Primary Cell Culture as a Model System for Evolutionary Molecular Physiology
Abstract
:1. Introduction
2. Cell Culture Models
3. Genetic Profiling, Genome Evolution, and Phylogenetic Reconstruction
4. Longevity Associated Gene Expression and Cellular Function
5. Life History Evolution
6. Future Directions
6.1. CRISPR/Cas9
6.2. Induced Pluripotent Stem Cells (iPSC)
6.3. Transformed Human Cell Lines
7. Conclusions
8. Perspective and Significance
Funding
Conflicts of Interest
References
- Steensma, D.P.; Robert, K.A.; Shampo, M.A. Abbie Lathrop, the “Mouse Woman of Granby”: Rodent Fancier and Accidental Genetics Pioneer. Mayo Clin. Proc. 2010, 85, e83. [Google Scholar] [CrossRef]
- Baker, H.J.; Lindsey, J.R.; Wesibroth, S.H. (Eds.) The Laboratory Rat: Biology and Diseases; Elsevier: Amsterdam, The Netherlands, 2013; Volume 1. [Google Scholar]
- Carrel, A.; Burrows, M.T. Cultivation of Tissues In Vitro and Its Technique. J. Exp. Med. 1911, 13, 387–405. [Google Scholar] [CrossRef]
- Jiménez, A.G.; Harper, J.M. Exploring the Role of Primary Fibroblast Cells in Comparative Physiology: A Historical and Contemporary Overview. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2023, 325, R45–R54. [Google Scholar] [CrossRef] [PubMed]
- Dewyse, L.; Reynaert, H.; Grunsven, L.A. Best Practices and Progress in Precision-Cut Liver Slice Cultures. Int. J. Mol. Sci. 2021, 22, 7137. [Google Scholar] [CrossRef] [PubMed]
- Herbert, J.; Gow, A. Precision Cut Lung Slices as a Model for 2R Application in Toxicology. Appl. In Vitro Toxicol. 2020, 6, 47–48. [Google Scholar] [CrossRef]
- Corrò, C.; Novellasdemunt, L.; Li, V.S.W. A Brief History of Organoids. Am. J. Physiol. Cell Physiol. 2020, 319, C151–C165. [Google Scholar] [CrossRef]
- Lodewijk, G.A.; de Geus, M.; Guimarães, R.L.F.P.; Jacobs, F.M.J. Emergence of the ZNF675 Gene during Primate Evolution-Influenced Human Neurodevelopment through Changing HES1 Autoregulation. J. Comp. Neurol. 2024, 532, e25648. [Google Scholar] [CrossRef] [PubMed]
- Pollen, A.A.; Bhaduri, A.; Andrews, M.G.; Nowakowski, T.J.; Meyerson, O.S.; Mostajo-Radji, M.A.; Di Lullo, E.; Alvarado, B.; Bedolli, M.; Dougherty, M.L.; et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell 2019, 176, 743–756.e17. [Google Scholar] [CrossRef]
- Rankin, S.A.; Steimle, J.D.; Yang, X.H.; Rydeen, A.B.; Agarwal, K.; Chaturvedi, P.; Ikegami, K.; Herriges, M.J.; Moskowitz, I.P.; Zorn, A.M. Tbx5 drives Aldh1a2 expression to regulate a RA-Hedgehog-Wnt gene regulatory network coordinating cardiopulmonary development. Elife 2021, 10, e69288. [Google Scholar] [CrossRef]
- Post, Y.; Puschhof, J.; Beumer, J.; Kerkkamp, H.M.; de Bakker, M.A.G.; Slagboom, J.; de Barbanson, B.; Wevers, N.R.; Spijkers, X.M.; Olivier, T.; et al. Snake Venom Gland Organoids. Cell 2020, 180, 233–247.e21. [Google Scholar] [CrossRef]
- Kawasaki, M.; Goyama, T.; Tachibana, Y.; Nagao, I.; Ambrosini, Y.M. Farm and Companion Animal Organoid Models in Translational Research: A Powerful Tool to Bridge the Gap Between Mice and Humans. Front. Med. Technol. 2022, 4, 895379. [Google Scholar] [CrossRef]
- Baglole, C.J.; Reddy, S.Y.; Pollock, S.J.; Feldon, S.E.; Sime, P.J.; Smith, T.J.; Phipps, R.P. Isolation and Phenotypic Characterization of Lung Fibroblasts. Methods Mol. Med. 2005, 117, 115–127. [Google Scholar] [PubMed]
- Randall, K.J.; Turton, J.; Foster, J.R. Explant Culture of Gastrointestinal Tissue: A Review of Methods and Applications. Cell Biol. Toxicol. 2011, 27, 267–284. [Google Scholar] [CrossRef] [PubMed]
- Perillo, M.; Punzo, A.; Caliceti, C.; Sell, C.; Lorenzini, A. The Spontaneous Immortalization Probability of Mammaliam Cell Culture Strains, as their Proliferative Capacity, Correlates with Species Body Mass, Not Longevity. Biomed. J. 2023, 46, 100596. [Google Scholar] [CrossRef] [PubMed]
- Hasche, D.; Stephan, S.; Savelyeva, L.; Westermann, F.; Rösl, F.; Vinzón, S.E. Establishment of an Immortalized Cell Line Derived from the Animal Model Mastomys coucha. PLoS ONE 2016, 11, e0161283. [Google Scholar] [CrossRef] [PubMed]
- Lewerentz, J.; Johansson, A.-M.; Stenberg, P. The Path to Immortalization of Cells Starts by Managing Stress through Gene Duplications. Exp. Cell Res. 2023, 422, 113431. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Zhang, L.; Wang, X.; Zheng, J.; Lin, S. Establishment Methods and Research Progress of Livestock and Poultry Immortalized Cell Lines: A Review. Front. Vet. Sci. 2022, 9, 956357. [Google Scholar] [CrossRef] [PubMed]
