The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers
Abstract
:1. Introduction
2. Results
2.1. Effects of Dietary CA + VC on Growth and Slaughter Performance of Broilers
2.2. Effects of Dietary CA + VC on Duodenal Morphology of Broilers
2.3. Effects of Dietary CA + VC on Jejunum Antioxidant Capacity of Broilers
2.4. Effects of Dietary CA + VC on Intestinal mRNA Expression of Broilers
2.4.1. Expression of Jejunal Barrier Gene mRNA
2.4.2. Expression of Jejunal Antioxidant Gene mRNA
2.4.3. Expression of Jejunal Inflammation-Related and Apoptosis-Related mRNA
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Birds, Diets, and Experimental Design
4.3. Performance Parameters
4.4. Sample Collection and Parameters Determination
(g)) × 100/weight of meat sample before hanging (g)
4.5. Sampling for RNA and Antioxidant Indices
4.5.1. Intestinal Histomorphology
4.5.2. Intestinal Antioxidant Function
4.5.3. Relative mRNA Expression in the Intestine
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, K.-H.; Wan, M.L.Y.; El-Nezami, H.; Wang, M. Protective Capacity of Resveratrol, a Natural Polyphenolic Compound, against Deoxynivalenol-Induced Intestinal Barrier Dysfunction and Bacterial Translocation. Chem. Res. Toxicol. 2016, 29, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Grandin, T. A Practical Approach to Providing Environmental Enrichment to Pigs and Broiler Chickens Housed in Intensive Systems. Animals 2023, 13, 2372. [Google Scholar] [CrossRef] [PubMed]
- Lauridsen, C. From Oxidative Stress to Inflammation: Redox Balance and Immune System. Poult. Sci. 2019, 98, 4240–4246. [Google Scholar] [CrossRef]
- Zhang, Y.; Mahmood, T.; Tang, Z.; Wu, Y.; Yuan, J. Effects of Naturally Oxidized Corn Oil on Inflammatory Reaction and Intestinal Health of Broilers. Poult. Sci. 2022, 101, 101541. [Google Scholar] [CrossRef] [PubMed]
- van der Eijk, J.A.J.; Gunnink, H.; Melis, S.; van Riel, J.W.; de Jong, I.C. Reducing Stocking Density Benefits Behaviour of Fast- and Slower-Growing Broilers. Appl. Anim. Behav. Sci. 2022, 257, 105754. [Google Scholar] [CrossRef]
- Oladokun, S.; Adewole, D.I. In Ovo Delivery of Bioactive Substances: An Alternative to the Use of Antibiotic Growth Promoters in Poultry Production—A Review. J. Appl. Poult. Res. 2020, 29, 744–763. [Google Scholar] [CrossRef]
- Rafiq, K.; Tofazzal Hossain, M.; Ahmed, R.; Hasan, M.M.; Islam, R.; Hossen, M.I.; Shaha, S.N.; Islam, M.R. Role of Different Growth Enhancers as Alternative to In-Feed Antibiotics in Poultry Industry. Front. Vet. Sci. 2022, 8, 794588. [Google Scholar] [CrossRef] [PubMed]
- Nagai, H.; Shimazawa, T.; Matsuura, N.; Koda, A. Immunopharmacological studies of the aqueous extract of cinnamomum CASSIA (CCAq) I. ANTI-ALLERGIC ACTION. Jpn. J. Pharmacol. 1982, 32, 813–822. [Google Scholar] [CrossRef]
- Lin, C.-C.; Wu, S.-J.; Chang, C.-H.; Ng, L.-T. Antioxidant Activity of Cinnamomum Cassia. Phytother. Res. 2003, 17, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, Z.; Yan, X.; Xiao, G.; Qiu, T.; Ou, J.; Cen, M.; Li, W.; Huang, Y.; Cao, Y.; et al. Effects of a Combination of Lauric Acid Monoglyceride and Cinnamaldehyde on Growth Performance, Gut Morphology, and Gut Microbiota of Yellow-Feathered Broilers. Poult. Sci. 2023, 102, 102825. [Google Scholar] [CrossRef]
