Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients
Abstract
:1. Introduction
2. Results
Males (n = 63) | Females (n = 40) | t or χ2 | p | |
---|---|---|---|---|
Age (mean ± SD) | 59.82 ± 11.26 | 55.16 ± 13.81 | 1.871 | 0.064 |
Ethnicity | ||||
African (Yes–%) | 2–3.17% | 0–0% | 6.080 | 0.108 |
Asian (Yes–%) | 0–0% | 3–7.5% | ||
European (Yes–%) | 52–82.54% | 31–77.5% | ||
South African (Yes–%) | 9–14.29% | 6–15%% | ||
Hypertension (Yes–%) | 28–44.44% | 10–25% | 3.973 | 0.056 |
Diabetes mellitus (Yes–%) | 16–25.4% | 5–12.50% | 3.110 | 0.211 |
IRC (Yes–%) | 3–4.76% | 1–2.5% | 0.686 | 0.709 |
Hospitalization (Yes–%) | 52–82.54% | 20–50% | 12.312 | 0.001 |
Intensive care unit (Yes–%) | 28–44.44% | 6–15% | 9.592 | 0.002 |
CRP (mean ± SD) | 129.03 ± 87.72 | 69.53 ± 89.58 | 3.328 | 0.001 |
IL-1ß (mean ± SD) | 3.27 ± 3.30 | 4.92 ± 5.43 | 1.926 | 0.057 |
IL-1Ra (mean ± SD) | 4869.62 ± 18746.30 | 1454.14 ± 2286.21 | 1.145 | 0.255 |
IL-4 (mean ± SD) | 3.85 ± 2.31 | 4.16 ± 3.83 | 0.514 | 0.609 |
IL-6 (mean ± SD) | 63.99 ± 86.25 | 40.00 ± 78.16 | 1.426 | 0.157 |
IL-7 (mean ± SD) | 52.67 ± 35.51 | 63.23 ± 74.09 | 0.971 | 0.334 |
IL-8 (mean ± SD) | 17.71 ± 19.19 | 15.55 ± 13.14 | 0.627 | 0.532 |
IL-9 (mean ± SD) | 649.45 ± 431.18 | 666.58 ± 464.33 | 0.191 | 0.849 |
IL-10 (mean ± SD) | 3.05 ± 3.43 | 3.51 ± 5.30 | 0.528 | 0.598 |
IL-13 (mean ± SD) | 1.40 ± 1.55 | 2.19 ± 3.64 | 1.510 | 0.134 |
IL-17 (mean ± SD) | 30.74 ± 19.95 | 30.25 ± 23.08 | 0.115 | 0.909 |
Eotaxin (mean ± SD) | 58.65 ± 47.21 | 63.04 ± 65.18 | 0.396 | 0.693 |
FGF basic (mean ± SD) | 54.87 ± 39.35 | 54.96 ± 45.45 | 0.010 | 0.992 |
IFN-γ (mean ± SD) | 49.39 ± 151.18 | 18.62 ± 22.40 | 1.276 | 0.205 |
IP-10 (mean ± SD) | 11,223.45 ± 21578.89 | 8090.65 ± 13,122.56 | 0.826 | 0.411 |
MCP-1 (mean ± SD) | 118.61 ± 237.91 | 75.29 ± 101.40 | 1.089 | 0.279 |
PDGF-BB (mean ± SD) | 1986.66 ± 2683.74 | 1226.82 ± 1705.52 | 1.596 | 0.114 |
MIP-1ß (mean ± SD) | 510.63 ± 336.21 | 514.24 ± 363.44 | 0.051 | 0.959 |
RANTES (mean ± SD) | 13,159.83 ± 13,267.87 | 19,351.32 ± 51,598.16 | 0.909 | 0.366 |
TNF-α (mean ± SD) | 175.39 ± 80.02 | 177.41 ± 99.37 | 0.113 | 0.910 |
IL-18 (mean ± SD) | 1061.99 ± 1034.79 | 1165.16 ± 1295.01 | 0.447 | 0.656 |
NfL (mean ± SD) | 31.84 ± 33.24 | 24.33 ± 23.73 | 1.241 | 0.217 |
PCR | IL-4 | IL-8 | IL-9 | Eotaxin | MIP-1ß | NFL | |
---|---|---|---|---|---|---|---|
PCR | 0.0237 | 0.3126 | 0.0443 | −0.0176 | 0.0627 | 0.2453 | |
p = 0.812 | p < 0.001 | p = 0.657 | p = 0.860 | p = 0.529 | p = 0.013 | ||
IL-4 | 0.0237 | 0.4432 | 0.6949 | 0.5855 | 0.6795 | 0.0725 | |
p = 0.812 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.466 | ||
IL-8 | 0.3126 | 0.4432 | 0.3025 | 0.4697 | 0.2864 | 0.0499 | |
p < 0.001 | p < 0.001 | p = 0.002 | p < 0.001 | p = 0.003 | p = 0.617 | ||
IL-9 | 0.0443 | 0.6949 | 0.3025 | 0.6347 | 0.9913 | 0.0981 | |
p = 0.657 | p < 0.001 | p = 0.002 | p < 0.001 | p = 0.00 | p = 0.324 | ||
Eotaxin | −0.0176 | 0.5855 | 0.4697 | 0.6347 | 0.6424 | 0.2638 | |
p = 0.860 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.007 | ||