- Bosque, A.; Dietz, L.; Gallego-Lleyda, A.; Sanclemente, M.; Iturralde, M.; Naval, J.; Alava, M.A.; Martínez-Lostao, L.; Thierse, H.J.; Anel, A. Comparative Proteomics of Exosomes Secreted by Tumoral Jurkat T cells and Normal Human T cell Blasts Unravels a Potential Tumorigenic Role for Valosin-Containing Protein. Oncotarget 2016, 7, 29287–29305. [Google Scholar] [CrossRef] [PubMed]
- De Vries, G.H.; Boullerne, A.I. Glial Cell Lines: An Overview. Neurochem. Res. 2010, 35, 1978–2000. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, U.; Siranosian, B.; Ha, G.; Tang, H.; Oren, Y.; Hinohara, K.; Strathdee, C.A.; Dempster, J.; Lyons, N.J.; Burns, R.; et al. Genetic and Transcriptional Evolution alters Cancer Cell Line Drug Response. Nature 2018, 560, 325–330. [Google Scholar] [CrossRef]
- Gutbier, S.; May, P.; Berthelot, S.; Krishna, A.; Trefzer, T.; Behbehani, M.; Efremova, L.; Delp, J.; Gastraunthaler, G.; Waldmann, T.; et al. Major Changes of Cell Function and Toxicant Sensitivity in Cultured Cells Undergoing Mild, Quasi-Natural Genetic Drift. Arch. Toxicol. 2018, 92, 3487–3503. [Google Scholar] [CrossRef] [PubMed]
- Hornsby, P.J.; Yang, L.; Gunter, L.E. Demethylation of Satellite I DNA during Senescence of Bovine Adrenocortical Cells in Culture. Mutat. Res. 1992, 275, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Nestor, C.E.; Ottaviano, R.; Reinhardt, D.; Cruickshanks, H.A.; Mjoseng, H.K.; McPherson, R.C.; Lentini, A.; Thomson, J.P.; Dunican, D.S.; Pennings, S.; et al. Rapid Reprogramming of Epigenetic and Transcriptional Profiles in Mammalian Culture Systems. Genome Biol. 2015, 16, 11. [Google Scholar] [CrossRef] [PubMed]
- Franzen, J.; Georgomanolis, T.; Selich, A.; Kuo, C.C.; Stöger, R.; Brant, L.; Mulabdić, M.S.; Fernandez-Rebollo, E.; Grezella, C.; Ostrowska, A.; et al. DNA Methylation Changes During Long-Term In Vitro Cell Culture are Caused by Epigenetic Drift. Commun. Biol. 2021, 4, 598. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Dias, G.B.; Basting, P.J.; Nelson, M.G.; Patel, S.; Marzo, M.; Bergman, C.M. Ongoing Transposition in Cell Culture Reveals the Phylogeny of Diverse Drosophila S2 Sublines. Genetics 2022, 221, iyac077. [Google Scholar] [CrossRef] [PubMed]
- Ramboer, E.; De Craene, B.; De Kick, J.; Vanhaecke, T.; Berx, G.; Rogiers, V.; Vinken, M. Strategies for Immortalization of Primary Hepatocytes. J. Hepatol. 2014, 61, 925–943. [Google Scholar] [CrossRef] [PubMed]
- Sadowska-Bartosz, I.; Bartosz, G. Effect of Antioxidants in the Fibroblast Replicative Lifespan In Vitro. Oxid. Med. Cell Longev. 2020, 2020, 6423783. [Google Scholar] [CrossRef] [PubMed]
- Van Gansen, P.; Van Lerberghe, N. Potential and Limitations of Cultivated Fibroblasts in the Study of Senescence in Animals. A Review on the Murine Skin Fibroblasts System. Arch. Gerontol. Geriatr. 1988, 7, 31–74. [Google Scholar] [CrossRef]
- Pan, C.; Kumar, C.; Bohl, S.; Klingmueller, U.; Mann, M. Comparative Proteomic Phenotyping of Cell Lines and Primary Cells to Assess Preservation of Cell Type-specific Functions. Mol. Cell. Proteom. 2009, 8, 443–450. [Google Scholar] [CrossRef]
- Madelaire, C.B.; Klink, A.C.; Israelsen, W.J.; Hindle, A.G. Fibroblasts as an Experimental Model System for the Study of Comparative Physiology. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2022, 260, 110375. [Google Scholar] [CrossRef]
- Pathak, J.; Singh, S.P.; Kharche, S.D.; Goel, A.; Soni, Y.K.; Kaushik, R.; Kose, M.; Kumar, A. Cell Culture Media Dependent In Vitro Dynamics and Culture Characteristics of Adult Caprine Dermal Fibroblast Cells. Sci. Rep. 2023, 13, 13716. [Google Scholar] [CrossRef]
- Luo, J.; Liang, M.-M.; Yang, X.-G.; Xu, H.-Y.; Shi, D.-S.; Lu, S.-S. Establishment and Biological Characteristics Comparison of Chinese Swamp Buffalo (Bubalus bubalis) Fibroblast Cell Lines. In Vitro Cell. Dev. Biol. Anim. 2014, 50, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.A.; Gollin, S.M. Rapid Cell Culture Procedure for Tissue Samples. Am. J. Med. Genet. 1987, 28, 521–526. [Google Scholar] [CrossRef]
- Biederman, B.M.; Lin, C.C. A Leukocyte Culture and Chromosome Preparation Technique for Avian Species. In Vitro 1982, 18, 415–418. [Google Scholar] [CrossRef]
- Ishijima, J.; Uno, Y.; Nunome, M.; Nishida, C.; Kuraku, S.; Matsuda, Y. Molecular Cytogenetic Characterization of Chromosome Site-specific Repetitive Sequences in the Arctic lamprey (Lethenteron camtschaticum, Petromyzontidae). DNA Res. 2017, 24, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Pristyazhnyuk, I.E.; Malinovskaya, L.P.; Borodin, P.M. Establishment of the Primary Avian Gonadal Somatic Cell Lines for Cytogenetic Studies. Animals 2022, 12, 1724. [Google Scholar] [CrossRef]
