The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key
Abstract
:1. Introduction
1.1. Kawasaki Disease
1.2. Liquid Biopsy
2. Current Concepts in the Aetiology and Pathogenesis of Kawasaki Disease
2.1. Proposed Aetiologies of Kawasaki Disease
2.1.1. Genetic Predisposition
2.1.2. Infectious Triggers
2.1.3. Immunological Factors
2.2. Pathogenesis of Kawasaki Disease
2.2.1. Immune Response in Kawasaki Disease
2.2.2. Vasculopathy Associated with Kawasaki Disease
Histopathological Aspects of Coronary Artery Lesions in Kawasaki Disease
The Role of Endothelial Cells in Immune Function and Its Activation in Kawasaki Disease
Vascular Endothelial Dysfunction in Kawasaki-Disease-Associated Vasculitis
3. Application of Liquid Biopsy in Vasculopathy
3.1. Circulating Endothelial Cells
Circulating Endothelial Cells as Diagnostic Tools for Kawasaki Disease
3.2. Endothelial Microparticles
Endothelial Microparticles as Diagnostic Tools for Kawasaki Disease
3.3. Vascular Endothelial Cell Specific Cell-Free DNA
EC-cfDNA in Kawasaki Disease
4. Future Directions
4.1. Circulating Endothelial Cells
4.2. Endothelial Microparticles
4.3. Vascular Endothelial Cell Specific Cell-Free DNA
5. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AECA | anti-endothelial autoantibodies |
BLK | B-cell lymphoid kinase |
CASP3 | caspase-3 |
CAL | coronary artery lesions |
CEC | circulating endothelial cells |
cfDNA | cell-free nuclear DNA |
CA | coronary artery |
CAD | coronary artery disease |
DAMP | damage-associated molecular pattern |
EC | endothelial cells |
EndoMT | endothelial-mesenchymal transition |
EMP | endothelial microparticle |
EC-cfDNA | endothelial cell-free DNA |
ELISA | enzyme-linked immunosorbent assay |
FCGR2A | Fc fragment of IgG receptor IIa |
GWAS | genome-wide association studies |
IVIg | intravenous immunoglobulin |
IL | interleukin |
iNOS | inducible NOS |
KD | Kawasaki disease |
MIS-C | multisystem inflammatory syndrome in children |
MRP | myeloid-related protein |
NLRP3 | nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 |
NO | nitric oxide |
NOS | nitric oxide synthase |
NFATs | nuclear factor of activated T-cells |
ROS | reactive oxygen species |
RAGE | receptor for advanced glycation end-products |
SNP | single-nucleotide polymorphisms |
TGF-β | transforming growth factor β |
VE-Cadherin | vascular endothelial (VE)-cadherin |
VEGF | vascular endothelial growth factor |
References
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Koike, S.; Yamamoto, M.; Ito, Y.; Yano, E. Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J. Pediatr. 1975, 86, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T. [Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]. Arerugi 1967, 16, 178–222. [Google Scholar] [PubMed]
- Singh, S.; Vignesh, P.; Burgner, D. The epidemiology of Kawasaki disease: A global update. Arch. Dis. Child. 2015, 100, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Oki, I.; Tanihara, S.; Ojima, T.; Yanagawa, H. Cardiac Sequelae in Recurrent Cases of Kawasaki Disease: A Comparison Between the Initial Episode of the Disease and a Recurrence in the Same Patients. Pediatrics 1998, 102, e66. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Agrawal, D.K. Kawasaki disease: Etiopathogenesis and novel treatment strategies. Expert. Rev. Clin. Immunol. 2017, 13, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, E.; Hershey, D.; Romanowski, G.; Tremoulet, A. Intravenous Immunoglobulin Infusion Reactions in Kawasaki Disease Patients Who Undergo Sedation. J. Pediatr. Pharmacol. Ther. 2020, 25, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Iio, K.; Fukushima, N.; Akamine, K.; Uda, K.; Hataya, H.; Miura, M. Acute Rheumatic Fever and Kawasaki Disease Occurring in a Single Patient. Front. Pediatr. 2020, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Jindal, A.K.; Pilania, R.K. Diagnosis of Kawasaki disease. Int. J. Rheum. Dis. 2018, 21, 36–44. [Google Scholar] [CrossRef]
- Luo, H.; Wei, W.; Ye, Z.; Zheng, J.; Xu, R. Liquid Biopsy of Methylation Biomarkers in Cell-Free, DNA. Trends Mol. Med. 2021, 27, 482–500. [Google Scholar] [CrossRef]
- Ponti, G.; Manfredini, M.; Tomasi, A. Non-blood sources of cell-free DNA for cancer molecular profiling in clinical pathology and oncology. Crit. Rev. Oncol. Hematol. 2019, 141, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lázaro, D.; García Hernández, J.L.; García, A.C.; Córdova Martínez, A.; Mielgo-Ayuso, J.; Cruz-Hernández, J.J. Liquid Biopsy as Novel Tool in Precision Medicine: Origins, Properties, Identification and Clinical Perspective of Cancer’s Biomarkers. Diagnostics 2020, 10, 215. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.H.K.; Chow, C.; To, K.F. Latest development of liquid biopsy. J. Thorac. Dis. 2018, 10, S1645–S1651. [Google Scholar] [CrossRef] [PubMed]
- Dietz, S.; Christopoulos, P.; Gu, L.; Volckmar, A.-L.; Endris, V.; Yuan, Z.; Ogrodnik, S.J.; Zemojtel, T.; Heussel, C.-P.; Schneider, M.A.; et al. Serial liquid biopsies for detection of treatment failure and profiling of resistance mechanisms in KLC1–ALK -rearranged lung cancer. Mol. Case Stud. 2019, 5, a004630. [Google Scholar] [CrossRef] [PubMed]
- Oshi, M.; Murthy, V.; Takahashi, H.; Huyser, M.; Okano, M.; Tokumaru, Y.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. Urine as a Source of Liquid Biopsy for Cancer. Cancers 2021, 13, 2652. [Google Scholar] [CrossRef] [PubMed]