MIP-1ß | 0.0627 | 0.6795 | 0.2864 | 0.9913 | 0.6424 | 0.1019 | |
p = 0.529 | p < 0.001 | p = 0.003 | p < 0.001 | p < 0.001 | p = 0.306 | ||
NFL | 0.2453 | 0.0725 | 0.0499 | 0.0981 | 0.2638 | 0.1019 | |
p = 0.013 | p = 0.466 | p = 0.617 | p = 0.324 | p = 0.007 | p = 0.306 |
3. Discussion
4. Material and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus Disease 2019 |
CRP | C-Reactive Protein |
ED | Emergency Department |
FGF | Fibroblast Growth Factor |
GLZM | Generalized Linear Model |
ICU | Intensive Care Unit |
IFN | Interferon |
IP-10 | Interferon Gamma-Induced Protein 10 |
IL | Interleukine |
LR | Likelihood Ratio |
MIP-1ß | Macrophage Inflammatory Protein-1 Beta |
MCP-1 | Monocyte Chemoattractant Protein 1 |
Nfl | Neurofilament Light Chain |
MARSplines | Nonparametric Regression Modeling With Multivariate Adaptive Regression Splines |
PDGF-BB | Platelet-Derived Growth Factor Subunit B |
PCA | Principal Component Analysis |
RT-PCR | Real-Time Reverse-Transcriptase Polymerase Chain Reaction |
RANTES | Regulated On Activation Normal T Cell Expressed And Secreted |
SARS-CoV-2 | Severe Acute Respiratory Syndrome Coronavirus-2 |
TNF | Tumor Necrosis Factor |
VIF | Variance Inflation Factor |
WM | White Matter |
References
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020, 89, 594–600. [Google Scholar] [CrossRef]
- Mazza, M.G.; Palladini, M.; De Lorenzo, R.; Magnaghi, C.; Poletti, S.; Furlan, R.; Ciceri, F.; The COVID-19 BioB Outpatient Clinic Study Group; Rovere-Querini, P.; Benedetti, F. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: Effect of inflammatory biomarkers at three-month follow-up. Brain Behav. Immun. 2021, 94, 138–147. [Google Scholar] [CrossRef]
- Benedetti, F.; Mazza, M.; Cavalli, G.; Ciceri, F.; Dagna, L.; Rovere-Querini, P. Can Cytokine Blocking Prevent Depression in COVID-19 Survivors? J. Neuroimmune Pharmacol. 2021, 16, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Maamar, M.; Artime, A.; Pariente, E.; Fierro, P.; Ruiz, Y.; Gutiérrez, S.; Tobalina, M.; Díaz-Salazar, S.; Ramos, C.; Olmos, J.M.; et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: A cross-sectional study. Curr. Med. Res. Opin. 2022, 38, 901–909. [Google Scholar] [CrossRef]
- Sun, B.; Tang, N.; Peluso, M.J.; Iyer, N.S.; Torres, L.; Donatelli, J.L.; Munter, S.E.; Nixon, C.C.; Rutishauser, R.L.; Rodriguez-Barraquer, I.; et al. Characterization and Biomarker Analyses of Post-COVID-19 Complications and Neurological Manifestations. Cells 2021, 10, 386. [Google Scholar] [CrossRef]
- Egbert, A.R.; Cankurtaran, S.; Karpiak, S. Brain abnormalities in COVID-19 acute/subacute phase: A rapid systematic review. Brain Behav. Immun. 2020, 89, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Najt, P.; Richards, H.L.; Fortune, D.G. Brain Imaging in Patients with COVID-19: A Systematic Review. Brain Behav. Immun.-Health 2021, 16, 100290. [Google Scholar] [CrossRef]