- Paim, F.G.; Maia, L.; da Cruz Landim-Alverenga, F.; Foresti, F.; Oliveira, C. New Protocol for Cell Culture to Obtain Mitotic Chromosomes in Fishes. Methods Protoc. 2018, 1, 47. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.B.; Paim, F.G.; Ramos, L.P.; Foresti, F.; Oliveira, C. Molecular Cytogenetic Analysis and the Establishment of a Cell Culture in the Fish Species Hollandichthys multifasciatus (Eigenmann & Norris, 1900) (Characiformes, Characidae). Genet. Mol. Biol. 2021, 44, e20200260. [Google Scholar]
- He, L.; Zhao, C.; Xiao, Q.; Zhao, J.; Liu, H.; Jiang, J.; Cao, Q. Profiling the Physiological Roles in Fish Primary Cell Culture. Biology 2023, 12, 1454. [Google Scholar] [CrossRef]
- Jin, W.; Jia, K.; Yang, L.; Chen, J.; Wu, Y.; Yi, M. Derivation and Characterization of Cell Cultures from the Skin of the Indo-Pacific Humpback Dolphin Sousa chinensis. In Vitro Cell. Dev. Biol. Anim. 2013, 49, 449–457. [Google Scholar] [CrossRef]
- Pavlova, S.V.; Biltueva, L.S.; Romanenko, S.A.; Lemskaya, N.A.; Shchinov, A.V.; Abramov, A.V.; Rozhnov, V.V. First Cytogenetic Analysis of Lesser Gymnures (Mammalia, Galericidae, Hylomys) from Vietnam. Comp. Cytogenet. 2018, 12, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Nozu, R.; Kiyatake, I.; Higashiguchi, N.; Sodeyama, S.; Murakumo, K.; Sato, K.; Kuraku, S. Cell Culture-based Karyotyping of Orectolobiform Sharks for Chromosome-scale Genome Analysis. Commun. Biol. 2020, 3, 652. [Google Scholar] [CrossRef] [PubMed]
- Nash, W.G.; O’Brien, S.J. A Comparative Chromosome Banding Analysis of the Ursidae and Their Relationship to Other Carnivores. Cytogenet. Cell. Genet. 1987, 45, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Vassart, M.; Seguela, A.; Hayes, H. Chromosomal Evolution in Gazelle. J. Hered. 1995, 86, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, J.; Su, W.; Nie, W.; Yang, F. Karyotypic Evolution of the Family Sciuridae: Inferences from the Genome Organizations of Ground Squirrels. Cytogenet. Genome Res. 2006, 112, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, J.; Su, W.; Yang, F. Chromosomal Mechanisms Underlying the Karyotype Evolution of the Oriental Voles (Muridae, Eothenomys). Cytogenet. Genome Res. 2006, 114, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Kacprzyk, J.; Teeling, E.C.; Kelleher, C.; Volleth, M. Wing Membrane Biopsies for Bat Cytogenetics: Finding of 2n = 54 in Irish Rhinolophus hipposideros (Rhinolophidae, Chiroptera, Mammalia) Supports Two Geographically Separated Chromosomal Variants in Europe. Cytogenet. Genome Res. 2016, 148, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Oliveira, I.H.; Penteado, P.R.; Pasa, R.; Menegídio, F.B.; Kavalco, K.F. Phylogeography and Karyotypic Evolution of Some Deuterodon Species from Southeastern Brazil (Characiformes, Characidae, Stethaprioninae). Genet. Mol. Biol. 2023, 46, e20230044. [Google Scholar] [CrossRef]
- Vozdova, M.; Kubickova, S.; Martínková, N.; Galindo, D.J.; Bernegossi, A.M.; Cernohorska, H.; Kadlcikova, D.; Musilová, P.; Duarte, J.M.; Rubes, J. Satellite DNA in Neotropical Deer Species. Genes 2021, 12, 123. [Google Scholar] [CrossRef]
- de Sousa, R.P.C.; Furo, I.O.; Silva-Oliveira, G.C.; de Sousa-Felix, R.C.; Bessa-Brito, C.D.; Mello, R.C.; Sampaio, I.; Artoni, R.F.; de Oliveira, E.H.C.; Vallinoto, M. Comparative Cytogenetics of Microsatellite Distribution in Two Tetra Fishes Astyanax bimaculatus (Linnaeus, 1758) and Psalidodon scabripinnis (Jenyns, 1842). PeerJ 2024, 12, e16924. [Google Scholar] [CrossRef]
- Gu, J.; Gu, X. Further Statistical Analysis for Genome-wide Expression Evolution in Primate Brain/Liver/Fibroblast Tissues. Hum. Genom. 2004, 1, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Uno, Y.; Asada, Y.; Nishida, C.; Takehana, Y.; Sakaizumi, M.; Matsuda, Y. Divergence of Repetitive DNA Sequences in the Heterochromatin of Medaka Fishes: Molecular Cytogenetic Characterization of Constitutive Heterochromatin in Two Medaka Species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes). Cytogenet. Genome Res. 2013, 141, 212–226. [Google Scholar] [CrossRef]
- Li, X.; Ma, C.; Qin, Y.-J.; Wu, D.; Bai, L.-W.; Pei, A.-J. Establishment and Characterization of Fin Cell Lines from Diploid, Triploid and Tetraploid Oriental Weatherfish (Misgurnus anguillicaudatus). Fish Physiol. Biochem. 2015, 41, 661–672. [Google Scholar] [CrossRef]
- Santagostino, M.; Piras, F.M.; Cappelletti, E.; Del Giudice, S.; Semino, O.; Nergadze, S.G.; Giulotto, E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int. J. Mol. Sci. 2020, 21, 2838. [Google Scholar] [CrossRef] [PubMed]
