I.A. Tumor necrosis factor receptors: Pleiotropic signaling complexes and their differential effects. Front. Immunol. 2020, 11, 585880. [Google Scholar] [CrossRef]
- Welters, I.D.; Bing, C.; Ding, C.; Leuwer, M.; Hall, A.M. Circulating anti-inflammatory adipokines High Molecular Weight Adiponectin and Zinc-α2-glycoprotein (ZAG) are inhibited in early sepsis, but increase with clinical recovery: A pilot study. BMC Anesthesiol. 2014, 14, 124. [Google Scholar] [CrossRef]
- Wade, C.E.; Mora, A.G.; Shields, B.A.; Pidcoke, H.F.; Baer, L.A.; Chung, K.K.; Wolf, S.E. Signals from fat after injury: Plasma adipokines and ghrelin concentrations in the severely burned. Cytokine 2013, 61, 78–83. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Lin, Y.-S.; Chen, C.-C.; Liu, C.-F. Implementing AI models for prognostic predictions in high-risk burn patients. Diagnostics 2023, 13, 2984. [Google Scholar] [CrossRef]
- Kim, S.; Yoon, J.; Kym, D.; Hur, J.; Kim, M.; Park, J.; Cho, Y.S.; Chun, W.; Yoon, D. Evaluating clinical heterogeneity and predicting mortality in severely burned patients through unsupervised clustering and latent class analysis. Sci. Rep. 2023, 13, 13600. [Google Scholar] [CrossRef]
- Obed, D.; Salim, M.; Dastagir, N.; Knoedler, S.; Dastagir, K.; Panayi, A.C.; Vogt, P.M. Comparative analysis of composite mortality prediction scores in intensive care burn patients. Int. J. Environ. Res. Public Health 2022, 19, 12321. [Google Scholar] [CrossRef] [PubMed]
- Ahirwar, A.K.; Jain, A.; Goswami, B.; Bhatnagar, M.; Bhatacharjee, J. Imbalance between protective (adiponectin) and prothrombotic (Plasminogen Activator Inhibitor-1) adipokines in metabolic syndrome. Diabetes Metab. Syndr. Clin. Res. Rev. 2014, 8, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, S.S.; Siddiqui, K. Plasminogen activator inhibitor-1 mediate downregulation of adiponectin in type 2 diabetes patients with metabolic syndrome. Cytokine X 2022, 4, 100064. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Yatsuya, H.; Tamakoshi, K.; Wada, K.; Otsuka, R.; Zhang, H.; Sugiura, K.; Kondo, T.; Murohara, T.; Toyoshima, H. Inverse association between adiponectin and C-reactive protein in substantially healthy Japanese men. Atherosclerosis 2006, 188, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Abraham, P.A.; Attipoe, S.; Kazman, J.B.; Zeno, S.A.; Poth, M.; Deuster, P.A. Role of plasma adiponectin/C-reactive protein ratio in obesity and type 2 diabetes among African Americans. Afr. Health Sci. 2017, 17, 99–107. [Google Scholar] [CrossRef]
- Lappas, M.; Permezel, M.; Rice, G.E. Leptin and adiponectin stimulate the release of proinflammatory cytokines and prostaglandins from human placenta and maternal adipose tissue via nuclear factor-κB, peroxisomal proliferator-activated receptor-γ and extracellularly regulated kinase 1/2. Endocrinology 2005, 146, 3334–3342. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lu, L.; Wei, X.; Jin, D.; Qian, T.; Yu, A.; Sun, J.; Cui, J.; Yang, Z. The multimerization and secretion of adiponectin are regulated by TNF-alpha. Endocrine 2016, 51, 456–468. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Gómez-Ambrosi, J. Adiponectin-leptin ratio: A promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 2018, 7, 57–62. [Google Scholar] [CrossRef]