- Benedetti, F.; Palladini, M.; Paolini, M.; Melloni, E.; Vai, B.; De Lorenzo, R.; Furlan, R.; Rovere-Querini, P.; Falini, A.; Mazza, M.G.; et al. Brain correlates of depression, post-traumatic distress, and inflammatory biomarkers in COVID-19 survivors: A multimodal magnetic resonance imaging study. Brain Behav. Immun.-Health 2021, 18, 100387. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Nixon, R.A. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef]
- Bacioglu, M.; Maia, L.F.; Preische, O.; Schelle, J.; Apel, A.; Kaeser, S.A.; Schweighauser, M.; Eninger, T.; Lambert, M.; Pilotto, A.; et al. Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 2016, 91, 56–66. [Google Scholar] [CrossRef]
- De Lorenzo, R.; Loré, N.I.; Finardi, A.; Mandelli, A.; Cirillo, D.M.; Tresoldi, C.; Benedetti, F.; Ciceri, F.; Rovere-Querini, P.; Comi, G.; et al. Blood neurofilament light chain and total tau levels at admission predict death in COVID-19 patients. J. Neurol. 2021, 268, 4436–4442. [Google Scholar] [CrossRef]
- Bowerman, B.L.; O’Connell, R.T. Linear Statistical Models: An Applied Approach, 2nd ed.; Duxbury: London, UK, 1990. [Google Scholar]
- Field, A. Discovering Statistics Using IBM SPSS Statistics, 4th ed.; SAGE: Newcastle upon Tyne, UK, 2013. [Google Scholar]
- Qi, S.; Ngwa, C.; Morales Scheihing, D.A.; Al Mamun, A.; Ahnstedt, H.W.; Finger, C.E.; Colpo, G.D.; Sharmeen, R.; Kim, Y.; Choi, H.A.; et al. Sex differences in the immune response to acute COVID-19 respiratory tract infection. Biol. Sex. Differ. 2021, 12, 66. [Google Scholar] [CrossRef]
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yang, T.; Peng, X.F.; Lv, S.M.; Ye, X.; Zhao, T.S.; Li, J.C.; Shao, Z.J.; Lu, Q.B.; Li, J.Y.; et al. A systematic meta-analysis of immune signatures in patients with COVID-19. Rev. Med. Virol. 2021, 31, e2195. [Google Scholar] [CrossRef]
- Crisci, C.D.; Ardusso, L.R.; Mossuz, A.; Müller, L. A precision medicine approach to SARS-CoV-2 pandemic management. Curr. Treat. Options Allergy 2020, 7, 422–440. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, G.; Chen, L.; Liu, S.; Gong, C.; Zhu, X.; Zhang, C.; Qin, H.; Hu, J.; Huang, J.; et al. Associations of immunological features with COVID-19 severity: A systematic review and meta-analysis. BMC Infect. Dis. 2021, 21, 738. [Google Scholar] [CrossRef]
- Cillo, A.R.; Somasundaram, A.; Shan, F.; Cardello, C.; Workman, C.J.; Kitsios, G.D.; Ruffin, A.; Kunning, S.; Lampenfeld, C.; Onkar, S.; et al. Bifurcated monocyte states are predictive of mortality in severe COVID-19. bioRxiv 2021. [Google Scholar] [CrossRef]
- Chevrier, S.; Zurbuchen, Y.; Cervia, C.; Adamo, S.; Raeber, M.E.; de Souza, N.; Sivapatham, S.; Jacobs, A.; Bachli, E.; Rudiger, A.; et al. A distinct innate immune signature marks progression from mild to severe COVID-19. Cell Rep. Med. 2021, 2, 100166. [Google Scholar] [CrossRef]
- Bystry, R.S.; Aluvihare, V.; Welch, K.A.; Kallikourdis, M.; Betz, A.G. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2001, 2, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- McLarnon, J.G. Chemokine interleukin-8 (IL-8) in Alzheimer’s and other neurodegenerative diseases. J. Alzheimers Dis. Park. 2016, 6. [Google Scholar] [CrossRef]