- Goodier, J.L.; Mandall, P.K.; Zhang, L.; Kazazian, H.H., Jr. Discrete Subcellular Partitioning of Human Retrotransposon RNAs Despite a Common Mechanism of Genome Insertion. Hum. Mol. Genet. 2010, 19, 1712–1725. [Google Scholar] [CrossRef]
- Sands, W.; Page, M.M.; Selman, C. Proteostasis and Ageing: Insights from Long-Lived Mutant Mice. J. Physiol. 2017, 595, 6383–6390. [Google Scholar] [CrossRef]
- Bartke, A.; Quainoo, N. Impact of Growth Hormone-Related Mutations on Mammalian Aging. Front. Genet. 2018, 9, 586. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.G. A Revisiting of “the Hallmarks of Aging: In Domestic Dogs: Current Status of the Literature. GeroScience 2024, 46, 241–255. [Google Scholar] [CrossRef]
- Alper, S.J.; Bronikowski, A.M.; Harper, J.M. Comparative Cellular Biogerontology: Where Do We Stand? Exp. Geron. 2015, 71, 109–117. [Google Scholar] [CrossRef]
- Stier, A.; Reichert, S.; Criscuolo, F.; Bize, P. Red Blood Cells Open Promising Avenues for Longitudinal Studies of Ageing in Laboratory, Non-model and Wild animals. Exp. Geron. 2015, 71, 118–134. [Google Scholar] [CrossRef]
- DiLoret, R.; Murphy, C.T. The Cell Biology of Aging. Mol. Biol. Cell. 2015, 26, 4524–4531. [Google Scholar] [CrossRef] [PubMed]
- Kapahi, P.; Boulton, M.E.; Kirkwood, T.B.L. Positive Correlation Between Mammalian Life Span and Cellular Resistance to Stress. Free Rad. Biol. Med. 1999, 26, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.M.; Salmon, A.B.; Leiser, S.F.; Galecki, A.T.; Miller, R.A. Skin-derived Fibroblasts from Long-lived Species are Resistant to Some, But Not All, Lethal Stresses and to the Mitochondrial Inhibitor Rotenone. Aging Cell. 2007, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A.B.; Sadighi Akha, A.A.; Buffenstein, R.; Miller, R.A. Fibroblasts from Naked Mole-Rats Are Resistant to Multiple Forms of Cell Injury, but Sensitive to Peroxide, UV Light, and ER Stress. J. Geron. A Biol. Sci. Med. Sci. 2008, 63, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Csiszar, A.; Podlutsky, A.; Podlutskaya, N.; Sonntag, W.E.; Merlin, S.Z.; Philipp, E.E.; Doyle, K.; Davila, A.; Recchia, F.A.; Ballabh, P.; et al. Testing the Oxidative Stress Hypothesis of Aging in Primate Fibroblasts: Is There a Correlation Between Species Longevity and Cellular ROS Production? J. Geron. A Biol. Sci. Med. Sci. 2012, 67, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Ogburn, C.E.; Carlberg, K.; Ottinger, M.A.; Holmes, D.J.; Martin, G.M.; Austad, S.N. Exceptional Cellular Resistance to Oxidative Damage in Long-lived Birds Requires Active Gene Expression. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, B468–B474. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.M.; Wang, M.; Galecki, A.T.; Ro, J.; Williams, J.B.; Miller, R.A. Fibroblasts from Long-lived Bird Species Are Resistant to Multiple Forms of Stress. J. Exp. Biol. 2011, 214, 1902–1910. [Google Scholar] [CrossRef]
- Jimenez, A.G.; Harper, J.M.; Queenborough, S.A.; Williams, J.B. Linkages Between the Life-history Evolution of Tropical and Temperate Birds and the Resistance of Cultured Skin Fibroblasts to Oxidative and Non-oxidative Chemical Injury. J. Exp. Biol. 2013, 216, 1373–1380. [Google Scholar] [PubMed]
- Dostál, L.; Kohler, W.M.; Penner-Hahn, J.E.; Miller, R.A.; Fierke, C.A. Fibroblasts from Long-lived Rodent Species Exclude Cadmium. J. Geron. A Biol. Sci. Med. Sci. 2015, 70, 10–19. [Google Scholar] [CrossRef]
- Ma, S.; Upneja, A.; Galecki, A.; Tsai, Y.M.; Burant, C.F.; Raskind, S.; Zhang, Q.; Zhang, Z.D.; Seluanov, A.; Gorbunova, V.; et al. Cell Culture-based Profiling Across Mammals Reveals DNA Repair and Metabolism as Determinants of Species Longevity. Elife 2016, 5, e19130. [Google Scholar] [CrossRef]
- Brown, M.E.; Stuart, J.A. Correlation of Mitochondrial Superoxide Dismutase and DNA Polymerase β in Mammalian Dermal Fibroblasts with Species Maximal Lifespan. Mech. Ageing Dev. 2007, 128, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Brookes, P.S.; Jimenez, A.G. Metabolomics of Aging in Primary Fibroblasts from Small and Large Breed Dogs. GeroScience 2021, 43, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Elbourkadi, N.; Austad, S.N.; Miller, R.A. Fibroblasts from Long-lived Species of Mammals and Birds Show Delayed, but Prolonged, Phosphorylation of ERK. Aging Cell. 2014, 13, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.P.; Wise, S.S.; Kraus, S.; Shaffiey, F.; Grau, M.; Chen, T.L.; Perkins, C.; Thompson, W.D.; Zheng, T.; Zhang, Y.; et al. Hexavalent Chromium is Cytotoxic and Genotoxic to the North Atlantic Right Whale (Eubalaena glacialis) Lung and Testes Fibroblasts. Mutat. Res. 2008, 650, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.J.; Zychowski, G.V.; Bauman, S.W.; Higgins, B.M.; Raudsepp, T.; Gollahon, L.S.; Wooten, K.J.; Cole, J.M.; Godard-Codding, C. Establishment, Characterization, and Toxicological Application of Loggerhead Sea Turtle (Caretta caretta) Primary Skin Fibroblast Cell Cultures. Environ. Sci. Technol. 2014, 48, 14728–14737. [Google Scholar] [CrossRef] [PubMed]