- Sakaeda, S.; Naito, Y. Circulating Tumor DNA in Oncology. Processes 2021, 9, 2198. [Google Scholar] [CrossRef]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid biopsy: A step closer to transform diagnosis, prognosis and future of cancer treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Hoon, D.S.B.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Abbosh, C.; Birkbak, N.J.; Wilson, G.A.; Jamal-Hanjani, M.; Constantin, T.; Salari, R.; Le Quesne, J.; Moore, D.A.; Veeriah, S.; Rosenthal, R.; et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 2017, 545, 446–451. [Google Scholar] [CrossRef]
- Heitzer, E.; Haque, I.S.; Roberts, C.E.S.; Speicher, M.R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 2019, 20, 71–88. [Google Scholar] [CrossRef]
- Lamb, Y.N.; Dhillon, S. Epi proColon® 2.0 CE: A Blood-Based Screening Test for Colorectal Cancer. Mol. Diagn. Ther. 2017, 21, 225–232. [Google Scholar] [CrossRef]
- De Vlaminck, I.; Martin, L.; Kertesz, M.; Patel, K.; Kowarsky, M.; Strehl, C.; Cohen, G.; Luikart, H.; Neff, N.F.; Okamoto, J.; et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc. Natl. Acad. Sci. USA 2015, 112, 13336–13341. [Google Scholar] [CrossRef]
- De Vlaminck, I.; Valantine, H.A.; Snyder, T.M.; Strehl, C.; Cohen, G.; Luikart, H.; Neff, N.F.; Okamoto, J.; Bernstein, D.; Weisshaar, D.; et al. Circulating Cell-Free DNA Enables Noninvasive Diagnosis of Heart Transplant Rejection. Sci. Transl. Med. 2014, 6, 241ra77. [Google Scholar] [CrossRef]
- Gielis, E.M.; Ledeganck, K.J.; De Winter, B.Y.; Del Favero, J.; Bosmans, J.-L.; Claas, F.H.J.; Abramowicz, D.; Eikmans, M. Cell-Free DNA: An Upcoming Biomarker in Transplantation. Am. J. Transplant. 2015, 15, 2541–2551. [Google Scholar] [CrossRef]
- Low, T.; McCrindle, B.W.; Mueller, B.; Fan, C.-P.S.; Somerset, E.; O’shea, S.; Tsuji, L.J.S.; Chen, H.; Manlhiot, C. Associations between the spatiotemporal distribution of Kawasaki disease and environmental factors: Evidence supporting a multifactorial etiologic model. Sci. Rep. 2021, 11, 14617. [Google Scholar] [CrossRef]
- Uehara, R.; Yashiro, M.; Nakamura, Y.; Yanagawa, H. Kawasaki disease in parents and children. Acta Paediatr. 2003, 92, 694–697. [Google Scholar] [CrossRef]
- Dergun, M.; Kao, A.; Hauger, S.B.; Newburger, J.W.; Burns, J.C. Familial Occurrence of Kawasaki Syndrome in North America. Arch. Pediatr. Adolesc. Med. 2005, 159, 876. [Google Scholar] [CrossRef]
- Onouchi, Y. Genetics of Kawasaki Disease. Circ. J. 2012, 76, 1581–1586. [Google Scholar] [CrossRef]
- Uehara, R.; Yashiro, M.; Nakamura, Y.; Yanagawa, H. Clinical Features of Patients with Kawasaki Disease Whose Parents Had the Same Disease. Arch. Pediatr. Adolesc. Med. 2004, 158, 1166. [Google Scholar] [CrossRef]
- Makino, N.; Nakamura, Y.; Yashiro, M.; Ae, R.; Tsuboi, S.; Aoyama, Y.; Kojo, T.; Uehara, R.; Kotani, K.; Yanagawa, H. Descriptive Epidemiology of Kawasaki Disease in Japan, 2011–2012: From the Results of the 22nd Nationwide Survey. J. Epidemiol. 2015, 25, 239–245. [Google Scholar] [CrossRef]
- Ishigaki, K.; Akiyama, M.; Kanai, M.; Takahashi, A.; Kawakami, E.; Sugishita, H.; Sakaue, S.; Matoba, N.; Low, S.-K.; Okada, Y.; et al. Large-scale genome-wide association study in a Japanese population identifies novel susceptibility loci across different diseases. Nat. Genet. 2020, 52, 669–679. [Google Scholar] [CrossRef]
- Onouchi, Y. Identification of Novel Kawasaki Disease Susceptibility Genes by Genome-Wide Association Studies. In Kawasaki Disease; Springer Japan: Tokyo, Japan, 2017; pp. 23–29. [Google Scholar]
- Khor, C.C.; Hong Kong–Shanghai Kawasaki Disease Genetics Consortium; Davila, S.; Breunis, W.B.; Lee, Y.-C.; Shimizu, C.; Wright, V.J.; Yeung, R.S.M.; Tan, D.E.K.; Sim, K.S.; et al. Genome-wide association study identifies FCGR2A as a susceptibility locus for Kawasaki disease. Nat. Genet. 2011, 43, 1241–1246. [Google Scholar] [CrossRef]
- Kuo, H.; Chang, J.; Kuo, H.; Yu, H.; Wang, C.; Lee, C.; Huang, L.; Yang, K.D. Identification of an Association Between Genomic Hypomethylation of FCGR2A and Susceptibility to Kawasaki Disease and Intravenous Immunoglobulin Resistance by DNA Methylation Array. Arthritis Rheumatol. 2015, 67, 828–836. [Google Scholar] [CrossRef]
- Chang, C.-J.; Kuo, H.-C.; Chang, J.-S.; Lee, J.-K.; Tsai, F.-J.; Khor, C.C.; Chang, L.-C.; Chen, S.-P.; Ko, T.-M.; Liu, Y.-M.; et al. Replication and Meta-Analysis of GWAS Identified Susceptibility Loci in Kawasaki Disease Confirm the Importance of B Lymphoid Tyrosine Kinase (BLK) in Disease Susceptibility. PLoS ONE 2013, 8, e72037. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, J.; Zhang, D.; Wu, S.; Li, Z.; Zhang, J.; Xia, Z.; Xia, P.; Xia, C.; Tang, X.; et al. MicroRNAs in Kawasaki disease: An update on diagnosis, therapy and monitoring. Front. Immunol. 2022, 13, 1016575. [Google Scholar] [CrossRef]
- Weng, K.P.; Cheng, C.F.; Chien, K.J.; Ger, L.P.; Huang, S.H.; Tsai, K.W. Identifying Circulating MicroRNA in Kawasaki Disease by Next-Generation Sequencing Approach. Curr. Issues Mol. Biol. 2021, 43, 485–500. [Google Scholar] [CrossRef]
- Nagata, S.; Yamashiro, Y.; Ohtsuka, Y.; Shimizu, T.; Sakurai, Y.; Misawa, S.; Ito, T. Heat shock proteins and superantigenic properties of bacteria from the gastrointestinal tract of patients with Kawasaki disease. Immunology 2009, 128, 511–520. [Google Scholar] [CrossRef]
- Nagata, S. Causes of Kawasaki Disease—From Past to Present. Front. Pediatr. 2019, 7, 18. [Google Scholar] [CrossRef]
- Turnier, J.L.; Anderson, M.S.; Heizer, H.R.; Jone, P.N.; Glodé, M.P.; Dominguez, S.R. Concurrent Respiratory Viruses and Kawasaki Disease. Pediatrics 2015, 136, e609–e614. [Google Scholar] [CrossRef]
- Influenza (Flu). 2022. Available online: https://www.cdc.gov/flu/about/keyfacts.htm (accessed on 13 March 2024).