- Zheng, C.; Xiao, G.; Yan, X.; Qiu, T.; Liu, S.; Ou, J.; Cen, M.; Gong, L.; Shi, J.; Zhang, H. Complex of Lauric Acid Monoglyceride and Cinnamaldehyde Ameliorated Subclinical Necrotic Enteritis in Yellow-Feathered Broilers by Regulating Gut Morphology, Barrier, Inflammation and Serum Biochemistry. Animals 2023, 13, 516. [Google Scholar] [CrossRef] [PubMed]
- Shojadoost, B.; Yitbarek, A.; Alizadeh, M.; Kulkarni, R.R.; Astill, J.; Boodhoo, N.; Sharif, S. Centennial Review: Effects of Vitamins A, D, E, and C on the Chicken Immune System. Poult. Sci. 2021, 100, 100930. [Google Scholar] [CrossRef] [PubMed]
- Lopes, T.V.; Brito, J.Á.G.; Machado, A.C.; de Lima Silva, F.; Pinheiro, A.M. Low Levels of Protected Ascorbic Acid Improve Broiler Chicken Performance after Long Fasting on Housing. Anim. Feed Sci. Technol. 2020, 261, 114395. [Google Scholar] [CrossRef]
- Yang, C.; Diarra, M.S.; Choi, J.; Rodas-Gonzalez, A.; Lepp, D.; Liu, S.; Lu, P.; Mogire, M.; Gong, J.; Wang, Q.; et al. Effects of Encapsulated Cinnamaldehyde on Growth Performance, Intestinal Digestive and Absorptive Functions, Meat Quality and Gut Microbiota in Broiler Chickens. Transl. Anim. Sci. 2021, 5, txab099. [Google Scholar] [CrossRef] [PubMed]
- İpçak, H.H.; Alçiçek, A. Addition of Capsicum Oleoresin, Carvacrol, Cinnamaldehyde and Their Mixtures to the Broiler Diet II: Effects on Meat Quality. J. Anim. Sci. Technol. 2018, 60, 9. [Google Scholar] [CrossRef] [PubMed]
- Shirzadegan, K. Reactions of Modern Broiler Chickens to Administration of Cinnamon Powder in the Diet. Iran. J. Appl. Anim. Sci. 2014, 4, 367–371. [Google Scholar]
- Koochaksaraie, R.R.; Irani, M.; Gharavysi, S. The Effects of Cinnamon Powder Feeding on Some Blood Metabolites in Broiler Chicks. Braz. J. Poult. Sci. 2011, 13, 197–202. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Nikousefat, Z.; Selvaggi, M.; Laudadio, V.; Tufarelli, V. Effect of Ascorbic Acid in Heat-Stressed Poultry. World’s Poult. Sci. J. 2012, 68, 477–490. [Google Scholar] [CrossRef]
- Jahejo, A.R.; Rajput, N.; Tian, W.; Naeem, M.; Kalhoro, D.H.; Kaka, A.; Niu, S.; Jia, F. Immunomodulatory and Growth Promoting Effects of Basil (Ocimum basilicum) and Ascorbic Acid in Heat Stressed Broiler Chickens. Pak. J. Zool. 2019, 51, 801. [Google Scholar] [CrossRef]
- Zeferino, C.P.; Komiyama, C.M.; Pelícia, V.C.; Fascina, V.B.; Aoyagi, M.M.; Coutinho, L.L.; Sartori, J.R.; Moura, A.S.A.M.T. Carcass and Meat Quality Traits of Chickens Fed Diets Concurrently Supplemented with Vitamins C and E under Constant Heat Stress. Animal 2016, 10, 163–171. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Bąk, T.; Denaburski, J. Quality of Pork with A Different Intramuscular Fat (IMF) Content. Pol. J. Food Nutr. Sci. 2005, 55, 31–36. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed]
- Sacakli, P.; Çınar, Ö.Ö.; Ceylan, A.; Ramay, M.S.; Harijaona, J.A.; Bayraktaroglu, A.G.; Shastak, Y.; Calik, A. Performance and Gut Health Status of Broilers Fed Diets Supplemented with Two Graded Levels of a Monoglyceride Blend. Poult. Sci. 2023, 102, 102359. [Google Scholar] [CrossRef]
