Epigenome-Wide Association Study of Depressive Symptoms in Black Women in the InterGEN Study
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. Theoretical Framework
4.2. Study Design and Sample
4.3. Instruments and Measures
4.3.1. Sociodemographic Variables
4.3.2. Depressive Symptoms
4.3.3. Perceived Discrimination
4.3.4. DNA Methylation Preprocessing
4.3.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malhi, G.S.; Mann, J.J. Depression. Lancet 2018, 392, 2299–2312. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Yamagata, H.; Seki, T.; Watanabe, Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin. Neurosci. 2018, 72, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Labaka, A.; Goñi-Balentziaga, O.; Lebeña, A.; Pérez-Tejada, J. Biological Sex Differences in Depression: A Systematic Review. Biol. Res. Nurs. 2018, 20, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, B. National, State-Level, and County-Level Prevalence Estimates of Adults Aged ≥18 Years Self-Reporting a Lifetime Diagnosis of Depression—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Spikes, T.; Higgins, M.; Lewis, T.; Dunbar, S. The Effect of Contextualized Racial and Gendered Stressors, Social Support, and Depression on Hypertension Illness Perceptions and Hypertension Medication Adherence in Young African American Women with Hypertension. J. Cardiovasc. Nurs. 2020, 35, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, J.; Marinescu, I.; Vogelsang, C.; Kim, J.C.; Morgan, S. Prevalence of depression in women with low income living in developed countries. Depress. Anxiety 2021, 38, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Barcelona, V.; DeWan, A.; Prescott, L.; Crusto, C.; Sun, Y.V.; Taylor, J.Y. Depressive Symptoms and Blood Pressure in African American Women: A Secondary Analysis from the InterGEN Study. J. Cardiovasc. Nurs. 2022, 37, E89–E96. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.L.; Ghastine, L.; Wegienka, G.; Wise, L.A.; Baird, D.D.; Vines, A.I. Early Life Disadvantage and the Risk of Depressive Symptoms among Young Black Women. J. Racial Ethn. Health Disparities 2024, 11, 1819–1828. [Google Scholar] [CrossRef]
- Bailey, R.K.; Mokonogho, J.; Kumar, A. Racial and ethnic differences in depression: Current perspectives. Neuropsychiatr. Dis. Treat. 2019, 15, 603–609. [Google Scholar] [CrossRef]
- Boulkrane, M.S.; Fedotova, J.; Kolodyaznaya, V.; Micale, V.; Drago, F.; van den Tol, A.J.; Baranenko, D. Vitamin D and Depression in Women: A Mini-review. Curr. Neuropharmacol. 2020, 18, 288–300. [Google Scholar] [CrossRef]
- Albert, K.M.; Newhouse, P.A. Estrogen, Stress, and Depression: Cognitive and Biological Interactions. Annu. Rev. Clin. Psychol. 2019, 15, 399–423. [Google Scholar] [CrossRef] [PubMed]
- Sassarini, D.J. Depression in midlife women. Maturitas 2016, 94, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Jovanova, O.S.; Nedeljkovic, I.; Spieler, D.; Walker, R.M.; Liu, C.; Luciano, M.; Bressler, J.; Brody, J.; Drake, A.J.; Evans, K.L.; et al. DNA methylation signatures of depressive symptoms in middle-aged and elderly persons: Meta-analysis of multiethnic epigenome-wide studies. JAMA Psychiatry 2018, 75, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Depression. World Health Organization. Published 13 September 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 14 January 2023).