- Jackson, H.; Menikou, S.; Hamilton, S.; McArdle, A.; Shimizu, C.; Galassini, R.; Huang, H.; Kim, J.; Tremoulet, A.; Thorne, A.; et al. Kawasaki Disease Patient Stratification and Pathway Analysis Based on Host Transcriptomic and Proteomic Profiles. Int. J. Mol. Sci. 2021, 22, 5655. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, L.; Ding, G.; Song, S.; Chen, L.; Li, G.; Xia, M.; Han, D.; Zheng, Y.; Liu, J.; et al. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Nat. Commun. 2021, 12, 5444. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, S. Kawasaki disease—A common childhood vasculitis. Indian. J. Rheumatol. 2015, 10, S78–S83. [Google Scholar] [CrossRef]
- InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In Brief: The Innate and Adaptive Immune Systems. [Updated 2023 Aug 14]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279396/ (accessed on 12 December 2022).
- Elkon, K.; Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 2008, 4, 491–498. [Google Scholar] [CrossRef]
- Sakurai, Y. Autoimmune Aspects of Kawasaki Disease. J. Investig. Allergol. Clin. Immunol. 2019, 29, 251–261. [Google Scholar] [CrossRef]
- Hicar, M.D. Antibodies and Immunity During Kawasaki Disease. Front. Cardiovasc. Med. 2020, 7, 94. [Google Scholar] [CrossRef]
- Baker, M.A.; Baer, B.; Kulldorff, M.; Zichittella, L.; Reindel, R.; DeLuccia, S.; Lipowicz, H.; Freitas, K.; Jin, R.; Yih, W.K. Kawasaki disease and 13-valent pneumococcal conjugate vaccination among young children: A self-controlled risk interval and cohort study with null results. PLoS Med. 2019, 16, e1002844. [Google Scholar] [CrossRef]
- L’Huillier, A.G.; Brito, F.; Wagner, N.; Cordey, S.; Zdobnov, E.; Posfay-Barbe, K.M.; Kaiser, L. Identification of Viral Signatures Using High-Throughput Sequencing on Blood of Patients With Kawasaki Disease. Front. Pediatr. 2019, 7, 524. [Google Scholar] [CrossRef]
- Wang, W.T.; He, M.; Shimizu, C.; Croker, B.A.; Hoffman, H.M.; Tremoulet, A.H.; Burns, J.C.; Shyy, J.Y. Inflammasome Activation in Children With Kawasaki Disease and Multisystem Inflammatory Syndrome. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2509–2511. [Google Scholar] [CrossRef]
- Hara, T.; Nakashima, Y.; Sakai, Y.; Nishio, H.; Motomura, Y.; Yamasaki, S. Kawasaki disease: A matter of innate immunity. Clin. Exp. Immunol. 2016, 186, 134–143. [Google Scholar] [CrossRef]
- Takahashi, K.; Oharaseki, T.; Naoe, S.; Wakayama, M.; Yokouchi, Y. Neutrophilic involvement in the damage to coronary arteries in acute stage of Kawasaki disease. Pediatr. Int. 2005, 47, 305–310. [Google Scholar] [CrossRef]
- Yang, Q.; Liao, M.; Wang, W.; Zhang, M.; Chen, Q.; Guo, J.; Peng, B.; Huang, J.; Liu, H.; Yahagi, A.; et al. CD157 Confers Host Resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-Induced Reactive Oxygen Species Production. MBio 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Maury, C.P.; Salo, E.; Pelkonen, P. Circulating Interleukin-1β in Patients with Kawasaki Disease. N. Engl. J. Med. 1988, 319, 1670–1671. [Google Scholar]
- Hoang, L.T.; Shimizu, C.; Ling, L.; Naim, A.N.M.; Khor, C.C.; Tremoulet, A.H.; Wright, V.; Levin, M.; Hibberd, M.L.; Burns, J.C. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 2014, 6, 541. [Google Scholar] [CrossRef]
- Alphonse, M.P.; Duong, T.T.; Shumitzu, C.; Hoang, T.L.; McCrindle, B.W.; Franco, A.; Schurmans, S.; Philpott, D.J.; Hibberd, M.L.; Burns, J.; et al. Inositol-Triphosphate 3-Kinase C Mediates Inflammasome Activation and Treatment Response in Kawasaki Disease. J. Immunol. 2016, 197, 3481–3489. [Google Scholar] [CrossRef]
- Kuijpers, T.W.; Wiegman, A.; van Lier, R.A.W.; Roos, M.T.L.; Dillen, P.M.E.W.; Pinedo, S.; Ottenkamp, J. Kawasaki Disease: A Maturational Defect in Immune Responsiveness. J. Infect. Dis. 1999, 180, 1869–1877. [Google Scholar] [CrossRef]
- Ikeda, K.; Yamaguchi, K.; Tanaka, T.; Mizuno, Y.; Hijikata, A.; Ohara, O.; Takada, H.; Kusuhara, K.; Hara, T. Unique activation status of peripheral blood mononuclear cells at acute phase of Kawasaki disease. Clin. Exp. Immunol. 2010, 160, 246–255. [Google Scholar] [CrossRef]
- Ling, X.B.; Lau, K.; Kanegaye, J.T.; Pan, Z.; Peng, S.; Ji, J.; Liu, G.; Sato, Y.; Yu, T.T.; Whitin, J.C.; et al. A diagnostic algorithm combining clinical and molecular data distinguishes Kawasaki disease from other febrile illnesses. BMC Med. 2011, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Popper, S.J.; Shimizu, C.; Shike, H.; Kanegaye, J.T.; Newburger, J.W.; Sundel, R.P.; O Brown, P.; Burns, J.C.; A Relman, D. Gene-expression patterns reveal underlying biological processes in Kawasaki disease. Genome Biol. 2007, 8, R261. [Google Scholar] [CrossRef] [PubMed]
- Furuno, K.; Yuge, T.; Kusuhara, K.; Takada, H.; Nishio, H.; Khajoee, V.; Ohno, T.; Hara, T. CD25+CD4+ regulatory T cells in patients with Kawasaki disease. J. Pediatr. 2004, 145, 385–390. [Google Scholar] [CrossRef]
- Wang, G.; Wen, P.; Wang, Q.; Qi, Z.; Yang, J.; Li, C. Changes of regulatory B cells in patients with acute Kawasaki disease and its significance. Chin. J. Microbiol. Immunol. 2013, 750–755. [Google Scholar]
- Jia, S.; Li, C.; Wang, G.; Yang, J.; Zu, Y. The T helper type 17/regulatory T cell imbalance in patients with acute Kawasaki disease. Clin. Exp. Immunol. 2010, 162, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Touma, R.; Song, Y.; Shimizu, C.; Tremoulet, A.H.; Kanegaye, J.T.; Burns, J.C. Specificity of regulatory T cells that modulate vascular inflammation. Autoimmunity 2014, 47, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Kawsara, A.; Núñez Gil, I.J.; Alqahtani, F.; Moreland, J.; Rihal, C.S.; Alkhouli, M. Management of Coronary Artery Aneurysms. JACC Cardiovasc. Interv. 2018, 11, 1211–1223. [Google Scholar] [CrossRef] [PubMed]