- Mountzouris, K.C.; Dalaka, E.; Palamidi, I.; Paraskeuas, V.; Demey, V.; Theodoropoulos, G.; Fegeros, K. Evaluation of Yeast Dietary Supplementation in Broilers Challenged or Not with Salmonella on Growth Performance, Cecal Microbiota Composition and Salmonella in Ceca, Cloacae and Carcass Skin. Poult. Sci. 2015, 94, 2445–2455. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Gu, X.; Li, L.-X.; Li, M.; Li, B.; Cui, X.; Zuo, X. Microbial and Metabolomic Profiles in Correlation with Depression and Anxiety Co-Morbidities in Diarrhoea-Predominant IBS Patients. BMC Microbiol. 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lim, S.B.H.; Ng, M.Y.; Ali, S.M.; Kausalya, J.P.; Limviphuvadh, V.; Maurer-Stroh, S.; Hunziker, W. ZO-1 Regulates Erk, Smad1/5/8, Smad2, and RhoA Activities to Modulate Self-Renewal and Differentiation of Mouse Embryonic Stem Cells. Stem Cells 2012, 30, 1885–1900. [Google Scholar] [CrossRef] [PubMed]
- Gonschior, H.; Schmied, C.; Van der Veen, R.E.; Eichhorst, J.; Himmerkus, N.; Piontek, J.; Günzel, D.; Bleich, M.; Furuse, M.; Haucke, V.; et al. Nanoscale Segregation of Channel and Barrier Claudins Enables Paracellular Ion Flux. Nat. Commun. 2022, 13, 4985. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Reynolds, K.L.; Wong, E.A. Effects of High Incubation Temperature on Tight Junction Proteins in the Yolk Sac and Small Intestine of Embryonic Broilers. Poult. Sci. 2023, 102, 102875. [Google Scholar] [CrossRef]
- Hashem, Y.M.; Abd El-Hamid, M.I.; Awad, N.F.S.; Ibrahim, D.; Elshater, N.S.; El-Malt, R.M.S.; Hassan, W.H.; Abo-Shama, U.H.; Nassan, M.A.; El-Bahy, S.M.; et al. Insights into Growth-Promoting, Anti-Inflammatory, Immunostimulant, and Antibacterial Activities of Toldin CRD as a Novel Phytobiotic in Broiler Chickens Experimentally Infected with Mycoplasma Gallisepticum. Poult. Sci. 2022, 101, 102154. [Google Scholar] [CrossRef]
- Cheng, Q.; Xia, Y.; Yi, D.; Hou, Y.; Duan, R.; Guo, S.; Ding, B. The Intestinal Cinnamaldehyde Release and Antioxidative Capacity of Broiler Chickens Fed Diets Supplemented with Coated Oleum Cinnamomi. J. Appl. Poult. Res. 2019, 28, 1058–1068. [Google Scholar] [CrossRef]
- Song, Z.; Lv, J.; Sheikhahmadi, A.; Uerlings, J.; Everaert, N. Attenuating Effect of Zinc and Vitamin E on the Intestinal Oxidative Stress Induced by Silver Nanoparticles in Broiler Chickens. Biol. Trace Elem. Res. 2017, 180, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Zhao, Y.; Wang, P.; Zhao, C.; Li, Y.; Huang, W.; Shi, L.; Cui, Y.; Qiao, H.; Wang, J.; et al. Investigations of Ascorbic Acid Synthesis and Distribution in Broiler Tissues at Different Post-Hatch Days. Life 2023, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Fan, H.; Mahmood, T.; Guo, Y. Dietary Supplementation with Vitamin C Ameliorates the Adverse Effects of Salmonella Enteritidis-Challenge in Broilers by Shaping Intestinal Microbiota. Poult. Sci. 2020, 99, 3663–3674. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Fan, H.; Nie, W.; Guo, Y. Ascorbic Acid Synthesis and Transportation Capacity in Old Laying Hens and the Effects of Dietary Supplementation with Ascorbic Acid. J. Anim. Sci. Biotechnol. 2018, 9, 71. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Mei, J.; Ma, J.; Wang, F.; Gu, Z.; Li, J.; Zhang, Z.; Zeng, Y.; Lou, X.; Yao, X.; et al. Cinnamaldehyde Induces Endogenous Apoptosis of the Prostate Cancer-Associated Fibroblasts via Interfering the Glutathione-Associated Mi-tochondria Function. Med. Oncol. 