- Mayer, L.; Corrigan, P.W.; Eisheuer, D.; Oexle, N.; Rüsch, N. Attitudes towards disclosing a mental illness: Impact on quality of life and recovery. Soc. Psychiatry Psychiatr. Epidemiol. 2022, 57, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialogues Clin. Neurosci. 2019, 21, 397–405. [Google Scholar] [CrossRef]
- de Mendoza, V.B.; Huang, Y.; Crusto, C.A.; Sun, Y.V.; Taylor, J.Y. Perceived Racial Discrimination and DNA Methylation among African American Women in the InterGEN Study. Biol. Res. Nurs. 2018, 20, 145–152. [Google Scholar] [CrossRef]
- Park, C.; Rosenblat, J.D.; Brietzke, E.; Pan, Z.; Lee, Y.; Cao, B.; Zuckerman, H.; Kalantarova, A.; McIntyre, R.S. Stress, epigenetics and depression: A systematic review. Neurosci. Biobehav. Rev. 2019, 102, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Meng, L.; Pei, F.; Zheng, Y.; Leng, J. A review of DNA methylation in depression. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2017, 43, 39–46. [Google Scholar] [CrossRef]
- Li, M.; D’Arcy, C.; Li, X.; Zhang, T.; Joober, R.; Meng, X. What do DNA methylation studies tell us about depression? A systematic review. Transl. Psychiatry 2019, 9, 68. [Google Scholar] [CrossRef]
- Lin, E.; Tsai, S.J. Epigenetics and Depression: An Update. Psychiatry Investig. 2019, 16, 654–661. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinforma 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef] [PubMed]
- Roy Chowdhury, S.; Mittal, R.; Yadav, R.; Guglany, V. Teaching NeuroImage: Glutaredoxin-5–Associated Variant Nonketotic Hyperglycinemia: A Treatable Mitochondrial Cytopathy. Neurology 2024, 102, e208105. [Google Scholar] [CrossRef] [PubMed]
- Llaurador-Coll, M.; Rios, S.; García-Gavilán, J.F.; Babio, N.; Vilella, E.; Salas-Salvadó, J. Plasma levels of neurology-related proteins are associated with cognitive performance in an older population with overweight/obesity and metabolic syndrome. GeroScience 2023, 45, 2457–2470. [Google Scholar] [CrossRef] [PubMed]
- Göteson, A.; Isgren, A.; Jonsson, L.; Sparding, T.; Smedler, E.; Pelanis, A.; Zetterberg, H.; Jakobsson, J.; Pålsson, E.; Holmen-Larsson, J.; et al. Cerebrospinal fluid proteomics targeted for central nervous system processes in bipolar disorder. Mol. Psychiatry 2021, 26, 7446–7453. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Matthay, K.K. Advancing therapy for neuroblastoma. Nat. Rev. Clin. Oncol. 2022, 19, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Yahya, V.; Spagnolo, F.; Di Maggio, G.; Leopizzi, E.; De Marco, P.; Fortunato, F.; Comi, G.P.; Rini, A.; Monfrini, E.; Di Fonzo, A. Juvenile-onset dystonia with spasticity in Leigh syndrome caused by a novel NDUFA10 variant. Park. Relat. Disord. 2022, 104, 85–87. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.K.; Lu, J.; Bai, Y. Mitochondrial respiratory complex I: Structure, function and implication in human diseases. Curr. Med. Chem. 2009, 16, 1266–1277. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, E.; Kenny, J.; Bacchelli, C.; Beales, P.L. Managing Bardet–Biedl Syndrome—Now and in the Future. Front. Pediatr. 2018, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- N Syndrome. Orphanet. Published 10 April 2024. Available online: https://www.orpha.net/en/disease/detail/2608 (accessed on 28 April 2024).
- Zhang, M.; Wang, H. Ca2+-stimulated ADCY1 and ADCY8 regulate distinct aspects of synaptic and cognitive flexibility. Front. Cell Neurosci. 2023, 17, 1215255. [Google Scholar] [CrossRef]
- Li, H.; Yu, S.; Wang, R.; Sun, Z.; Zhou, X.; Zheng, L.; Yin, Z.; Zhang, X.; Sun, Y. ARHGEF10 gene polymorphism is closely associated with the risk of ischemic stroke in Northern Han Chinese population. Neurol. Res. 2017, 39, 158–164. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, C.; Xie, G.; Song, Z.; Wang, P.; Bai, Y.; Chen, D.; Zhang, Y.; Lv, P.; Liang, W.; et al. FAM19A5/TAFA5, a novel neurokine, plays a crucial role in depressive-like and spatial memory-related behaviors in mice. Mol. Psychiatry 2021, 26, 2363–2379. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Liu, X. Cochlear Implantation Outcomes in Patients with OTOF Mutations. Front. Neurosci. 2020, 14, 447. [Google Scholar] [CrossRef]
- Miyake, C.Y.; Burrage, L.; Glinton, K.; Houck, K.; Hoyos-Martinez, A.; Graham, B.; Yang, Y.; Rawls-Castillo, B.; Scaglia, F.; Soler-Alfonso, C.; et al. TANGO2 Deficiency. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: http://www.ncbi.nlm.nih.gov/books/NBK476443/ (accessed on 3 May 2024).