- Boroda, A.V.; Kipryushina, Y.O.; Golochvastova, R.V.; Shevchenko, O.G.; Shulgina, M.A.; Efimova, K.V.; Katin, I.O.; Maiorova, M.A. Isolation, Characterization, and Ecotoxicological Application of Marine Mammal Skin Fibroblast Cultures. In Vitro Cell. Dev. Biol. Anim. 2020, 56, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Součková, K.; Jasík, M.; Sovadinová, I.; Sember, A.; Sychrová, E.; Konieczna, A.; Bystrý, V.; Dyková, I.; Blažek, R.; Lukšíková, K.; et al. From Fish to Cells: Establishment of Continuous Cell Lines from Embryos of Annual Killifish Nothobranchius furzeri and N. kadleci. Aquat. Toxicol. 2023, 259, 106517. [Google Scholar] [CrossRef] [PubMed]
- Pickering, A.M.; Lehr, M.; Kohler, W.J.; Han, M.L.; Miller, R.A. Fibroblasts from Longer-Lived Species of Primates, Rodents, Bats Carnivores, and Birds Resist Protein Damage. J. Geron. A Biol. Sci. Med. Sci. 2015, 70, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Pérez, V.I.; Buffenstein, R.; Masamsetti, V.; Leonard, S.; Salmon, A.B.; Mele, J.; Andziak, B.; Yang, T.; Edrey, Y.; Friguet, B.; et al. Protein Stability and Resistance to Oxidative Stress are Determinants of Longevity in the Longest-Living Rodent, the Naked Mole-Rat. Proc. Natl. Acad. Sci. USA 2009, 106, 3059–3064. [Google Scholar] [CrossRef]
- Azpurua, J.; Ke, Z.; Chen, I.X.; Zhang, Q.; Ermolenk, D.N.; Zhang, Z.D.; Gorbunova, V.; Seluanov, A. Naked Mole-Rat Has Increased Translational Fidelity Compared With the Mouse, As Well As Unique 28S Ribosomal RNA Cleavage. Proc. Natl. Acad. Sci. USA 2013, 110, 17350–17355. [Google Scholar] [CrossRef]
- Pickering, A.M.; Lehr, M.; Miller, R.A. Lifespan of Mice and Primates Correlated with Immunoproteasome Expression. J. Clin. Investig. 2015, 125, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Pride, H.; Yu, Z.; Sunchu, B.; Mochnick, J.; Coles, A.; Zhang, Y.; Buffenstein, R.; Hornsby, P.J.; Austad, S.N.; Perez, V.I. Long-Lived Species Have Improved Proteostasis Compared to Phylogenetically-Related Shorter-Lived Species. Biochem. Biophys. Res. Commun. 2015, 457, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Swovick, K.; Firsanov, D.; Welle, K.A.; Hyyhorenko, J.R.; Wise, J.P., Sr.; George, C.; Sformo, T.L.; Selianov, A.; Gorbunova, V.; Ghaemmaghami, S. Interspecies Differences in Proteome Turnover Kinetics Are Correlated with Life Spans and Energetic Demands. Mol. Cell. Proteom. 2021, 20, 100041. [Google Scholar] [CrossRef] [PubMed]
- Kacprzyk, J.; Locatelli, A.G.; Hughes, G.M.; Huang, Z.; Clarke, M.; Gorbunova, V.; Sacchi, C.; Stewart, G.S.; Teeling, E.C. Evolution of Mammalian Longevity: Age-related Increase in Autophagy in Bats Compared to Other Mammals. Aging 2021, 13, 7998–8025. [Google Scholar] [CrossRef]
- Seluanov, A.; Hine, C.; Azpurua, J.; Feigenson, M.; Bozzella, M.; Mao, Z.; Catania, K.C.; Gorbunova, V. Hypersensitivity to Contact Inhibition Provides a Clue to Cancer Resistance of Naked Mole-Rat. Proc. Natl. Acad. Sci. USA 2009, 106, 19352–19357. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Azpurua, J.; Hine, C.; Vaidya, A.; Myakishev-Rempel, M.; Ablaeva, J.; Mao, Z.; Nevo, E.; Gorbunova, V.; Seluanov, A. High-Molecular-Mass Hyaluronan Mediates the Cancer Resistance of the Naked Mole Rat. Nature 2013, 499, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Doerig, K.; Park, R.; Can Ran Qin, A.; Hwang, C.; Neary, A.; Gilbert, M.; Seluanov, A.; Gorbunova, V. Evolution of telomere maintenance and tumour suppressor mechanisms across mammals. Phil. Trans. R. Soc. 2018, B373, 20160443. [Google Scholar] [CrossRef] [PubMed]
- Deuker, M.M.; Lewis, K.N.; Ingaramo, M.; Kimmel, J.; Buffenstein, R.; Settleman, J. Unprovoked Stabilization and Nuclear Accumulation of the Naked Mole-Rat p53 Protein. Sci. Rep. 2020, 10, 6966. [Google Scholar] [CrossRef] [PubMed]
- Manov, I.; Hirsh, M.; Iancu, T.C.; Malik, A.; Sotnichenko, N.; Band, M.; Avivi, A.; Shams, I. Pronounced Cancer Resistance in a Subterranean Rodent, the Blind Mole-Rat, Spalax: In Vivo and In Vitro Evidence. BMC Biol. 2013, 11, 91. [Google Scholar] [CrossRef]