- Shulman, S.T.; Rowley, A.H. Kawasaki disease: Insights into pathogenesis and approaches to treatment. Nat. Rev. Rheumatol. 2015, 11, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Orenstein, J.M.; Shulman, S.T.; Fox, L.M.; Baker, S.C.; Takahashi, M.; Bhatti, T.R.; Russo, P.A.; Mierau, G.W.; de Chadarévian, J.P.; Perlman, E.J.; et al. Three Linked Vasculopathic Processes Characterize Kawasaki Disease: A Light and Transmission Electron Microscopic Study. PLoS ONE 2012, 7, e38998. [Google Scholar] [CrossRef] [PubMed]
- Rowley, A.H.; Eckerley, C.A.; Jäck, H.M.; Shulman, S.T.; Baker, S.C. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J. Immunol. 1997, 159, 5946–5955. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Oharaseki, T.; Yokouchi, Y.; Hiruta, N.; Naoe, S. Kawasaki disease as a systemic vasculitis in childhood. Ann. Vasc. Dis. 2010, 3, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Erdbruegger, U.; Haubitz, M.; Woywodt, A. Circulating endothelial cells: A novel marker of endothelial damage. Clin. Chim. Acta 2006, 373, 17–26. [Google Scholar] [PubMed]
- Shao, Y.; Saredy, J.; Yang, W.Y.; Sun, Y.; Lu, Y.; Saaoud, F.; Drummer, C., IV; Johnson, C.; Xu, K.; Jiang, X.; et al. Vascular Endothelial Cells and Innate Immunity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e138–e152. [Google Scholar] [CrossRef]
- Booth, A.D.; Wallace, S.; McEniery, C.M.; Yasmin; Brown, J.; Jayne, D.R.W.; Wilkinson, I.B. Inflammation and arterial stiffness in systemic vasculitis: A model of vascular inflammation. Arthritis Rheum. 2004, 50, 581–588. [Google Scholar]
- Eberhard, B.A.; Andersson, U.; Laxer, R.M.; Rose, V.; Silverman, E.D. Evaluation of the cytokine response in Kawasaki disease. Pediatr. Infect. Dis. J. 1995, 14, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Naoe, S.; Takahashi, K.; Masuda, H.; Tanaka, N. Kawasaki disease. With particular emphasis on arterial lesions. Acta Pathol. Jpn. 1991, 41, 785–797. [Google Scholar] [CrossRef]
- Shulman, S.T.; Rowley, A.H. Advances in Kawasaki disease. Eur. J. Pediatr. 2004, 163, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Rowley, A.H.; Shulman, S.T.; Garcia, F.L.; Guzman-Cottrill, J.A.; Miura, M.; Lee, H.L.; Baker, S.C. Cloning the arterial IgA antibody response during acute Kawasaki disease. J. Immunol. 2005, 175, 8386–8391. [Google Scholar] [CrossRef]
- Jennette, J.C.; Sciarrotta, J.; Takahashi, K.; Naoe, S. Predominance of Monocytes and Macrophages in the Inflammatory Infiltrates of Acute Kawasaki Disease Arteritis. Pediatr. Res. 2003, 53, 173. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Yasudo, H.; Suzuki, Y.; Furuta, T.; Matsuguma, C.; Azuma, Y.; Miyake, A.; Okada, S.; Ichihara, K.; Ohga, S.; et al. Circulating endothelial glycocalyx components as a predictive marker of coronary artery lesions in Kawasaki disease. Int. J. Cardiol. 2019, 292, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Feng, S.; Wu, Y.; Su, Y.; Jing, F.; Yi, Q. Serum Levels of Syndecan-1 in Patients With Kawasaki Disease. Pediatr. Infect. Dis. J. 2019, 38, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Barnett, K.C.; Kagan, J.C. Lipids that directly regulate innate immune signal transduction. Innate Immun. 2020, 26, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Tejero, J.; Shiva, S.; Gladwin, M.T. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol. Rev. 2019, 99, 311–379. [Google Scholar] [CrossRef]
- Forrester, S.J.; Kikuchi, D.S.; Hernandes, M.S.; Xu, Q.; Griendling, K.K. Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 2018, 122, 877–902. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Boini, K.M.; Pitzer, A.L.; Gulbins, E.; Zhang, Y.; Li, P.-L. Endothelial Nlrp3 inflammasome activation associated with lysosomal destabilization during coronary arteritis. Biochim. Biophys. Acta 2015, 1853, 396–408. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 2013, 9, 1057–1069. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.J.; Crawford, S.E.; Cornwall, M.L.; Garcia, F.; Shulman, S.T.; Rowley, A.H. CD8 T Lymphocytes and Macrophages Infiltrate Coronary Artery Aneurysms in Acute Kawasaki Disease. J. Infect. Dis. 2001, 184, 940–943. [Google Scholar] [CrossRef]
- Gavin, P.J.; Crawford, S.E.; Shulman, S.T.; Garcia, F.L.; Rowley, A.H. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute Kawasaki disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 576–581. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, Y.; Li, Y.; Hua, Y.; Zhang, Y. Molecular mechanisms of endothelial dysfunction in Kawasaki-disease-associated vasculitis. Front. Cardiovasc. Med. 2022, 9, 981010. [Google Scholar] [CrossRef] [PubMed]
- Motomura, Y.; Kanno, S.; Asano, K.; Tanaka, M.; Hasegawa, Y.; Katagiri, H.; Saito, T.; Hara, H.; Nishio, H.; Hara, T.; et al. Identification of Pathogenic Cardiac CD11c + Macrophages in Nod1-Mediated Acute Coronary Arteritis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1423–1433. [Google Scholar] [CrossRef]
- Biezeveld, M.H.; Van Mierlo, G.; Lutter, R.; Kuipers, I.M.; Dekker, T.; E Hack, C.; Newburger, J.W.; Kuijpers, T.W. Sustained activation of neutrophils in the course of Kawasaki disease: An association with matrix metalloproteinases. Clin. Exp. Immunol. 2005, 141, 183–188. [Google Scholar] [CrossRef]
- Yoshida, Y.; Takeshita, S.; Kawamura, Y.; Kanai, T.; Tsujita, Y.; Nonoyama, S. Enhanced formation of neutrophil extracellular traps in Kawasaki disease. Pediatr. Res. 2020, 87, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lui, K.O.; Zhou, B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat. Rev. Cardiol. 2018, 15, 445–456. [Google Scholar] [CrossRef]
- Shimizu, C.; Oharaseki, T.; Takahashi, K.; Kottek, A.; Franco, A.; Burns, J.C. The role of TGF-β and myofibroblasts in the arteritis of Kawasaki disease. Hum. Pathol. 2013, 44, 189–198. [Google Scholar] [CrossRef]