- Li, S.; Wen, B.; Zhao, W.; Wang, L.; Chen, X. Design, Synthesis and Biological Evaluation of Novel Ketamine Derivatives as NMDAR Antagonists. Molecules 2024, 29, 2459. [Google Scholar] [CrossRef]
- Kabotyanski, K.E.; Najera, R.A.; Banks, G.P.; Sharma, H.; Provenza, N.R.; Hayden, B.Y.; Mathew, S.J.; Sheth, S.A. Cost-effectiveness and threshold analysis of deep brain stimulation vs. treatment-as-usual for treatment-resistant depression. Transl. Psychiatry 2024, 14, 243. [Google Scholar] [CrossRef]
- Kanner, A.M. Is major depression a neurologic disorder with psychiatric symptoms? Epilepsy Behav. 2004, 5, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Jüllig, A.K.; Hebib, S.; Metzker, H.; Gruber, E.; Gruber, O. Task-induced deactivation dysfunction during reward processing is associated with low self-esteem in a possible subtype of major depression. Brain Behav. 2024, 14, e3545. [Google Scholar] [CrossRef]
- Poletti, S.; Mazza, M.G.; Benedetti, F. Inflammatory mediators in major depression and bipolar disorder. Transl. Psychiatry 2024, 14, 247. [Google Scholar] [CrossRef]
- Ma, F.; Bian, H.; Jiao, W.; Zhang, N. Single-cell RNA-seq reveals the role of YAP1 in prefrontal cortex microglia in depression. BMC Neurol. 2024, 24, 191. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Schalet, B.; Cook, K.F.; Cella, D. Establishing a common metric for depressive symptoms: Linking the BDI-II, CES-D, and PHQ-9 to PROMIS depression. Psychol. Assess. 2014, 26, 513–527. [Google Scholar] [CrossRef]
- Maki, K.A.; DeVon, H.A. A nursing theory-guided framework for genetic and epigenetic research. Nurs. Inq. 2018, 25, e12238. [Google Scholar] [CrossRef]
- Crusto, C.A.; Barcelona de Mendoza, V.; Connell, C.M.; Sun, Y.V.; Taylor, J.Y. The Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure Study (InterGEN): Design and Methods for Recruitment and Psychological Measures. Nurs. Res. 2016, 65, 331–338. [Google Scholar] [CrossRef]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Krieger, N.; Smith, K.; Naishadham, D.; Hartman, C.; Barbeau, E.M. Experiences of discrimination: Validity and reliability of a self-report measure for population health research on racism and health. Soc. Sci. Med. 1982 2005, 61, 1576–1596. [Google Scholar] [CrossRef]
- Waelde, L.C.; Pennington, D.; Mahan, C.; Mahan, R.; Kabour, M.; Marquett, R. Psychometric properties of the Race-Related Events Scale. Psychol. Trauma Theory Res. Pract. Policy 2010, 2, 4–11. [Google Scholar] [CrossRef]
- Taylor, J.Y.; Wright, M.L.; Crusto, C.A.; Sun, Y.V. The Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) Study: Design and Methods for Complex DNA Analysis. Biol. Res. Nurs. 2016, 18, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.L.; Baggerly, K.A.; Bengtsson, H.; Ritchie, M.E.; Hansen, K.D. illuminaio: An open source IDAT parsing tool for Illumina microarrays. F1000Research 2013, 2, 264. [Google Scholar] [CrossRef]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinforma 2014, 30, 1363–1369. [Google Scholar] [CrossRef]
- Ori, A.P.S.; Lu, A.T.; Horvath, S.; Ophoff, R.A. Significant variation in the performance of DNA methylation predictors across data preprocessing and normalization strategies. Genome Biol. 2022, 23, 225. [Google Scholar] [CrossRef]