- Patrick, A.; Seluanov, M.; Hwang, C.; Tam, J.; Khan, T.; Morgenstern, A.; Wiener, L.; Vazquez, J.M.; Zafar, H.; Wen, R.; et al. Sensitivity of Primary Fibroblasts in Culture to Atmospheric Oxygen Does Not Correlate with Species Lifespan. Aging 2016, 8, 841–847. [Google Scholar] [CrossRef]
- Adekunbi, D.A.; Huber, H.F.; Li, C.; Nathanelsz, P.W.; Cox, L.A.; Salmon, A.B. Differential Mitochondrial Bioenergetics and Cellular Resilience in Astrocytes, Hepatocytes, and Fibroblasts from Aging Baboons. GeroScience 2024. [Google Scholar] [CrossRef] [PubMed]
- Stearns, S.C. Life History Evolution: Successes, Limitations, and Prospects. Naturwissenschaften 2000, 87, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.F.; Gratton, T.P.; Stuart, J.A. Metabolic Rate Does Not Scale with Body Mass in Cultured Mammalian Cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R2115–R2121. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.G.; Williams, J.B. Cellular Metabolic Rates from Primary Dermal Fibroblast Cells Isolated from Birds of Different Body Masses. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2014, 176, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, A.G.; Cooper-Mullin, C.; Anthony, N.B.; Williams, J.B. Cellular Metabolic Rates in Cultured Primary Dermal Fibroblasts and Myoblasts from Fast-Growing and Control Coturnix Quail. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2014, 171, 23–30. [Google Scholar] [CrossRef]
- Cooper-Mullin, C.; Jimenez, A.G.; Anthony, N.B.; Wortman, M.; Williams, J.B. The Metabolic Rate of Cultured Muscle Cells from Hybrid Coturnix Quail is Intermediate to that of Muscle Cells from Fast-growing and Slow-growing Coturnix Quail. J. Comp. Physiol. B. 2015, 185, 547–557. [Google Scholar] [CrossRef]
- Calhoon, E.A.; Jimenez, A.G.; Harper, J.M.; Jurkowitz, M.S.; Williams, J.B. Linkages Between Mitochondrial Lipids and Life History in Temperate and Tropical Birds. Physiol. Biochem. Zool. 2014, 87, 265–275. [Google Scholar] [CrossRef]
- Wang, J.; Xiang, H.; Liu, L.; Kong, M.; Yin, T.; Zhao, X. Mitochondrial Haplotypes Influence Metabolic Traits Across Bovine Inter- and Intra-Species Cybrids. Sci. Rep. 2017, 7, 4179. [Google Scholar] [CrossRef] [PubMed]
- Hogan, H.R.H.; Hutzenbiler, B.D.E.; Robbins, C.T.; Jansen, H.T. Changing Lanes: Seasonal Differences in Cellular Metabolism of Adipocytes in Grizzly Bears (Ursus arctos horribilis). J. Comp. Physiol. B. 2022, 192, 397–410. [Google Scholar] [CrossRef]
- Lu, W.; Meng, Q.-J.; Tyler, N.J.C.; Stokkan, K.-A.; Loudon, A.S.I. A Circadian Clock in not Requires in an Arctic Mammal. Curr. Biol. 2010, 20, 533–537. [Google Scholar] [CrossRef]
- Sulak, M.; Fong, L.; Mika, K.; Chigurupati, S.; Yon, L.; Mongan, N.P.; Emes, R.D.; Lynch, V.J. TP53 Copy Number Expansion is Associated with the Evolution of Increased Body Size and an Enhanced DNA Damage Response in Elephants. Elife 2016, 5, e11994. [Google Scholar] [CrossRef] [PubMed]
- Winward, J.D.; Ragan, C.M.; Jimenez, A.G. Cellular Metabolic Rates and Oxidative Stress Profiles in Primary Fibroblast Cells Isolated from Virgin Females, Reproductively Experienced Females, and Male Sprague-Dawley Rats. Physiol. Rep. 2018, 20, e13909. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.N.; Yamada, K.; Zikeli, S.; Kiaris, H.; Hood, W.R. Evaluating Endoplasmic Reticulum Stress and Unfolded Protein Response Through the Lens of Ecology and Evolution. Biol. Rev. Camb. Philos. Soc. 2021, 96, 541–556. [Google Scholar] [CrossRef] [PubMed]
- Glaberman, S.; Bulls, S.E.; Vazquez, J.M.; Chiari, Y.; Lynch, V.J. Concurrent Evolution of Antiaging Gene Duplications and Cellular Phenotypes in Long-Lived Turtles. Genome Biol. Evol. 2021, 13, evab244. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.K.; Allen, K.N.; Torres-Velarde, J.M.; Vázquez-Medina, J.P. Functional Studies with Primary Cells Provide a System for Genome-to-Phenome Investigations in Marine Mammals. Integr. Comp. Biol. 2020, 60, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Boroda, A.V. Marine Mammal Cell Cultures: To Obtain, to Apply, and to Preserve. Mar. Environ. Res. 2017, 129, 316–328. [Google Scholar] [CrossRef]
- Tovar, H.; Navarrete, F.; Rodriguez, L.; Skewes, O.; Castro, F.O. Cold Storage of Biopsies from Wild Endangered Chilean Species in Field Conditions and Subsequent Isolation of Primary Cell Culture Cell Lines. In Vitro Cell. Dev. Biol. Anim. 2008, 44, 309–320. [Google Scholar] [CrossRef]