- Jakob, A.; Schachinger, E.; Klau, S.; Lehner, A.; Ulrich, S.; Stiller, B.; Zieger, B. Von Willebrand factor parameters as potential biomarkers for disease activity and coronary artery lesion in patients with Kawasaki disease. Eur. J. Pediatr. 2020, 179, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, H.; Nameirakpam, J.; Kumrah, R.; Pandiarajan, V.; Suri, D.; Rawat, A.; Singh, S. Biomarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Front. Pediatr. 2019, 7, 242. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Cheng, Y.; Wu, W.; Yuan, L.; Liu, X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front. Cell Dev. Biol. 2021, 9, 730621. [Google Scholar] [CrossRef] [PubMed]
- Schenck, H.; Netti, E.; Teernstra, O.; De Ridder, I.; Dings, J.; Niemelä, M.; Temel, Y.; Hoogland, G.; Haeren, R. The Role of the Glycocalyx in the Pathophysiology of Subarachnoid Hemorrhage-Induced Delayed Cerebral Ischemia. Front. Cell Dev. Biol. 2021, 9, 731641. [Google Scholar] [CrossRef] [PubMed]
- McClung, J.A.; Abraham, N.G. Endothelial Biology. In Translational Research in Coronary Artery Disease; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–14. [Google Scholar]
- Sabatier, F.; Camoin-Jau, L.; Anfosso, F.; Sampol, J.; Dignat-George, F. Circulating endothelial cells, microparticles and progenitors: Key players towards the definition of vascular competence. J. Cell Mol. Med. 2009, 13, 454–471. [Google Scholar] [CrossRef]
- Schmidt, D.E.; Manca, M.; Hoefer, I.E. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc. Med. 2015, 25, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Fabi, M.; Petrovic, B.; Andreozzi, L.; Corinaldesi, E.; Filice, E.; Biagi, C.; Rizzello, A.; Mattesini, B.E.; Bugani, S.; Lanari, M. Circulating Endothelial Cells: A New Possible Marker of Endothelial Damage in Kawasaki Disease, Multisystem Inflammatory Syndrome in Children and Acute SARS-CoV-2 Infection. Int. J. Mol. Sci. 2022, 23, 10106. [Google Scholar] [CrossRef] [PubMed]
- Quilici, J.; Banzet, N.; Paule, P.; Meynard, J.-B.; Mutin, M.; Bonnet, J.-L.; Ambrosi, P.; Sampol, J.; Dignat-George, F. Circulating Endothelial Cell Count as a Diagnostic Marker for Non–ST-Elevation Acute Coronary Syndromes. Circulation 2004, 110, 1586–1591. [Google Scholar] [CrossRef]
- Lee, K.; Blann, A.; Lip, G. Plasma markers of endothelial damage/dysfunction, inflammation and thrombogenesis in relation to TIMI risk stratification in acute coronary syndromes. Thromb. Haemost. 2005, 94, 1077–1083. [Google Scholar] [CrossRef]
- Chong, A.Y.; Blann, A.D.; Patel, J.; Freestone, B.; Hughes, E.; Lip, G.Y.H. Endothelial Dysfunction and Damage in Congestive Heart Failure. Circulation 2004, 110, 1794–1798. [Google Scholar] [CrossRef]
- Shah, V.; Christov, G.; Mukasa, T.; Brogan, K.S.; Wade, A.; Eleftheriou, D.; Levin, M.; Tulloh, R.; Almeida, B.; Dillon, M.; et al. Cardiovascular status after Kawasaki disease in the, U.K. Heart 2015, 101, 1646–1655. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Gao, L.; Gong, F.; Chen, X. Receptor for advanced glycation end products involved in circulating endothelial cells release from human coronary endothelial cells induced by C-reactive protein. Iran. J. Basic. Med. Sci. 2015, 18, 610–615. [Google Scholar]
- Haghjooy-Javanmard, S.; Presidend, N.; Manssori, N.; Kelishadi, R.; Mostafavi, N. Persistence of endothelial cell damage late after Kawasaki disease in patients without coronary artery complications. Adv. Biomed. Res. 2015, 4, 25. [Google Scholar] [CrossRef]
- Wang, C.J.; Chen, M.; Lei, Z.J. [Expression of myeloid-related protein complex in association with circulating endothelial cells in children with acute Kawasaki disease]. Zhongguo Dang Dai Er Ke Za Zhi 2014, 16, 48–52. [Google Scholar]
- Gong, F.; Zhang, Y.; Xie, C.; Zhu, W.; Wang, W.; Fu, S.; Shen, H. Expression of receptor for advanced glycation end products (RAGE) on the surface of circulating endothelial cells is upregulated in Kawasaki disease. Pediatr. Res. 2012, 71, 720–724. [Google Scholar] [CrossRef]
- Fu, S.; Gong, F.; Xie, C.; Zhu, W.; Wang, W.; Shen, H.; Tang, Y. S100A12 on Circulating Endothelial Cells Surface in Children With Kawasaki Disease. Pediatr. Res. 2010, 68, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Hirono, K.; Foell, D.; Xing, Y.; Miyagawa-Tomita, S.; Ye, F.; Ahlmann, M.; Vogl, T.; Futatani, T.; Rui, C.; Yu, X.; et al. Expression of Myeloid-Related Protein-8 and -14 in Patients With Acute Kawasaki Disease. J. Am. Coll. Cardiol. 2006, 48, 1257–1264. [Google Scholar] [CrossRef]
- Yu, X.; Hirono, K.-I.; Ichida, F.; Uese, K.-I.; Rui, C.; Watanabe, S.; Watanabe, K.; Hashimoto, I.; Kumada, T.; Okada, E.; et al. Enhanced iNOS Expression in Leukocytes and Circulating Endothelial Cells Is Associated with the Progression of Coronary Artery Lesions in Acute Kawasaki Disease. Pediatr. Res. 2004, 55, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, K.; Takeshita, S.; Tsujimoto, H.; Kawamura, Y.; Tokutomi, T.; Sekine, I. Circulating endothelial cells in Kawasaki disease. Clin. Exp. Immunol. 2003, 131, 536–540. [Google Scholar] [CrossRef]
- Tantivitayakul, P.; Benjachat, T.; Somparn, P.; Leelahavanichkul, A.; Kittikovit, V.; Hirankarn, N.; Pisitkun, T.; Avihingsanon, Y. Elevated expressions of myeloid-related proteins-8 and -14 are danger biomarkers for lupus nephritis. Lupus 2016, 25, 38–45. [Google Scholar] [CrossRef]
- Foell, D. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Rheumatology 2003, 42, 1383–1389. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Kumaresan, P.R.; Jialal, I. C-Reactive Protein Induces Release of Both Endothelial Microparticles and Circulating Endothelial Cells In Vitro and In Vivo: Further Evidence of Endothelial Dysfunction. Clin. Chem. 2011, 57, 1757–1761. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.B.; Punihaole, D.; Levine, T.B. Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology 2012, 122, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Lv, H.T.; An, X.J.; Ling, N.; Xu, F. Endothelial microparticles induce vascular endothelial cell injury in children with Kawasaki disease. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1814–1818. [Google Scholar] [PubMed]