- Qiao, L.; Zou, C.; van der Westhuyzen, D.R.; Shao, J. Adiponectin reduces plasma triglyceride by increasing VLDL triglyceride catabolism. Diabetes 2008, 57, 1824–1833. [Google Scholar] [CrossRef] [PubMed]
- Izadi, V.; Farabad, E.; Azadbakht, L. Epidemiologic evidence on serum adiponectin level and lipid profile. Int. J. Prev. Med. 2013, 4, 133. [Google Scholar]
- Yanai, H.; Yoshida, H. Beneficial effects of adiponectin on glucose and lipid metabolism and atherosclerotic progression: Mechanisms and perspectives. Int. J. Mol. Sci. 2019, 20, 1190. [Google Scholar] [CrossRef] [PubMed]
- Hajri, T.; Gharib, M.; Kaul, S.; Karpeh Jr, M.S. Association between adipokines and critical illness outcomes. J. Trauma Acute Care Surg. 2017, 83, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Zhang, Q.; Peng, Y.; Chen, M.; Lin, X.; Wu, J.; Cai, C.; Mei, Y.; Jin, H. Resistin levelispositively correlated with thrombotic complications in Southern Chinese metabolic syndrome patients. J. Endocrinol. Investig. 2011, 34, e36–e42. [Google Scholar] [CrossRef] [PubMed]
- Hvas, C.L.; Larsen, J.B. The fibrinolytic system and its measurement: History, current uses and future directions for diagnosis and treatment. Int. J. Mol. Sci. 2023, 24, 14179. [Google Scholar] [CrossRef]
- Ikeda, Y.; Tsuchiya, H.; Hama, S.; Kajimoto, K.; Kogure, K. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2014, 448, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Acquarone, E.; Monacelli, F.; Borghi, R.; Nencioni, A.; Odetti, P. Resistin: A reappraisal. Mech. Ageing Dev. 2019, 178, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Aynalı, A.; Demirci, K.; Demirci, S.; Arıdoğan, B.C. The serum levels of resistin and its relationship with other proinflammatory cytokines in patients with Alzheimer’s disease. Clin. Psychopharmacol. Neurosci. 2017, 15, 59. [Google Scholar] [CrossRef]
- Reilly, M.P.; Lehrke, M.; Wolfe, M.L.; Rohatgi, A.; Lazar, M.A.; Rader, D.J. Resistin is an inflammatory marker of atherosclerosis in humans. Circulation 2005, 111, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Hivert, M.-F.; Sullivan, L.M.; Fox, C.S.; Nathan, D.M.; D’Agostino Sr, R.B.; Wilson, P.W.; Meigs, J.B. Associations of adiponectin, resistin, and tumor necrosis factor-α with insulin resistance. J. Clin. Endocrinol. Metab. 2008, 93, 3165–3172. [Google Scholar] [CrossRef]
- Gao, J.; Deng, M.; Li, Y.; Yin, Y.; Zhou, X.; Zhang, Q.; Hou, G. Resistin as a systemic inflammation-related biomarker for sarcopenia in patients with chronic obstructive pulmonary disease. Front. Nutr. 2022, 9, 921399. [Google Scholar] [CrossRef]
- Silswal, N.; Singh, A.K.; Aruna, B.; Mukhopadhyay, S.; Ghosh, S.; Ehtesham, N.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-α and IL-12 in macrophages by NF-κB-dependent pathway. Biochem. Biophys. Res. Commun. 2005, 334, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Badoer, E. Cardiovascular and metabolic crosstalk in the brain: Leptin and resistin. Front. Physiol. 2021, 12, 639417. [Google Scholar] [CrossRef] [PubMed]