- Golkar-Narenji, A.; Dziegel, P.; Kempisty, B.; Petitte, J.; Mozdziak, P.E.; Bryja, A. In Vitro Culture of Reptile PGCS to Preserve Endangered Species. Cell Biol. Int. 2023, 47, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Seridi, N.; Hamidouche, M.; Belmessabih, N.; El Kennani, S.; Gagnon, J.; Martine, G.; Coutton, C.; Marchal, T.; Chebloune, Y. Immortalization of Primary Sheep Embryo Kidney Cells. In Vitro Cell. Dev. Biol. Anim. 2021, 57, 76–85. [Google Scholar] [CrossRef]
- Hopperstad, K.; Truschel, T.; Wahlicht, T.; Stewart, W.; Eicher, A.; May, T.; Deisenroth, C. Characterization of Novel Human Immortalized Thyroid Follicular Epithelial Cell Lines. Appl. In Vitro Toxicol. 2021, 7, 39–49. [Google Scholar] [CrossRef]
- Fus-Kujawa, A.; Prus, P.; Bajdak-Rusinek, K.; Teper, P.; Gawron, K.; Kowalczuk, A.; Sieron, A.L. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front. Bioeng. Biotechnol. 2021, 9, 701031. [Google Scholar] [CrossRef] [PubMed]
- Tyumentseva, M.; Tyumentsev, A.; Akimkin, V. CRISPR/Cas9 Landscape: Current State and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 16077. [Google Scholar] [CrossRef] [PubMed]
- Hryhorowicz, M.; Grześkowiak, B.; Mazurkiewicz, N.; Śledziński, P.; Lipiński, D.; Słomski, R. Improved Delivery of CRISPR/Cas9 System Using Magnetic Nanoparticles into Porcine Fibroblast. Mol. Biotechnol. 2019, 61, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, K.K.; Punetha, M.; Kumar, D.; Yadav, P.S.; Long, C.R.; Selokar, N.L. Electroporation-based CRISPR gene editing in adult buffalo fibroblast cells. Anim. Biotech. 2023, 34, 5055–5066. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.C.; Gomes Mariano Junior, C.; Belizário, J.E.; Krieger, J.E.; Fernandes Bressan, F.; Roballo, K.C.S.; Fantinato-Neto, P.; Meirelles, F.V.; Chiaratti, M.R.; Concordet, J.P.; et al. Characterization of Post-Edited Cells Modified in the TFAM Gene by CRISPR/Cas9 Technology in the Bovine Model. PLoS ONE 2020, 15, e0235856. [Google Scholar] [CrossRef] [PubMed]
- Taniuchi, S.; Miyake, M.; Tsugawa, K.; Oyadomari, M.; Oyadomari, S. Integrated Stress Response of Vertebrates is Regulated by Four eIF2α Kinases. Sci. Rep. 2016, 6, 32886. [Google Scholar] [CrossRef] [PubMed]
- Square, T.; Romášek, M.; Jandzik, D.; Cattell, M.V.; Klymkowsky, M.; Medeiros, D.M. CRISPR/Cas9-Mediated Mutagenesis in the Sea Lamprey Petromyzon marinus: A Powerful Tool for Understanding Ancestral Gene Functions in Vertebrates. Development 2015, 142, 4180–4187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, H.; Lian, Z. Bioinformatics Analysis of Evolutionary Characteristics and Biochemical Structure of FGF5 Gene in Sheep. Gene 2019, 720, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Aguillon, R.; Rinsky, M.; Simon-Blecher, N.; Doniger, T.; Appelbaum, L.; Levy, O. CLOCK evolved in cnidaria to synchronize internal rhythms with diel environmental cues. Elife 2024, 12, RP89499. [Google Scholar] [CrossRef]
- Jacobus, A.P.; Cavassana, S.D.; de Oliveira, I.I.; Barreto, J.A.; Rohwedder, E.; Frazzon, J.; Basso, T.P.; Basso, L.C.; Gross, J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. Biotechnol. Biofuels Bioprod. 2024, 17, 63. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, I.P.M.; Costa, G.M.J.; Lacerda, S.M.D.S.N. Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals 2024, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo Pessôa, L.V.; Bressan, F.F.; Freude, K.K. Induced Pluripotent Stem Cells Throughout the Animal Kingdom: Availability and Applications. World J. Stem Cells. 2019, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nun, I.F.; Montague, S.C.; Houck, M.L.; Ryder, O.; Loring, J.F. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species. Methods Mol. Biol. 2015, 1330, 101–109. [Google Scholar] [PubMed]
- Hirata, M.; Ichiyanagi, T.; Katoh, H.; Hashimoto, T.; Suzuki, H.; Nitta, H.; Kawase, M.; Nakai, R.; Imamura, M.; Ichiyanagi, K. Sequence divergence and retrotransposon insertion underlie interspecific epigenetic differences in primates. Mol. Biol. Evol. 2022, 39, msac208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, L.; Fu, Y.; Liu, F.; Wang, Z.; Li, Y.; Zhao, G.; Sun, W.; Wu, B.; Song, Y.; et al. Reprogramming efficiency and pluripotency of mule iPSCs over its parents. Biol. Reprod. 2023, 108, 887–901. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Choijookhuu, N.; Izu, H.; Kawano, Y.; Inokuchi, M.; Honsho, K.; Lee, A.R.; Nabekura, H.; Ohta, H.; Tsukiyama, T.; et al. Flexible adaptation of male germ cells from female iPSCs of endangered Tokudaia osimensis. Sci. Adv. 2017, 12, e1602179. [Google Scholar] [CrossRef] [PubMed]