- Goswami, R.; Kaplan, M.H. A brief history of IL-9. J. Immunol. 2011, 186, 3283–3288. [Google Scholar] [CrossRef] [PubMed]
- Ponath, P.D.; Qin, S.; Ringler, D.J.; Clark-Lewis, I.; Wang, J.; Kassam, N.; Smith, H.; Shi, X.; Gonzalo, J.A.; Newman, W.; et al. Cloning of the human eosinophil chemoattractant, eotaxin. Expression, receptor binding, and functional properties suggest a mechanism for the selective recruitment of eosinophils. J. Clin. Investig. 1996, 97, 604–612. [Google Scholar] [CrossRef]
- Needham, E.J.; Ren, A.L.; Digby, R.J.; Norton, E.J.; Ebrahimi, S.; Outtrim, J.G.; Chatfield, D.A.; Manktelow, A.E.; Leibowitz, M.M.; Newcombe, V.F.J.; et al. Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses. Brain 2022, 145, 4097–4107. [Google Scholar] [CrossRef] [PubMed]
- Rovere-Querini, P.; Tresoldi, C.; Conte, C.; Ruggeri, A.; Ghezzi, S.; De Lorenzo, R.; Di Filippo, L.; Farina, N.; Ramirez, G.A.; Ripa, M.; et al. Biobanking for COVID-19 research. Panminerva Med. 2022, 64, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Darnell, M.E.; Taylor, D.R. Evaluation of inactivation methods for severe acute respiratory syndrome coronavirus in noncellular blood products. Transfusion 2006, 46, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, F.; Olivari, D.; Boccardo, A.; De Giorgio, D.; Affatato, R.; Ceriani, S.; Bariselli, S.; Sala, G.; Cucino, A.; Zani, D.; et al. Ventilation with argon improves survival with good neurological recovery after prolonged untreated cardiac arrest in pigs. J. Am. Heart Assoc. 2020, 9, e016494. [Google Scholar] [CrossRef]
- Hill, T.; Lewicki, P. Statistics: Methods and applications. In A Comprehensive Reference for Science, Industry, and Data Mining; General Linear Models, StatSoft: Tulsa, OK, USA, 2006; Chapter 18; pp. 245–276. [Google Scholar]
- Boehmke, B.; Greenwell, B.M. Hands-On Machine Learning with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Koc, E.K.; Bozdogan, H. Model selection in multivariate adaptive regression splines (MARS) using information complexity as the fitness function. Mach. Learn. 2015, 101, 35–58. [Google Scholar]
- Kumar, D.S.; Sukanya, S.; BIT-Campus, T. Feature selection using multivariate adaptive regression splines. Int. J. Res. Rev. Appl. Sci. Eng. (IJRRASE) 2016, 8, 17–24. [Google Scholar]
- Put, R.; Vander Heyden, Y. The evaluation of two-step multivariate adaptive regression splines for chromatographic retention prediction of peptides. Proteomics 2007, 7, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-M.; Lee, T.-S.; Shao, Y.E.; Chen, I.-F. Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert. Syst. Appl. 2004, 27, 133–142. [Google Scholar] [CrossRef]
- York, T.P.; Eaves, L.J.; van den Oord, E.J. Multivariate adaptive regression splines: A powerful method for detecting disease–risk relationship differences among subgroups. Stat. Med. 2006, 25, 1355–1367. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.-S.; Daszykowski, M.; Walczak, B.; Daeyaert, F.; De Jonge, M.; Heeres, J.; Koymans, L.M.H.; Lewi, P.J.; Vinkers, H.M.; Janssen, P.A.; et al. Multivariate adaptive regression splines—studies of HIV reverse transcriptase inhibitors. Chemom. Intell. Lab. Syst. 2004, 72, 27–34. [Google Scholar] [CrossRef]