- Leopold, J.A. The Endothelium. In Vascular Medicine: A Companion to Braunwald’s Heart Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 14–24. [Google Scholar]
- Dignat-George, F.; Boulanger, C.M. The Many Faces of Endothelial Microparticles. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Yong, P.J.; Koh, C.H.; Shim, W.S. Endothelial microparticles: Missing link in endothelial dysfunction? Eur. J. Prev. Cardiol. 2013, 20, 496–512. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S.; Gauley, J.; Ullal, A.J. Microparticles as a source of extracellular DNA. Immunol. Res. 2011, 49, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Diamant, M.; Tushuizen, M.E.; Sturk, A.; Nieuwland, R. Cellular microparticles: New players in the field of vascular disease? Eur. J. Clin. Investig. 2004, 34, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Gavidia, L.M.; Burger, D.; Matthews, V.B.; Nolde, J.M.; Kiuchi, M.G.; Carnagarin, R.; Kannenkeril, D.; Chan, J.; Joyson, A.; Herat, L.Y.; et al. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. Hypertension 2021, 77, 1825–1844. [Google Scholar] [CrossRef]
- Bernal-Mizrachi, L.; Jy, W.; Jimenez, J.J.; Pastor, J.; Mauro, L.M.; Horstman, L.L.; de Marchena, E.; Ahn, Y.S. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am. Heart J. 2003, 145, 962–970. [Google Scholar] [CrossRef]
- Werner, N.; Wassmann, S.; Ahlers, P.; Kosiol, S.; Nickenig, G. Circulating CD31+/Annexin V+ Apoptotic Microparticles Correlate With Coronary Endothelial Function in Patients With Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 112–116. [Google Scholar] [CrossRef]
- Augustine, D.; Ayers, L.V.; Lima, E.; Newton, L.; Lewandowski, A.J.; Davis, E.F.; Ferry, B.; Leeson, P. Dynamic Release and Clearance of Circulating Microparticles During Cardiac Stress. Circ. Res. 2014, 114, 109–113. [Google Scholar] [CrossRef]
- Guiducci, S.; Ricci, L.; Romano, E.; Ceccarelli, C.; Distler, J.H.W.; Miniati, I.; Calabri, G.B.; Distler, O.; Cerinic, M.M.; Falcini, F. Microparticles and Kawasaki disease: A marker of vascular damage? Clin. Exp. Rheumatol. 2011, 29 (Suppl. S64), S121–S125. [Google Scholar]
- Nakaoka, H.; Hirono, K.; Yamamoto, S.; Takasaki, I.; Takahashi, K.; Kinoshita, K.; Takasaki, A.; Nishida, N.; Okabe, M.; Ce, W.; et al. MicroRNA-145-5p and microRNA-320a encapsulated in endothelial microparticles contribute to the progression of vasculitis in acute Kawasaki Disease. Sci. Rep. 2018, 8, 1016. [Google Scholar] [CrossRef]
- Dou, J.; Li, H.; Sun, L.; Yan, W.; Lv, H.; Ding, Y. Histopathological and Ultrastructural Examinations of Rabbit Coronary Artery Vasculitis Caused by Bovine Serum Albumin: An Animal Model of Kawasaki Disease. Ultrastruct. Pathol. 2013, 37, 139–145. [Google Scholar] [CrossRef]
- Ding, Y.-Y.; Ren, Y.; Feng, X.; Xu, Q.-Q.; Sun, L.; Zhang, J.-M.; Dou, J.-J.; Lv, H.-T.; Yan, W.-H. Correlation between brachial artery flow-mediated dilation and endothelial microparticle levels for identifying endothelial dysfunction in children with Kawasaki disease. Pediatr. Res. 2014, 75, 453–458. [Google Scholar] [CrossRef]
- Guo, M.; Fan, S.; Chen, Q.; Jia, C.; Qiu, M.; Bu, Y.; Tang, W.H.; Zhang, Y. Platelet-derived microRNA-223 attenuates TNF-α induced monocytes adhesion to arterial endothelium by targeting ICAM-1 in Kawasaki disease. Front. Immunol. 2022, 13, 922868. [Google Scholar] [CrossRef]
- Tan, Z.; Yuan, Y.; Chen, S.; Chen, Y.; Chen, T.X. Plasma endothelial microparticles, TNF-α and IL-6 in Kawasaki disease. Indian. Pediatr. 2013, 50, 501–503. [Google Scholar] [CrossRef]
- Chen, T.; Xu, T.; Cheng, M.; Fang, H.; Shen, X.; Tang, Z.; Zhao, J. Human umbilical cord mesenchymal stem cells regulate CD54 and CD105 in vascular endothelial cells and suppress inflammation in Kawasaki disease. Exp. Cell Res. 2021, 409, 112941. [Google Scholar] [CrossRef] [PubMed]
- Brogan, P.A.; Shah, V.; Klein, N.; Dillon, M.J. Vbeta-restricted T cell adherence to endothelial cells: A mechanism for superantigen-dependent vascular injury. Arthritis Rheum. 2004, 50, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Bernabeu, C.; Smadja, D.M. Endoglin as an Adhesion Molecule in Mature and Progenitor Endothelial Cells: A Function Beyond TGF-β. Front. Med. 2019, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-Y.; Guo, Q.-R.; Wang, F.-H.; Adhikari, R.; Zhu, Z.-Y.; Zhang, H.-Y.; Zhou, W.-M.; Yu, H.; Li, J.-Q.; Zhang, J.-Y. Cell-Free DNA: Hope and Potential Application in Cancer. Front. Cell Dev. Biol. 2021, 9, 639233. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, R. Cell-Free DNA: Applications in Different Diseases. Methods Mol. Biol. 2019, 1909, 3–12. [Google Scholar] [PubMed]
- Basu, A.; Budhraja, A.; Juwayria Abhilash, D.; Gupta, I. Novel omics technology driving translational research in precision oncology. In Advances in Genetics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 81–145. [Google Scholar]
- Zemmour, H.; Planer, D.; Magenheim, J.; Moss, J.; Neiman, D.; Gilon, D.; Korach, A.; Glaser, B.; Shemer, R.; Landesberg, G.; et al. Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating, DNA. Nat. Commun. 2018, 9, 1443. [Google Scholar] [CrossRef]
- Wan, J.C.M.; Massie, C.; Garcia-Corbacho, J.; Mouliere, F.; Brenton, J.D.; Caldas, C.; Pacey, S.; Baird, R.; Rosenfeld, N. Liquid biopsies come of age: Towards implementation of circulating tumour, DNA. Nat. Rev. Cancer 2017, 17, 223–238. [Google Scholar] [CrossRef]
- Bronkhorst, A.J.; Ungerer, V.; Holdenrieder, S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol. Detect. Quantif. 2019, 17, 100087. [Google Scholar] [CrossRef] [PubMed]