- Honda, A. Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination. Bioessays 2018, 40, e1700152. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, D.J.; Limnios, I.J.; Gauthier, M.E.; Weeratunga, P.; Ovchinnikov, D.A.; Baillie, G.; Grimmond, S.M.; Graves, J.A.M.; Wolvetang, E.J. Platypus Induced Pluripotent Stem Cells: The Unique Pluripotency Signature of a Monotreme. Stem Cells Dev. 2019, 28, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Chin, C.S.H.; Lim, Z.F.S.; Ng, S.K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021, 9, 796991. [Google Scholar] [CrossRef]
- Toomey, M.B.; Marques, C.I.; Araújo, P.M.; Huang, D.; Zhong, S.; Liu, Y.; Schreiner, G.D.; Myers, C.A.; Pereira, P.; Afonso, S.; et al. A Mechanism for Red Coloration in Vertebrates. Curr. Biol. 2022, 32, 4201–4214.e12. [Google Scholar] [CrossRef] [PubMed]
- Bendernou, N.; Tacher, S.; Robin, S.; Rakotomanga, M.; Senger, F.; Galibert, F. Functional Analysis of a Subset of Olfactory Receptor Genes. J. Hered. 2007, 98, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Poliakov, E.; Gubin, A.N.; Stearn, O.; Li, Y.; Campos, M.M.; Gentleman, S.; Rogozin, I.B.; Redmond, T.M. Origin and Evolution of Retinoid Isomerization Machinery in Vertebrate Visual Cycle: Hint from Jawless Vertebrates. PLoS ONE 2012, 7, e49975. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Chen, S.L.; Gao, F.T.; Li, H.L.; Liu, X.F.; Wang, N.; Sha, Z.X. Establishment and Characterization of a Gonad Cell Line from Half-Smooth Tongue Sole Cynoglossus semilaevis Pseudomale. Fish Physiol. Biochem. 2015, 41, 673–683. [Google Scholar] [CrossRef]
- Callol, A.; Roher, N.; Amaro, C.; MacKenzie, S. Characterization of PAMP/PRR Interactions in European Eel (Anguilla anguilla) Macrophage-like Primary Cell Cultures. Fish Shellfish Immunol. 2013, 35, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Housman, G.; Briscoe, E.; Gilad, Y. Evolutionary Insights into Primate Skeletal Gene Regulation Using a Comparative Cell Culture Model. PLoS Genet. 2022, 18, e1010073. [Google Scholar] [CrossRef] [PubMed]
- Roboon, J.; Hattori, T.; Nguyen, D.T.; Ishii, H.; Takarada-Iemata, M.; Kannon, T.; Hosomichi, K.; Maejima, T.; Saito, K.; Shinmyo, Y.; et al. Isolation of Ferret Astrocytes Reveals Their Morphological, Transcriptional, and Functional Differences from Mouse Astrocytes. Front. Cell. Neurosci. 2022, 16, 877131. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.S.; Bai, M.; Lee, E.M.; Luo, S.; Cook, K.R.; Ma, D.K. Cytoprotection by a Naturally Occurring Variant of ATP5G1 in Arctic Ground Squirrel Neural Progenitor Cells. eLife 2020, 9, e55578. [Google Scholar] [CrossRef]
- Vara, C.; Paytuví-Gallart, A.; Cuartero, Y.; Álvarez-González, L.; Marín-Gual, L.; Garcia, F.; Florit-Sabater, B.; Capilla, L.; Sanchéz-Guillén, R.A.; Sarrate, Z.; et al. The Impact of Chromosomal Fusions on 3D Genome Folding and Recombination in the Germ Line. Nat. Commun. 2021, 12, 2981. [Google Scholar] [CrossRef]
- Erkenbrack, E.M.; Maziarz, J.D.; Griffith, O.W.; Liang, C.; Chavan, A.R.; Nnamani, M.C.; Wagner, G.P. The mammalian Decidual Cell Evolved from a Cellular Stress Response. PLoS Biol. 2018, 16, e2005594. [Google Scholar] [CrossRef]
- Karim, N.; Lin, L.W.; Van Eenennaam, J.P.; Fangue, N.A.; Schreier, A.D.; Phillips, M.A.; Rice, R.H. Epidermal Cell Cultures from White and Green Sturgeon (Acipenser transmontanus and medirostris): Expression of TGM1-like Transglutaminases and CYP4501A. PLoS ONE 2022, 17, e0265218. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Jung, Y.; Char, K.; Jang, Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol. 2023, 41, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Clatworthy, A.L. Neural-immune interactions--an evolutionary perspective. Neuroimmunomodulation 1998, 5, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.X.; Youhanna, S.; Zandi Shafagh, R.; Kele, J.; Lauschke, V.M. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem. Res. Toxicol. 2020, 33, 38–60. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, J.M. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. Int. J. Mol. Sci. 2024, 25, 7905. https://doi.org/10.3390/ijms25147905
Harper JM. Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. International Journal of Molecular Sciences. 2024; 25(14):7905. https://doi.org/10.3390/ijms25147905
Chicago/Turabian StyleHarper, James M. 2024. "Primary Cell Culture as a Model System for Evolutionary Molecular Physiology" International Journal of Molecular Sciences 25, no. 14: 7905. https://doi.org/10.3390/ijms25147905
APA StyleHarper, J. M. (2024). Primary Cell Culture as a Model System for Evolutionary Molecular Physiology. International Journal of Molecular Sciences, 25(14), 7905. https://doi.org/10.3390/ijms25147905