- Onak, O.N.; Erenler, T.; Serinagaoglu, Y. A Novel Data-Adaptive Regression Framework Based on Multivariate Adaptive Regression Splines for Electrocardiographic Imaging. IEEE Trans. Biomed. Eng. 2021, 69, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Martín Cervantes, P.A.; Rueda López, N.; Cruz Rambaud, S. The Relative Importance of Globalization and Public Expenditure on Life Expectancy in Europe: An Approach Based on MARS Methodology. Int. J. Environ. Res. Public Health 2020, 17, 8614. [Google Scholar] [CrossRef]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models, 2nd ed.; Chapman & Hall: New York, NY, USA, 1989. [Google Scholar]
- Agresti, A. An Introduction to Categorical Data Analysis; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Dobson, A.J. An Introduction to Generalized Linear Models; Chapman & Hall: New York, NY, USA, 1990. [Google Scholar]
- Lafi, S.Q.; Kaneene, J.B. An Explanation of the Use of Principal Components Analysis to Detect and Correct for Multicollinearity. Prev. Vet. Med. 1992, 13, 261–275. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
Component 1 R2 = 0.562; Eigenvalue = 3.37; Q2 = 0.419 | Component 2 R2 = 0.198; Eigenvalue = 0.76; Q2 = 0.021 | |
---|---|---|
CRP | 0.122076 | 0.875180 |
IL-4 | 0.837744 | −0.053015 |
IL-8 | 0.563676 | 0.587793 |
IL-9 | 0.918200 | −0.192722 |
Eotaxin | 0.810904 | −0.056926 |
MIP-1ß | 0.914190 | −0.186649 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lorenzo, R.; Loré, N.I.; Finardi, A.; Mandelli, A.; Calesella, F.; Palladini, M.; Cirillo, D.M.; Tresoldi, C.; Ciceri, F.; Rovere-Querini, P.; et al. Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. Int. J. Mol. Sci. 2024, 25, 8259. https://doi.org/10.3390/ijms25158259
De Lorenzo R, Loré NI, Finardi A, Mandelli A, Calesella F, Palladini M, Cirillo DM, Tresoldi C, Ciceri F, Rovere-Querini P, et al. Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. International Journal of Molecular Sciences. 2024; 25(15):8259. https://doi.org/10.3390/ijms25158259
Chicago/Turabian StyleDe Lorenzo, Rebecca, Nicola I. Loré, Annamaria Finardi, Alessandra Mandelli, Federico Calesella, Mariagrazia Palladini, Daniela M. Cirillo, Cristina Tresoldi, Fabio Ciceri, Patrizia Rovere-Querini, and et al. 2024. "Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients" International Journal of Molecular Sciences 25, no. 15: 8259. https://doi.org/10.3390/ijms25158259
APA StyleDe Lorenzo, R., Loré, N. I., Finardi, A., Mandelli, A., Calesella, F., Palladini, M., Cirillo, D. M., Tresoldi, C., Ciceri, F., Rovere-Querini, P., Manfredi, A. A., Mazza, M. G., Benedetti, F., & Furlan, R. (2024). Inflammatory Markers Predict Blood Neurofilament Light Chain Levels in Acute COVID-19 Patients. International Journal of Molecular Sciences, 25(15), 8259. https://doi.org/10.3390/ijms25158259