2020, 37, 91. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Z.; Liu, Y.; Li, Y.; Huang, X.; Qian, C.; Sun, M. H2O2-Activated Oxidative Stress Amplifier Capable of GSH Scavenging for Enhancing Tumor Photodynamic Therapy. Biomater. Sci. 2019, 7, 5359–5368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Peng, Q.Y.; Liu, Y.R.; Ma, Q.G.; Zhang, J.Y.; Guo, Y.P.; Xue, Z.; Zhao, L.H. Effects of Oregano Essential Oil as an Antibiotic Growth Promoter Alternative on Growth Performance, Antioxidant Status, and Intestinal Health of Broilers. Poult. Sci. 2021, 100, 101163. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Zhang, S.; Du, T.; Yang, Q.; Chi, S.; Liu, H.; Yang, Y.; Dong, X.; Tan, B. Modulation of Growth, Immunity and Antioxidant-Related Gene Expressions in the Liver and Intestine of Juvenile Sillago Sihama by Dietary Vitamin C. Aquac. Nutr. 2020, 26, 338–350. [Google Scholar] [CrossRef]
- Che Mat, N.F.; Siddiqui, S.; Mehta, D.; Seaver, K.; Banete, A.; Alothaimeen, T.; Gee, K.; Basta, S. Lymphocytic Choriomeningitis Virus Infection of Dendritic Cells Interferes with TLR-Induced IL-12/IL-23 Cytokine Production in an IL-10 Independent Manner. Cytokine 2018, 108, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, R.; Peng, Z.; Hu, B.; Rao, X.; Li, J. HMGB1 Participates in LPSinduced Acute Lung Injury by Activating the AIM2 Inflammasome in Macrophages and Inducing Polarization of M1 Macrophages via TLR2, TLR4, and RAGE/NFκB Signaling Pathways. Int. J. Mol. Med. 2020, 45, 61–80. [Google Scholar] [CrossRef]
- Fusella, F.; Seclì, L.; Cannata, C.; Brancaccio, M. The One Thousand and One Chaperones of the NF-κB Pathway. Cell. Mol. Life Sci. 2020, 77, 2275–2288. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, L.; Lie, L.; Zhang, Z.; Zhu, B.; Yang, J.; Gao, Y.; Li, P.; Huang, Y.; Xu, H.; et al. MxA Suppresses TAK1-IKKα/β-NF-κB Mediated Inflammatory Cytokine Production to Facilitate Mycobacterium Tuberculosis Infection. J. Infect. 2020, 81, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, K.T.; Verma, P.; Reddy, M.R. Toll-like Receptors Gene Expression in the Gastrointestinal Tract of Salmonella Serovar Pullorum-Infected Broiler Chicken. Appl. Biochem. Biotechnol. 2014, 173, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Ju, Y.; Huang, L.L.; Luo, H.L.; Huang, Y.C.; Huang, X.Y.; Chen, G.; Gui, J.; Liu, Z.L.; Yang, L.; Liu, X.Z. Passion Fruit Peel and Its Zymolyte Enhance Gut Function in Sanhuang Broilers by Improving Antioxidation and Short-Chain Fatty Acids and Decreasing Inflammatory Cytokines. Poult. Sci. 2023, 102, 102672. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-Y.; Yu, Y.; Liu, Y.; Ou, C.-B.; Zhang, Y.-H.; Liu, T.-Y.; Wang, Q.-X.; Ma, J.-Y. Differential Expression of Pro-Inflammatory and Anti-Inflammatory Genes of Layer Chicken Bursa after Experimental Infection with Infectious Bursal Disease Virus. Poult. Sci. 2019, 98, 5307–5314. [Google Scholar] [CrossRef] [PubMed]
- Rose-John, S.; Winthrop, K.; Calabrese, L. The Role of IL-6 in Host Defence against Infections: Immunobiology and Clinical Implications. Nat. Rev. Rheumatol. 2017, 13, 399–409. [Google Scholar] [CrossRef]