- Kino, Y.; Kato, M.; Ikehara, Y.; Asanuma, Y.; Akashi, K.; Kawai, S. Plasma leptin levels in patients with burn injury: A preliminary report. Burns 2003, 29, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Jeevanandam, M.; Begay, C.K.; Petersen, S.R. Plasma leptin levels in trauma patients: Effect of adjuvant recombinant human growth hormone in intravenously fed multiple trauma patients. J. Parenter. Enter. Nutr. 1998, 22, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafez, N.; Hassan, Y.S.; El-Metwally, T. A study on biomarkers, cytokines, and growth factors in children with burn injuries. Ann. Burn. Fire Disasters 2007, 20, 89. [Google Scholar]
- Karampela, I.; Kandri, E.; Chrysanthopoulou, E.; Skyllas, G.; Christodoulatos, G.-S.; Antonakos, G.; Vogiatzakis, E.; Armaganidis, A.; Dalamaga, M. Circulating total leptin as a diagnostic and prognostic biomarker in sepsis. Eur. Respir. J. 2019, 54, PA2177. [Google Scholar]
- Zahran, S.M.; Hamed, E.A.; Awean, G.Z.; Abdel-Hafez, N.M.; Hassan, Y.S. Pediatric burn and key regulatory cytokines: Impact of burn surface area and sepsis on the clinical outcomes. J. Pediatr. Biochem. 2010, 1, 279–288. [Google Scholar]
- Van Dielen, F.; Van’t Veer, C.; Schols, A.; Soeters, P.; Buurman, W.; Greve, J. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. Int. J. Obes. 2001, 25, 1759–1766. [Google Scholar] [CrossRef]
- Corica, F.; Allegra, A.; Corsonello, A.; Buemi, M.; Calapai, G.; Ruello, A.; Nicita Mauro, V.; Ceruso, D. Relationship between plasma leptin levels and the tumor necrosis factor-α system in obese subjects. Int. J. Obes. 1999, 23, 355–360. [Google Scholar] [CrossRef]
- Çalıkoglu, M.; Şahin, G.; Unlu, A.; Ozturk, C.; Tamer, L.; Ercan, B.; Kanik, A.; Atik, U. Leptin and TNF-alpha levels in patients with chronic obstructive pulmonary disease and their relationship to nutritional parameters. Respiration 2004, 71, 45–50. [Google Scholar] [CrossRef]
- Singh, P.; Peterson, T.E.; Barber, K.R.; Kuniyoshi, F.S.; Jensen, A.; Hoffmann, M.; Shamsuzzaman, A.S.; Somers, V.K. Leptin upregulates the expression of plasminogen activator inhibitor-1 in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 2010, 392, 47–52. [Google Scholar] [CrossRef]
- Martínez-Sánchez, N. There and back again: Leptin actions in white adipose tissue. Int. J. Mol. Sci. 2020, 21, 6039. [Google Scholar] [CrossRef] [PubMed]
- Rydén, M.; Dicker, A.; van Harmelen, V.; Hauner, H.; Brunnberg, M.; Perbeck, L.; Lönnqvist, F.; Arner, P. Mapping of early signaling events in tumor necrosis factor-α-mediated lipolysis in human fat cells. J. Biol. Chem. 2002, 277, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.; Alves, M.; Pontes, J.; Dias, N.; Figueiredo, J.; Santos, R.; Loureiro, H.; Castanheira, J.; Osório, N.; Monteiro, M. Association between serum levels of C-reactive protein and lipid profile. Eur. J. Public Health 2019, 29, ckz035.001. [Google Scholar] [CrossRef]
- Horvath, A.A. Increased CRP and triglyceride level associate with accelerated progression of Alzheimer’s disease. Alzheimer’s Dement. 2021, 17, e054154. [Google Scholar] [CrossRef]
- Kumari, S.; Singh, B. Assessment of correlation of serum high-sensitive C-reactive protein, urinary albumin-to-creatinine ratio, and lipid profile in diabetics. J. Pharm. Bioallied Sci. 2021, 13, S1569–S1572. [Google Scholar] [PubMed]
- Kim, J.-E.; Kim, J.-S.; Jo, M.-J.; Cho, E.; Ahn, S.-Y.; Kwon, Y.-J.; Ko, G.-J. The roles and associated mechanisms of adipokines in development of metabolic syndrome. Molecules 2022, 27, 334. [Google Scholar] [CrossRef] [PubMed]