- Feil, D.; Abrishamcar, S.; Christensen, G.M.; Vanker, A.; Koen, N.; Kilanowski, A.; Hoffman, N.; Wedderburn, C.J.; Donald, K.A.; Kobor, M.S.; et al. DNA methylation as a potential mediator of the association between indoor air pollution and neurodevelopmental delay in a South African birth cohort. Clin. Epigenetics 2023, 15, 31. [Google Scholar] [CrossRef]
- Heiss, J.A.; Just, A.C. Improved filtering of DNA methylation microarray data by detection p values and its impact on downstream analyses. Clin. Epigenetics 2019, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.P.; Triche, T.J.; Hansen, K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 2017, 33, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Fortin, J.P.; Labbe, A.; Lemire, M.; Zanke, B.W.; Hudson, T.J.; Fertig, E.J.; Greenwood, C.M.; Hansen, K.D. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014, 15, 503. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Leung, Y.K.; Chen, A.; Long, D.X.; Hoyo, C.; Ho, S.M. Differential methylation values in differential methylation analysis. Bioinforma 2019, 35, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef]
Variable Category (N = 235) | Variable Level | N (%) | p-Value |
---|---|---|---|
Age (mean (SD)) | 31.31 (5.77) | 0.40 | |
Ethnicity | Not Hispanic or Latino | 215 (91.5) | 0.89 |
Hispanic or Latino | 19 (8.1) | ||
Education Level | Less than high school | 12 (5.1) | 0.32 |
High school diploma or GED | 84 (35.7) | ||
Some college, no degree | 79 (33.6) | ||
Associate’s degree | 26 (11.1) | ||
Bachelor’s degree | 25 (10.6) | ||
Graduate degree | 9 (3.9) | ||
Marital Status | Single | 153 (65.1) | 0.55 |
Living with but not married | 11 (4.7) | ||
Married | 57 (24.3) | ||
Separated | 3 (1.3) | ||
Divorced | 11 (4.7) | ||
Household Income | Less than USD 15,000 | 107 (45.3) | <0.001 |
USD 15,000 to USD 34,999 | 69 (29.4) | ||
USD 35,000 to USD 49,999 | 28 (11.9) | ||
USD 50,000 to USD 74,999 | 13 (5.5) | ||
USD 75,000 to USD 99,999 | 7 (3.0) | ||
USD 100,000 or higher | 4 (1.7) | ||
Cash Income | Employment earnings | 161 (68.5) | <0.001 |
Unemployment benefits | 55 (23.4) | ||
TANF/FIP | 6 (2.6) | ||
No cash income | 8 (3.4) | ||
Non-cash Income | Food stamps | 66 (28.1) | <0.001 |
Housing subsidy | 56 (23.8) | ||
Heating assistance | 41 (17.4) | ||
WIC | 18 (17.7) | ||
No non-cash income | 4 (1.7) | ||
Money for Basic Things | Never | 6 (2.6) | 0.01 |
Sometimes | 49 (20.9) | ||
About half the time | 41 (17.4) | ||
Most of the time | 95 (40.4) | ||
Always | 42 (17.9) | ||
Money for Special Things | Never | 32 (13.6) | 0.008 |
Sometimes | 104 (44.3) | ||
About half the time | 37 (15.7) | ||
Most of the time | 47 (20.0) | ||
Always | 13 (5.5) | ||
Health Insurance | Yes | 222 (94.5) | 0.69 |
No | 13 (5.5) | ||
Insurance Type | Private/Employer-provided | 34 (14.5) | 0.79 |
Government-provided | 36 (15.3) | ||
Medicaid | 145 (61.7) | ||
Other | 7 (3.0) | ||
Permanent Housing | Yes | 183 (77.9) | 0.14 |
No | 50 (21.3) | ||
Experiences of Discrimination (mean (SD)) | 3.90 (8.08) | <0.001 | |
Race-Related Events Scale (mean (SD)) | 3.62 (4.67) | <0.001 | |