- Gaur, U.; Aggarwal, B.B. Regulation of Proliferation, Survival and Apoptosis by Members of the TNF Superfamily. Biochem. Pharmacol. 2003, 66, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, W.; Kim, I.H.; Yang, Y. Dietary Hydrolyzed Wheat Gluten Supplementation Ameliorated Intestinal Barrier Dysfunctions of Broilers Challenged with Escherichia coli O78. Poult. Sci. 2022, 101, 101615. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Kim, S.; Lee, H.A.; Park, M.H.; Kim, S.; Song, Y.R.; Na, H.S. Trans-Cinnamic Aldehyde Inhibits Aggregatibacter Actinomycetemcomitans-Induced Inflammation in THP-1-Derived Macrophages via Autophagy Activation. J. Periodontol. 2018, 89, 1262–1271. [Google Scholar] [CrossRef]
Item | BWG 1/kg | FI 2/kg | F/G 3 | Survival Rate/% |
---|---|---|---|---|
1–21 d | ||||
CON | 0.71 ± 0.05 | 1.05 ± 0.07 | 1.47 ± 0.05 | 100.00 ± 0.00 |
CA | 0.74 ± 0.03 | 1.07 ± 0.05 | 1.45 ± 0.03 | 100.00 ± 0.00 |
VC | 0.76 ± 0.04 | 1.09 ± 0.05 | 1.43 ± 0.02 | 100.00 ± 0.00 |
CA + VC | 0.75 ± 0.04 | 1.09 ± 0.05 | 1.45 ± 0.03 | 100.00 ± 0.00 |
cinnamaldehyde | ||||
- | 0.74 ± 0.05 | 1.07 ± 0.06 | 1.45 ± 0.04 | 100.00 ± 0.00 |
+ | 0.75 ± 0.04 | 1.08 ± 0.05 | 1.45 ± 0.03 | 100.00 ± 0.00 |
vitamin C | ||||
- | 0.73 ± 0.04 | 1.06 ± 0.06 | 1.46 ± 0.04 | 100.00 ± 0.00 |
+ | 0.76 ± 0.04 | 1.09 ± 0.05 | 1.44 ± 0.03 | 100.00 ± 0.00 |
p-value | ||||
cinnamaldehyde | 0.566 | 0.615 | 0.825 | - |
vitamin C | 0.094 | 0.228 | 0.231 | - |
interaction | 0.259 | 0.630 | 0.125 | - |
22–42 d | ||||
CON | 1.55 ± 0.17 | 2.85 ± 0.20 | 1.85 ± 0.10 | 98.33 ± 4.08 |
CA | 1.51 ± 0.17 | 2.78 ± 0.21 | 1.85 ± 0.20 | 98.49 ± 3.71 |
VC | 1.53 ± 0.18 | 2.72 ± 0.14 | 1.80 ± 0.16 | 98.49 ± 3.71 |
CA + VC | 1.57 ± 0.17 | 2.75 ± 0.12 | 1.77 ± 0.14 | 100.00 ± 0.00 |
cinnamaldehyde | ||||
- | 1.54 ± 0.17 | 2.78 ± 0.18 | 1.82 ± 0.13 | 98.41 ± 3.72 |
+ | 1.54 ± 0.16 | 2.76 ± 0.17 | 1.81 ± 0.17 | 99.24 ± 2.62 |
vitamin C | ||||
- | 1.53 ± 0.16 | 2.81 ± 0.20 | 1.85 ± 0.15 | 98.41 ± 3.72 |
+ | 1.55 ± 0.17 | 2.74 ± 0.13 | 1.78 ± 0.14 | 99.24 ± 2.62 |
p-value | ||||
cinnamaldehyde | 0.983 | 0.766 | 0.842 | 0.558 |
vitamin C | 0.789 | 0.311 | 0.300 | 0.558 |
interaction | 0.578 | 0.492 | 0.763 | 0.595 |
1–42 d | ||||
CON | 2.26 ± 0.22 | 3.89 ± 0.26 | 1.73 ± 0.08 | 98.61 ± 3.40 |
CA | 2.25 ± 0.19 | 3.85 ± 0.24 | 1.72 ± 0.13 | 98.61 ± 3.40 |
VC | 2.29 ± 0.21 | 3.81 ± 0.19 | 1.67 ± 0.09 | 98.61 ± 3.40 |
CA + VC | 2.31 ± 0.21 | 3.84 ± 0.17 | 1.66 ± 0.09 | 100.00 ± 0.00 |
cinnamaldehyde | ||||
- | 2.27 ± 0.21 | 3.85 ± 0.22 | 1.70 ± 0.09 | 98.61 ± 3.24 |
+ | 2.29 ± 0.19 | 3.84 ± 0.20 | 1.69 ± 0.11 | 99.31 ± 2.40 |
vitamin C | ||||
- | 2.26 ± 0.19 | 3.87 ± 0.24 | 1.72 ± 0.10 | 98.61 ± 3.24 |
+ | 2.30 ± 0.20 | 3.83 ± 0.17 | 1.67 ± 0.09 | 99.31 ± 2.40 |
p-value | ||||
cinnamaldehyde | 0.897 | 0.918 | 0.778 | 0.570 |
vitamin C | 0.572 | 0.630 | 0.199 | 0.570 |
interaction | 0.809 | 0.678 | 0.981 | 0.570 |
Item | 21 d | 42 d | ||||
---|---|---|---|---|---|---|
BMR 1/% | BMR/% | DR 2/% | TER 3/% | AFR 4/% | DL 5/% | |
CON | 18.01 ± 1.55 | 27.30 ± 4.74 | 93.86 ± 1.11 | 75.59 ± 1.75 | 2.33 ± 0.84 | 3.19 ± 0.81 |
CA | 17.97 ± 0.16 | 28.31 ± 2.08 | 91.27 ± 7.35 | 75.01 ± 1.56 | 2.46 ± 0.68 | 3.28 ± 0.79 |
VC | 18.85 ± 0.35 | 29.37 ± 2.01 | 94.18 ± 0.68 | 74.81 ± 1.98 | 1.71 ± 0.25 | 2.20 ± 0.57 |
CA + VC | 19.05 ± 1.55 | 30.17 ± 1.25 | 94.63 ± 0.41 | 75.67 ± 1.48 | 1.96 ± 0.50 | 2.93 ± 0.47 |
cinnamaldehyde | ||||||