- Seeto, R.K.; Fleming, J.N.; Dholakia, S.; Dale, B.L. Understanding and using AlloSure donor derived cell-free DNA. Biophys. Rev. 2020, 12, 917–924. [Google Scholar] [CrossRef]
- Moss, J.; Magenheim, J.; Neiman, D.; Zemmour, H.; Loyfer, N.; Korach, A.; Samet, Y.; Maoz, M.; Druid, H.; Arner, P.; et al. Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat. Commun. 2018, 9, 5068. [Google Scholar] [CrossRef] [PubMed]
- Peretz, A.; Loyfer, N.; Piyanzin, S.; Ochana, B.L.; Neiman, D.; Magenheim, J.; Klochendler, A.; Drawshy, Z.; Fox-Fisher, I.; Fridlich, O.; et al. The DNA methylome of human vascular endothelium and its use in liquid biopsies. Med 2023, 4, 263–281.e4. [Google Scholar] [CrossRef]
- Zhang, K.; Yin, F.; Lin, L. Circulating Endothelial Cells and Chronic Kidney Disease. Biomed Res. Int. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Lanuti, P.; Simeone, P.; Rotta, G.; Almici, C.; Avvisati, G.; Azzaro, R.; Bologna, G.; Budillon, A.; Di Cerbo, M.; Di Gennaro, E.; et al. A standardized flow cytometry network study for the assessment of circulating endothelial cell physiological ranges. Sci. Rep. 2018, 8, 5823. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Inoue, Y.; Takeuchi, K.; Okada, Y.; Tamura, K.; Tomomasa, T.; Kobayashi, T.; Morikawa, A. Prediction of Intravenous Immunoglobulin Unresponsiveness in Patients With Kawasaki Disease. Circulation 2006, 113, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- Zu, L.; Niu, C.; Li, J.; Shan, L.; Li, L.; Zhang, D.; Willard, B.; Zheng, L. Proteomic research of high-glucose-activated endothelial microparticles and related proteins to Alzheimer’s disease. Diabbetes Vasc. Dis. Res. 2015, 12, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Burger, D.; Turner, M.; Xiao, F.; Munkonda, M.N.; Akbari, S.; Burns, K.D. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia 2017, 60, 1791–1800. [Google Scholar] [CrossRef]
- Northrop, E.F.; Milbauer, L.C.; Rudser, K.D.; Fox, C.K.; Solovey, A.N.; Kaizer, A.M.; Hebbel, R.P.; Kelly, A.S.; Ryder, J.R. Reproducibility of endothelial microparticles in children and adolescents. Biomark. Med. 2020, 14, 43–51. [Google Scholar] [CrossRef]
Susceptibility Gene | Associated SNPs | Type of Study | Association with KD | Association of SNP with Other Pathologies | Association of Genes with Other Pathologies | Predisposed Ethnicity | Ref. | |
---|---|---|---|---|---|---|---|---|
Family-based studies | Inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) | rs28493229 | Case-control association studies | ITPKC negatively regulates the signalling cascade triggered by inositol 1,4,5-trisphosphate (IP3) and the nuclear factor of activated T-cells (NFATs), which activate inflammatory and vascular ECs. However, its SNPs reduce expression of ITPKC mRNA. | None. |
| Japanese, Taiwanese, Koreans, Chinese, Euro-American | [32] |
Caspase-3 (CASP3) | rs113420705 (formerly rs72689236) | Case-control association studies | CASP3 also inhibits the activity of IP3 and NFATs and mediates cellular apoptosis. However, its SNP reduces CASP3 expression, limiting cellular apoptosis and sustaining potency of immune cells. | None. |
| Japanese, Taiwanese, Koreans, Chinese, Euro-American | [32] | |
Population-based studies | Fc gamma receptor IIa (FCGR2A) | rs1801274 | Genome-wide association studies (GWAS) | FCGR2A activates and triggers a signal when conjugated with immune cells. SNP increases affinity to IgG receptors, enhancing phagocytic cell activation. This provides a basis, although not established, for IVIg treatment in KD. | Lupus nephritis Malaria Pseudomonas aeruginosa (cystic fibrosis) |
| European descent, Taiwanese, Koreans, Han Chinese | [32,33,34] |
B lymphoid tyrosine kinase (BLK) | rs2736340 | GWAS | The SNP reduces BLK mRNA expression in B-cells, which may alter their activity to trigger the pathogenesis of KD. | None. |
| Japanese, Taiwanese, Koreans | [32,33,34,35] | |
CD40 | rs1883832 | GWAS | SNP increases CD40 expression on B-cells leading to enhanced B-cell activity, which is suggested to be commonly involved in the pathogenesis of KD and other adult autoimmune diseases. It is known to enhance activation of inflammatory and vascular ECs. | Hyper-IgM syndrome type 3 |
| Japanese, Taiwanese, Koreans | [32] |
Potential Diagnostic Tools | Advantages | Disadvantages |
---|---|---|
Circulating endothelial cells |
|
|
Endothelial microparticles |
|
|
Endothelial-specific cell-free DNA |
|
|
Literature | Type of Participants | Age (in Years, Median/ Range) | Female, n, % | Acute Phase | No. of CECs (Acute) | Sub-Acute Phase | No. of CECs (Sub-Acute) | Convalescent Phase | No. of CECs (Convalescent) | Long-Term Outcomes | Healthy Controls | CEC Detection Method | Biomarkers for Detection |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fabi et al. (2022) [101] | Active | 1.8 (0.6–2.4 (IQR)) | 6 (66.7%) | 1st–10th day of fever | 16.3 (13.6–48.8)/mL of blood | 11th–20th day after fever | 45.8 (18.5–131.0)/mL of blood | - | - | - | - | Immunomagnetic capture | CD146 |
Shah et al. (2015) [105] | Survivors | 11.9 (4.3–32.2) Age at diagnosis: 4.9 (0.18–11.3) | 45 (49%) | - | - | - | - | - | - | 8.3 years post-KD CECs: 24 cells/mL | n = 51 CECs: 49 cell/mL | Immunomagnetic capture | CD146 |
Zhou et al. (2015) [106] | In vitro model | - | - | - | - | - | - | - | - | - | Flow cytometry | CD146+, CD105+, CD45−, CD3+ | |
Mostafavi et al. (2014) [107] | Survivors | 6.6 (4.8–9.6) | 8 (61.5%) | - | - | - | - | - | - | 4–19 years post-KD CECs: 12 cells | n = 13 CECs: 2.38 cells | Flow cytometry | CD45−, CD34+, CD146+ |
Wang et al. (2014) [108] | Active | 0.1–5 | 17 (41.4%) | During hospitalisation | 392/mL of blood (unique formula was used) | - | - | - | - | - | - | Flow cytometry | CD45−, CD146+ |