- Morrow, G.B.; Mutch, N.J. Past, present, and future perspectives of plasminogen activator inhibitor 1 (PAI-1). Semin. Thromb. Hemost. 2023, 49, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Vecchiola, A.; García, K.; González-Gómez, L.M.; Tapia-Castillo, A.; Artigas, R.; Baudrand, R.; Kalergis, A.M.; Carvajal, C.A.; Fardella, C.E. Plasminogen activator inhibitor-1 and adiponectin are associated with metabolic syndrome components. Am. J. Hypertens. 2022, 35, 311–318. [Google Scholar] [CrossRef]
- Henkel, A.S.; Khan, S.S.; Olivares, S.; Miyata, T.; Vaughan, D.E. Inhibition of plasminogen activator inhibitor 1 attenuates hepatic steatosis but does not prevent progressive nonalcoholic steatohepatitis in mice. Hepatol. Commun. 2018, 2, 1479–1492. [Google Scholar] [CrossRef]
- Lu, A.T.; Quach, A.; Wilson, J.G.; Reiner, A.P.; Aviv, A.; Raj, K.; Hou, L.; Baccarelli, A.A.; Li, Y.; Stewart, J.D. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 2019, 11, 303. [Google Scholar] [CrossRef] [PubMed]
Group/Parameter | Study Group | Control Group | p * |
---|---|---|---|
Number of patients (Nr., %) | 32 (60.4%) | 21 (39.6%) | - |
Gender—Male (Nr., %) | 22 (68.8%) | 9 (42.9%) | 0.089 * |
Age (Median (IQR)) (years) | 3 (2–10) | 14 (12–16) | <0.001** |
Age (Median (IQR)) (months) | 39.5 (26–122.5) | ||
Hospitalization period (Median (IQR)) | 56.5 (25.25–94) | - | - |
TBSA (Median (IQR)) | 35 (30–45) | - | - |
% Burned body surface-Burns grade IIB/III (Median (IQR)) | 20 (16.5–33) | ||
Time from event to hospitalization (Median (IQR)) | 8 (4–9.5) | - | - |
R-Baux Score (Median (IQR)) | 50 (31–64) | - | - |
Burn injury mechanism (Nr. %) | - | - | |
Hot liquid | 15 (46.9%) | - | - |
Flame | 13 (40.6%) | - | - |
Electric arc | 4 (12.5%) | - | - |
Usage of mechanical ventilation (Nr., %) | 25 (78.1%) | - | - |
Smoke inhalation injury (Nr., %) | 11 (34.4%) | - | - |
Mortality (Nr., %) | 2 (6.3%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badoiu, S.C.; Enescu, D.M.; Tatar, R.; Miricescu, D.; Stanescu-Spinu, I.-I.; Greabu, M.; Coricovac, A.M.; Badoiu, S.E.; Jinga, V. Adipokines—A Cohort Prospective Study in Children with Severe Burns. Int. J. Mol. Sci. 2024, 25, 7630. https://doi.org/10.3390/ijms25147630
Badoiu SC, Enescu DM, Tatar R, Miricescu D, Stanescu-Spinu I-I, Greabu M, Coricovac AM, Badoiu SE, Jinga V. Adipokines—A Cohort Prospective Study in Children with Severe Burns. International Journal of Molecular Sciences. 2024; 25(14):7630. https://doi.org/10.3390/ijms25147630
Chicago/Turabian StyleBadoiu, Silviu Constantin, Dan Mircea Enescu, Raluca Tatar, Daniela Miricescu, Iulia-Ioana Stanescu-Spinu, Maria Greabu, Anca Magdalena Coricovac, Silvia Elena Badoiu, and Viorel Jinga. 2024. "Adipokines—A Cohort Prospective Study in Children with Severe Burns" International Journal of Molecular Sciences 25, no. 14: 7630. https://doi.org/10.3390/ijms25147630
APA StyleBadoiu, S. C., Enescu, D. M., Tatar, R., Miricescu, D., Stanescu-Spinu, I. -I., Greabu, M., Coricovac, A. M., Badoiu, S. E., & Jinga, V. (2024). Adipokines—A Cohort Prospective Study in Children with Severe Burns. International Journal of Molecular Sciences, 25(14), 7630. https://doi.org/10.3390/ijms25147630