- | 18.43 ± 1.16 | 28.34 ± 3.64 | 94.02 ± 0.90 | 75.20 ± 1.83 | 2.02 ± 0.67 | 2.70 ± 0.84 |
+ | 18.51 ± 1.19 | 29.24 ± 1.90 | 92.95 ± 5.26 | 75.34 ± 1.49 | 2.21 ± 0.63 | 3.11 ± 0.65 |
vitamin C | ||||||
- | 17.99 ± 1.05 b | 27.80 ± 3.53 | 92.56 ± 5.19 | 75.30 ± 1.61 | 2.39 ± 0.73 a | 3.24 ± 0.76 a |
+ | 18.95 ± 1.08 a | 29.77 ± 1.65 | 94.40 ± 0.59 | 75.24 ± 1.73 | 1.83 ± 0.40 b | 2.57 ± 0.63 b |
p-value | ||||||
cinnamaldehyde | 0.863 | 0.453 | 0.571 | 0.855 | 0.450 | 0.152 |
vitamin C | 0.047 | 0.097 | 0.218 | 0.939 | 0.036 | 0.025 |
interaction | 0.792 | 0.935 | 0.333 | 0.313 | 0.817 | 0.261 |
Items | 21d | 42 d | ||||
---|---|---|---|---|---|---|
VH 1 (μm) | CD 2 (μm) | VH/CD | VH (μm) | CD (μm) | VH/CD | |
CON | 18.01 ± 1.55 | 27.30 ± 4.74 | 93.86 ± 1.11 | 75.59 ± 1.75 | 2.33 ± 0.84 | 3.19 ± 0.81 |
CA | 17.97 ± 0.16 | 28.31 ± 2.08 | 91.27 ± 7.35 | 75.01 ± 1.56 | 2.46 ± 0.68 | 3.28 ± 0.79 |
VC | 18.85 ± 0.35 | 29.37 ± 2.01 | 94.18 ± 0.68 | 74.81 ± 1.98 | 1.71 ± 0.25 | 2.20 ± 0.57 |
CA + VC | 19.05 ± 1.55 | 30.17 ± 1.25 | 94.63 ± 0.41 | 75.67 ± 1.48 | 1.96 ± 0.50 | 2.93 ± 0.47 |
cinnamaldehyde | ||||||
- | 1341.01 ± 185.44 | 201.77 ± 22.35 | 6.74 ± 1.23 | 1394.00 ± 218.97 | 203.26 ± 31.00 b | 6.97 ± 1.26 a |
+ | 1363.42 ± 190.73 | 204.77 ± 32.57 | 6.80 ± 1.37 | 1346.97 ± 203.80 | 244.01 ± 35.15 a | 5.62 ± 1.12 b |
vitamin C | ||||||
- | 1288.08 ± 161.39 | 195.25 ± 16.65 | 6.66 ± 1.12 | 1324.92 ± 179.19 | 238.63 ± 42.35 a | 5.72 ± 1.25 b |
+ | 1416.36 ± 189.78 | 211.28 ± 33.88 | 6.88 ± 1.46 | 1416.05 ± 232.49 | 208.64 ± 28.59 b | 6.86 ± 1.25 a |
p-value | ||||||
cinnamaldehyde | 0.757 | 0.795 | 0.917 | 0.600 | 0.004 | 0.006 |
vitamin C | 0.088 | 0.175 | 0.686 | 0.314 | 0.025 | 0.017 |
interaction | 0.158 | 0.941 | 0.419 | 0.955 | 0.561 | 0.987 |
Items | GSH-PX 1 (Active Unit) | T-AOC 2 (mmol/g) | SOD 3 (U/mgport) | GSH 4 (μmol/gprot) | CAT 5 (U/mgprot) | MDA 6 (nmol/mgprot) |
---|---|---|---|---|---|---|
21 d | ||||||
CON | 58.15 ± 27.24 a | 0.21 ± 0.03 a | 24.71 ± 4.08 | 66.69 ± 16.84 | 0.05 ± 0.06 | 0.18 ± 0.05 b |
CA | 31.31 ± 1.73 b | 0.19 ± 0.02 ab | 23.04 ± 3.76 | 57.75 ± 10.89 | 0.05 ± 0.05 | 0.27 ± 0.05 a |
VC | 33.86 ± 3.96 b | 0.18 ± 0.03 b | 24.17 ± 2.27 | 55.96 ± 22.40 | 0.04 ± 0.03 | 0.20 ± 0.03 b |
CA + VC | 48.29 ± 14.79 ab | 0.20 ± 0.02 ab | 24.51 ± 2.54 | 51.34 ± 5.70 | 0.06 ± 0.07 | 0.20 ± 0.04 b |
cinnamaldehyde | ||||||
- | 46.00 ± 22.48 | 0.20 ± 0.03 | 24.44 ± 3.16 | 61.33 ± 19.71 | 0.05 ± 0.05 | 0.19 ± 0.04 |
+ | 39.80 ± 13.40 | 0.20 ± 0.02 | 23.78 ± 3.15 | 54.55 ± 8.94 | 0.05 ± 0.06 | 0.23 ± 0.06 |
vitamin C | ||||||
- | 44.73 ± 23.14 | 0.20 ± 0.03 | 23.88 ± 3.84 | 62.22 ± 14.31 | 0.05 ± 0.05 | 0.22 ± 0.06 |
+ | 41.07 ± 12.78 | 0.19 ± 0.03 | 24.34 ± 2.30 | 53.65 ± 15.77 | 0.05 ± 0.06 | 0.20 ± 0.04 |
p-value | ||||||
cinnamaldehyde | 0.343 | 0.920 | 0.622 | 0.291 | 0.700 | 0.033 |
vitamin C | 0.574 | 0.713 | 0.731 | 0.185 | 0.838 | 0.176 |
interaction | 0.004 | 0.049 | 0.460 | 0.733 | 0.675 | 0.016 |
42 d | ||||||
CON | 38.13 ± 9.77 | 0.21 ± 0.03 a | 31.07 ± 2.28 | 57.97 ± 5.50 | 0.06 ± 0.08 | 0.17 ± 0.02 |
CA | 23.90 ± 14.41 | 0.16 ± 0.02 b | 26.74 ± 5.23 | 42.70 ± 5.28 | 0.06 ± 0.05 | 0.15 ± 0.04 |
VC | 29.21 ± 8.17 | 0.17 ± 0.01 b | 29.00 ± 1.23 | 53.44 ± 5.97 | 0.11 ± 0.11 | 0.19 ± 0.02 |