Beck Depression Inventory | None or minimal | 159 (67.7) | |
Mild to moderate | 45 (19.1) | ||
Moderate to severe | 18 (7.7) | ||
Severe | 13 (5.5) |
CpG | p-Value | Q-Value |
---|---|---|
cg23107033 | 1.46 × 10−8 | 0.01143 |
cg17212404 | 2.64 × 10−8 | 0.01143 |
cg15085109 | 4.84 × 10−8 | 0.012599 |
cg01954746 | 5.82 × 10−8 | 0.012599 |
cg24468104 | 1.62 × 10−7 | 0.027984 |
cg04636364 | 2.47 × 10−7 | 0.035598 |
Gene Symbol | Gene Name | Region | Related Pathways | Annotation/Function | Associated Diseases/Disorders |
---|---|---|---|---|---|
GLRX5 | Glutaredoxin 5 | Downstream | Mitochondrial iron-sulfur cluster biogenesis, p21-activated protein kinase (PAK) pathway 1 | Electron transfer activity, 2 iron-2 sulfur cluster binding | Anemia-Sideroblastic-Pyridoxine-Refractory, Spasticity-Childhood-Onset with Hyperglycinemia 3 |
OSBPL9 | Oxysterol Binding Protein Like 9 | Inside exon | Synthesis of bile acids and salts, metabolism | Lipid binding | Lenz–Majewski Hyperostotic Dwarfism |
ADAMTS17 | ADAM Metallopeptidase with Thrombospondin Type 1 Motif 17 | Inside intron | O-linked glycosylation of mucins, metabolism of proteins | Peptidase activity, metalloendopeptidase activity | Weill–Marchesani Syndrome 4, Anterior Segment Dysgenesis |
CLEC1B | C-Type Lectin Domain Family 1 Member B | Inside intron | Cellular responses to stimuli and elevated platelet cytosolic Ca2+ | Transmembrane signaling receptor activity, carbohydrate binding, cognition 2 | Bleeding disorder—Platelet-Type 11, Bladder Squamous Cell Carcinoma, Bipolar disorder 3 |
NBPF8 | Neuroblastoma Breakpoint Family Member 8 | Inside intron | None | None | Neuroblastoma 3 |
NDUFA10 | NADH: Ubiquinone Oxidoreductase Subunit A10 | Promoter | Respiratory electron transport, ATP synthesis by chemiosmotic coupling, heat production by uncoupling proteins, Complex I biogenesis 1 | NADH dehydrogenase activity, nucleoside kinase activity | Mitochondrial Complex I Deficiency—Nuclear Type 22 3, Leigh Syndrome 3 |
SULF2 | Sulfatase 2 | Inside exon | None | Calcium ion binding, arylsulfatase activity | Inflammatory Bowel Disease |
SH3BP2 | SH3 Domain Binding Protein 2 | Inside intron | TCR signaling in naïve CD4+ T cells | SH3 domain binding, obsolete SH3/SH2 activity | Cherubism, Giant Cell Reparative Granuloma |
SLC19A1 | Solute Carrier Family 19 Member 1 | Upstream | Metabolism of water-soluble vitamins and cofactors, methotrexate pathway—pharmacokinetics | Oxidoreductase activity, folic acid transmembrane transporter activity | Megaloblastic Anemia—Folate-Responsive, Immunodeficiency 114—Folate-Responsive |
PLEKHM3 | Pleckstrin Homology Domain Containing M3 | Upstream | None | Myoblast differentiation | Median Neuropathy 3, Chondroid Chordoma 3 |
CTNNBL1 | Catenin Beta Like 1 | Inside intron | Processing of Capped Intron-Containing Pre-mRNA | Binding, enzyme binding | Immunodeficiency 99 With Hypogammaglobulinemia and Autoimmune Cytopenias, Immunodeficiency With Hyper-Igm—Type 2 |
L3MBTL4 | L3MBTL Histone Methyl-Lysine Binding Protein 4 | Inside intron | None | ||