Gong et al. (2012) [109] | Active | 0.25–12.7 | 37 (41.6%) | 4–10 day of disease | absolute count of CEC not reported | 11–21 day of disease | absolute count of CEC not reported | 22–60 days of disease | absolute count of CEC not reported | - | n = 38 absolute count of CEC not reported | Flow cytometry | CD45−, CD146+ |
Fu et al. (2010) [110] | Active | 0.25–11 | 16 (38.1%) | 4–10 day of disease | absolute count of CEC not reported | 11–21 day of disease | absolute count of CEC not reported | 22–60 days of disease | absolute count of CEC not reported | - | n = 60 absolute count of CEC not reported | Flow cytometry | CD45−, CD146+ |
Hirono et al. (2006) [111] | Active | 0.16–7.3 | 21 (34.4%) | At diagnosis | 2.5 cells/mL | 2 weeks from onset | 20.7 cells/mL | - | - | - | n = 33 1.0 cells/mL | Buffy-coat smears | P1H12 antibody |
Yu et al. (2004) [112] | Active | 0.3–7.25 | 29 (52.7%) | Before IVIg After IVIg | 0.7 cells/mL 4.9 cells/mL | 2 weeks from onset | 24.4 cells/mL | 4 weeks from onset | 3.7 cells/mL | - | n = 15 | Buffy-coat smears | P1H12 antibody |
Nakatani et al. (2003) [113] | Active | 0.67–6 | 5 (25%) | Before IVIg therapy on days 3–7 | 16.4 cells/mL | After IVIg therapy on days 9–16 | 21 cells/mL | days 22–37 | 9 cells/mL | - | n = 10 < 6 cells/mL | Immunomagnetic capture | P1H12 antibody |
Literature | Type of Participants | Age (Median Years (Range)) | Female (%) | Acute Phase | No. of EMPs (Acute) | Sub-Acute Phase | No. of EMPs (Sub-Acute) | Convalescent Phase | No. of EMPs (Convalescent) | Long-Term Outcomes | Healthy Controls | EMP Detection Method | Biomarkers for Detection |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Chen et al. (2021) [134] | Active | ~2–3 | 15 (42%) | Disease onset (before IVIg) | CD31+, CD54+: Significantly higher compared to healthy control. CD31+, CD105+: Significantly lower when compared to sub-acute timepoint. Quantitative values not reported. (EMPs were normalised to 10,000 events) | 2 weeks from disease onset | CD31+, CD54+: Significantly higher compared to healthy control. CD31+, CD105+: Significantly higher when compared to acute timepoint. Quantitative values not reported. (EMPs were normalised to 10,000 events.) | - | - | - | n = 18 CD31+,CD105+: Significantly higher in sub-acute group compared to healthy controls. CD31+, CD54+: Higher in acute and sub-acute phase compared to healthy controls. | Flow cytometry | CD31+, CD54+ and CD31+, CD105+ |
Nakaoka et al. (2018) [129] | Active | 0.3–14 | 20 (40%) | Time of diagnosis | 1.31% (Normalised to total number of particles) | - | - | 2–4 weeks after onset of disease. | Below acute levels | - | Healthy: 25 EMP: 0.08% Febrile: 25 EMP:0.09% | Flow cytometry | CD144+/CD42b- |
Tian et al. (2016) [118] | In vitro | - | - | - | - | - | - | - | - | - | - | ELISA | CD31, CD62 |
Shah et al. (2015) [105] | Survivor | Age at study: 11.9 (4.3–32.2) Age at diagnosis: 4.9 (0.18–11.3) | 45 (49%) | - | - | - | - | - | - | In KD survivors, AnnexinV: 970 × 103/mL of plasma CD105: 1.60 × 103/mL of plasma (p = 0.04) CD62E: 2.87 × 103/mL of plasma CD54: 0.87 × 103/mL of plasma CD106: 0/mL of plasma CD144: 0.32 × 103/mL of plasma CD31: 14.18 × 103/mL of plasma CD42a: 14.04 × 103/mL of plasma | n = 51 AnnexinV: 990 × 103/mL of plasma CD105: 0/mL of plasma CD62E: 3.92 × 103/mL of plasma CD54: 0.97 × 103/mL of plasma CD106: 0/mL of plasma CD144: 0.2 × 103/mL of plasma CD31: 20.59 × 103/mL of plasma CD42a: 24.93 × 103/mL of plasma | Flow cytometry | Annexin V+ and CD105+/CD62E+/CD54+/CD106+/CD144+/CD31+/CD42a- |
Ding et al. (2014) [131] | Active | 1.9 (0.3–7.5) | 12 (42.9%) | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated in the acute phase when compared to healthy controls but not with febrile control. | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated in the sub-acute phase when compared to healthy controls but not with febrile control. | unspecified | Absolute values are not reported. All 3 EMPs are significantly elevated at convalescent phase when compared to healthy controls but not with febrile control. | - | Healthy: 28 Febrile: 28 | Flow cytometry | CD144+/CD42b−, CD62E+ and CD105+ |
Tan et al. (2013) [133] | Active | <3 years | Not reported | Within 10 days | n = 20 28.07% (Normalised to 10,000 particles.) | - | - | - | - | - | Healthy: 18 EMP: 11.7% Disease: 18 EMP: 17.2% | Flow cytometry | CD31, CD146 |
Dou et al. (2013) [130] | KD rabbit model | - | - | - | - | - | - | - | - | - | - | Scanning electron microscope | - |
Guiducci et al. (2011) [128] | Active | 1.4 (median age) | 11 (37%) | Before IVIg | 76 × 105/mL plasma. | - | - | 1-month follow-up | 9 × 105/mL plasma | - | n = 20 45 × 105/mL plasma | Flow cytometry | CD144 |
Brogan et al. (2004) [135] | In vitro | - | - | - | - | - | - | - | - | - | - | Flow cytometry | CD54, CD106, CD62E, CD62P |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markandran, K.; Clemente, K.N.M.; Tan, E.; Attal, K.; Chee, Q.Z.; Cheung, C.; Chen, C.K. The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. Int. J. Mol. Sci. 2024, 25, 8062. https://doi.org/10.3390/ijms25158062
Markandran K, Clemente KNM, Tan E, Attal K, Chee QZ, Cheung C, Chen CK. The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. International Journal of Molecular Sciences. 2024; 25(15):8062. https://doi.org/10.3390/ijms25158062
Chicago/Turabian StyleMarkandran, Kasturi, Kristine Nicole Mendoza Clemente, Elena Tan, Karan Attal, Qiao Zhi Chee, Christine Cheung, and Ching Kit Chen. 2024. "The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key" International Journal of Molecular Sciences 25, no. 15: 8062. https://doi.org/10.3390/ijms25158062
APA StyleMarkandran, K., Clemente, K. N. M., Tan, E., Attal, K., Chee, Q. Z., Cheung, C., & Chen, C. K. (2024). The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. International Journal of Molecular Sciences, 25(15), 8062. https://doi.org/10.3390/ijms25158062