CA + VC | 34.47 ± 18.26 | 0.16 ± 0.01 b | 24.16 ± 8.40 | 52.18 ± 6.38 | 0.09 ± 0.09 | 0.17 ± 0.04 |
cinnamaldehyde | ||||||
- | 33.67 ± 9.77 | 0.19 ± 0.03 | 30.03 ± 2.06 a | 55.71 ± 6.17 a | 0.09 ± 0.10 | 0.18 ± 0.02 |
+ | 29.18 ± 16.63 | 0.16 ± 0.02 | 25.45 ± 6.80 b | 47.44 ± 7.46 b | 0.07 ± 0.07 | 0.16 ± 0.04 |
vitamin C | ||||||
- | 31.01 ± 13.89 | 0.19 ± 0.03 | 28.91 ± 4.46 | 50.33 ± 9.48 b | 0.06 ± 0.06 | 0.16 ± 0.03 |
+ | 31.84 ± 13.76 | 0.16 ± 0.01 | 26.58 ± 6.25 | 57.81 ± 8.32 a | 0.10 ± 0.10 | 0.18 ± 0.03 |
p-value | ||||||
cinnamaldehyde | 0.417 | 0.001 | 0.040 | <0.001 | 0.764 | 0.260 |
vitamin C | 0.880 | 0.004 | 0.278 | 0.005 | 0.324 | 0.090 |
interaction | 0.087 | 0.049 | 0.906 | 0.407 | 0.865 | 0.839 |
Items 1 | 21 d | 42 d | ||||||
---|---|---|---|---|---|---|---|---|
Occludin | Claudin-1 | ZO-1 1 | Mucin-2 | Occludin | Claudin-1 | ZO-1 | Mucin-2 | |
CON | 1.00 ± 0.22 | 1.00 ± 0.25 b | 1.00 ± 0.16 | 1.00 ± 0.25 | 1.00 ± 0.31 c | 1.00 ± 0.37 d | 1.00 ± 0.08 b | 1.00 ± 0.20 c |
CA | 0.93 ± 0.43 | 1.31 ± 0.29 ab | 1.51 ± 0.43 | 0.91 ± 0.21 | 4.57 ± 0.42 a | 6.41 ± 1.77 c | 1.21 ± 0.24 b | 2.83 ± 0.49 b |
VC | 0.59 ± 0.36 | 1.58 ± 0.35 a | 1.75 ± 0.47 | 1.05 ± 0.75 | 0.23 ± 0.08 d | 14.98 ± 3.05 a | 1.57 ± 0.9 a | 1.40 ± 0.47 c |
CA + VC | 0.79 ± 0.14 | 1.30 ± 0.35 ab | 2.01 ± 0.86 | 1.08 ± 0.12 | 1.89 ± 0.43 b | 11.48 ± 2.59 b | 1.04 ± 0.25 b | 4.96 ± 0.68 a |
cinnamaldehyde | ||||||||
- | 0.80 ± 0.35 | 1.29 ± 0.42 | 1.38 ± 0.52 | 1.02 ± 0.53 | 0.62 ± 0.46 | 7.99 ± 7.59 | 1.29 ± 0.31 | 1.20 ± 0.40 |
+ | 0.86 ± 031 | 1.30 ± 0.31 | 1.76 ± 0.70 | 0.99 ± 0.18 | 3.23 ± 1.46 | 8.94 ± 3.39 | 1.12 ± 0.25 | 3.89 ± 1.25 |
vitamin C | ||||||||
- | 0.97 ± 0.33 a | 1.15 ± 0.30 | 1.25 ± 0.41 b | 0.95 ± 0.22 | 2.78 ± 1.98 | 3.70 ± 3.08 | 1.11 ± 0.20 | 1.91 ± 1.02 |
+ | 0.69 ± 0.28 b | 1.44 ± 0.37 | 1.88 ± 0.67 a | 1.06 ± 0.51 | 1.06 ± 0.91 | 13.23 ± 3.26 | 1.30 ± 0.34 | 3.18 ± 1.94 |
p-value | ||||||||
cinnamaldehyde | 0.612 | 0.934 | 0.100 | 0.856 | <0.001 | 0.299 | 0.043 | <0.001 |
vitamin C | 0.040 | 0.037 | 0.010 | 0.536 | <0.001 | <0.001 | 0.015 | <0.001 |
interaction | 0.315 | 0.033 | 0.575 | 0.721 | <0.001 | <0.001 | <0.001 | <0.001 |
Items | 21 d | 42 d | ||||
---|---|---|---|---|---|---|
GPX-1 1 | CAT 2 | SOD1 3 | GPX-1 | CAT | SOD1 | |
CON | 1.00 ± 0.34 | 1.00 ± 0.21 | 1.00 ± 0.33 | 1.00 ± 0.38 | 1.00 ± 0.19 c | 1.00 ± 0.27 a |
CA | 0.81 ± 0.19 | 2.23 ± 0.40 | 1.51 ± 0.23 | 1.62 ± 0.25 | 7.74 ± 0.91 a | 0.29 ± 0.07 b |
VC | 1.29 ± 0.32 | 1.99 ± 0.82 | 1.52 ± 0.37 | 0.36 ± 0.03 | 1.66 ± 0.46 c | 0.04 ± 0.01 c |
CA + VC | 1.20 ± 0.12 | 3.12 ± 0.89 | 2.76 ± 0.72 | 0.95 ± 0.09 | 6.32 ± 1.61 b | 0.17 ± 0.02 bc |
cinnamaldehyde | ||||||
- | 1.15 ± 0.35 | 1.49 ± 0.77 b | 1.26 ± 0.43 b | 0.68 ± 0.42 b | 1.33 ± 0.48 | 0.52 ± 0.53 |
+ | 1.00 ± 0.25 | 2.67 ± 080 a | 2.13 ± 0.83 a | 1.28 ± 0.39 a | 7.03 ± 1.45 | 0.23 ± 0.08 |
vitamin C | ||||||
- | 0.91 ± 0.28 b | 1.62 ± 0.71 b | 1.25 ± 0.38 b | 1.31 ± 0.44 a | 4.37 ± 3.58 | 0.64 ± 0.41 |
+ | 1.24 ± 0.23 a | 2.55 ± 1.01 a | 2.14 ± 0.85 a | 0.65 ± 0.31 b | 3.99 ± 2.69 | 0.10 ± 0.07 |
p-value | ||||||
cinnamaldehyde | 0.186 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
vitamin C | 0.005 | 0.002 | <0.001 | <0.001 | 0.342 | <0.001 |
interaction | 0.624 | 0.842 | 0.057 | 0.896 | 0.015 | <0.001 |