ADCY8 | Adenylate Cyclase 8 | Inside intron | Adora2b-mediated anti-inflammatory cytokine production, beta-2 adrenergic-dependent CFTR expression | Nucleotide binding, adenylate cyclase activity | Dissociative Amnesia 3, Precocious Puberty—Central 1 |
LOC574538 | Uncharacterized LOC574538 | Inside intron | None | None | None |
ZZEF1 | Zinc Finger ZZ-type and EF-Hand Domain Containing 1 | Inside intron | None | Calcium ion binding | None |
L3HYPDH | Trans-L-3 Hydroxyproline Dehydratase | Inside intron | None | Hydro-lyase activity, trans-L-3-hydroxyproline dehydratase activity | None |
LGALS14 | Galectin 14 | Upstream | None | Carbohydrate binding, inducer of T-cell apoptosis | None |
ARHGEF10 | Rho Guanine Nucleotide Exchange Factor 10 | Inside exon | p75 NTR receptor-mediated signaling 1, GPCR pathway | Guanyl-nucleotide exchange factor activity, kinesin binding | Slowed Nerve Conduction Velocity 3, Autosomal Dominant and Axonal Neuropathy 3 |
TAFA5 | TAFA Chemokine Like Family Member 5 | Inside intron | None | Regulation of cell proliferation and migration | None |
PKP2 | Plakophilin 2 | Inside intron | Keratinization, nervous system development 1 | Binding, protein kinase C binding | Arrhythmogenic Right Ventricular Dysplasia Familial 9, Arrhythmogenic Right Ventricular Cardiomyopathy |
OTOF | Otoferlin | Inside intron | Sensory processing of sound 1, olfactory signaling pathway 1 | Calcium ion binding, AP-2 adaptor complex binding | Deafness—Autosomal Recessive 9 3, Arthrogryposis and Ectodermal Dysplasia |
TANGO2 | Transport and Golgi Organization 2 Homolog | Inside intron | 22q11.2 copy number variation syndrome | None | Metabolic Crises—Recurrent—with Rhabdomyolysis, Cardiac Arrhythmias and Neurodegeneration 3, Tango2-Related Metabolic Encephalopathy and Arrythmias 3 |
LINC02915 | Long Intergenic Non-Protein Coding RNA 2915 | Upstream | None | None | Spastic Paraplegia 11—Autosomal Recessive 3 |
PKD1L3 | Polycystin 1-Like 3, Transient Receptor Potential Channel Interacting | Inside intron | None | Taste reception 2 | Polycystic Kidney Disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, B.; Zhao, Y.; Perez, N.B.; Potts-Thompson, S.; Crusto, C.; Creber, R.M.; Taylor, J.Y. Epigenome-Wide Association Study of Depressive Symptoms in Black Women in the InterGEN Study. Int. J. Mol. Sci. 2024, 25, 7681. https://doi.org/10.3390/ijms25147681
Taylor B, Zhao Y, Perez NB, Potts-Thompson S, Crusto C, Creber RM, Taylor JY. Epigenome-Wide Association Study of Depressive Symptoms in Black Women in the InterGEN Study. International Journal of Molecular Sciences. 2024; 25(14):7681. https://doi.org/10.3390/ijms25147681
Chicago/Turabian StyleTaylor, Brittany, Yihong Zhao, Nicole B. Perez, Stephanie Potts-Thompson, Cindy Crusto, Ruth Masterson Creber, and Jacquelyn Y. Taylor. 2024. "Epigenome-Wide Association Study of Depressive Symptoms in Black Women in the InterGEN Study" International Journal of Molecular Sciences 25, no. 14: 7681. https://doi.org/10.3390/ijms25147681
APA StyleTaylor, B., Zhao, Y., Perez, N. B., Potts-Thompson, S., Crusto, C., Creber, R. M., & Taylor, J. Y. (2024). Epigenome-Wide Association Study of Depressive Symptoms in Black Women in the InterGEN Study. International Journal of Molecular Sciences, 25(14), 7681. https://doi.org/10.3390/ijms25147681