Items 1 | IL-10 1 | IL-6 2 | TNF-α 3 | IL-1β 4 | NF-κB 5 | MyD-88 6 | TLR-4 7 | TLR-2 8 |
---|---|---|---|---|---|---|---|---|
21 d | ||||||||
CON | 1.00 ± 0.20 a | 1.00 ± 0.15 a | 1.00 ± 0.15 a | 1.00 ± 0.42 | 1.00 ± 0.15 | 1.00 ± 0.12 d | 1.00 ± 0.37 | 1.00 ± 0.49 |
CA | 0.28 ± 0.06 b | 0.14 ± 0.04 b | 0.15 ± 0.08 c | 0.32 ± 0.34 | 7.22 ± 1.63 | 1.52 ± 0.21 b | 0.97 ± 0.65 | 0.99 ± 0.97 |
VC | 0.26 ± 0.08 b | 0.18 ± 0.02 b | 0.46 ± 0.14 b | 1.01 ± 0.22 | 3.78 ± 1.47 | 1.25 ± 0.03 c | 0.90 ± 0.61 | 0.40 ± 0.26 |
CA + VC | 0.12 ± 0.05 c | 0.17 ± 0.04 b | 0.25 ± 0.02 c | 0.23 ± 0.11 | 10.56 ± 2.50 | 3.29 ± 0.18 a | 0.35 ± 0.18 | 0.36 ± 0.13 |
cinnamaldehyde | ||||||||
- | 0.63 ± 0.41 | 0.59 ± 0.44 | 0.73 ± 0.31 | 1.01 ± 0.32 a | 2.39 ± 1.76 b | 1.12 ± 0.15 | 0.95 ± 0.49 | 0.70 ± 0.49 |
+ | 0.20 ± 0.10 | 0.15 ± 0.04 | 0.20 ± 0.08 | 0.27 ± 0.25 b | 8.89 ± 2.66 a | 2.41 ± 0.94 | 0.66 ± 0.56 | 0.68 ± 0.74 |
vitamin C | ||||||||
- | 0.64 ± 0.40 | 0.57 ± 0.46 | 0.57 ± 0.46 | 0.66 ± 0.51 | 4.11 ± 3.43 b | 1.26 ± 0.32 | 0.98 ± 0.50 | 1.00 ± 0.74 a |
+ | 0.19 ± 0.10 | 0.17 ± 0.03 | 0.36 ± 0.15 | 0.62 ± 0.44 | 7.17 ± 4.05 a | 2.27 ± 1.08 | 0.63 ± 0.52 | 0.38 ± 0.20 b |
p-value | ||||||||
cinnamaldehyde | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.163 | 0.919 |
vitamin C | <0.001 | <0.001 | <0.001 | 0.756 | <0.001 | <0.001 | 0.089 | 0.015 |
interaction | <0.001 | <0.001 | <0.001 | 0.676 | 0.682 | <0.001 | 0.212 | 0.952 |
42 d | ||||||||
CON | 1.00 ± 0.17 a | 1.00 ± 0.14 a | 1.00 ± 0.20 a | 1.00 ± 0.13 a | 1.00 ± 0.23 d | 1.00 ± 0.22 | 1.00 ± 0.42 b | 1.00 ± 0.50 |
CA | 0.51 ± 0.27 b | 0.16 ± 0.10 c | 0.55 ± 0.19 b | 0.27 ± 0.08 c | 18.34 ± 4.33 b | 1.79 ± 0.73 | 0.56 ± 0.09 c | 0.69 ± 0.22 |
VC | 0.42 ± 0.23 b | 0.46 ± 0.14 b | 0.45 ± 0.11 b | 0.37 ± 0.06 c | 4.03 ± 1.41 c | 1.86 ± 0.87 | 1.32 ± 0.30 b | 3.05 ± 1.19 |
CA + VC | 0.50 ± 0.26 b | 0.23 ± 0.07 c | 0.52 ± 0.19 b | 0.54 ± 0.16 b | 27.30 ± 4.18 a | 2.86 ± 0.79 | 2.83 ± 0.42 a | 1.93 ± 0.74 |
cinnamaldehyde | ||||||||
- | 0.71 ± 0.36 | 0.73 ± 0.32 | 0.73 ± 0.32 | 0.68 ± 0.34 | 2.52 ± 1.85 | 1.43 ± 0.75 b | 1.16 ± 0.38 | 2.02 ± 1.38 a |
+ | 0.50 ± 0.25 | 0.20 ± 0.09 | 0.54 ± 0.18 | 0.41 ± 0.19 | 22.82 ± 6.19 | 2.32 ± 0.92 a | 1.69 ± 1.22 | 1.31 ± 0.83 b |
vitamin C | ||||||||
- | 0.76 ± 0.33 | 0.58 ± 0.45 | 0.77 ± 0.30 | 0.64 ± 0.39 | 9.67 ± 9.51 | 1.39 ± 0.66 b | 0.78 ± 0.37 | 0.84 ± 0.40 b |
+ | 0.46 ± 0.24 | 0.34 ± 0.16 | 0.49 ± 0.15 | 0.46 ± 0.15 | 15.67 ± 12.51 | 2.36 ± 0.95 a | 2.08 ± 0.86 | 2.49 ± 1.11 a |
p-value | ||||||||
cinnamaldehyde | 0.045 | <0.001 | 0.016 | <0.001 | <0.001 | 0.005 | 0.001 | 0.031 |
vitamin C | 0.005 | <0.001 | 0.001 | 0.001 | <0.001 | 0.003 | <0.001 | <0.001 |
interaction | 0.008 | <0.001 | 0.002 | <0.001 | 0.029 | 0.705 | <0.001 | 0.206 |
Ingredients, % | Starter Diet | Finisher Diet |
---|---|---|
Corn | 9.40 | 45.30 |
Wheat | 20.00 | 20.00 |
Broken rice | 30.00 | 0.00 |
Corn gluten meal | 0.00 | 6.00 |
Soybean meal | 31.00 | 13.50 |
Cottonseed meal | 3.00 | 6.00 |
Hydrolyzed feather meal | 1.00 | 1.50 |
Soybean oil | 1.20 | 3.30 |
Dicalcium phosphate | 1.30 | 1.05 |
Limestone | 1.30 | 1.40 |
Salt | 0.20 | 0.20 |
Trace mineral premix 1 | 0.20 | 0.20 |
Vitamin premix 2 | 0.03 | 0.03 |
Choline chloride (50%) | 0.16 | 0.16 |
Phytase | 0.02 | 0.02 |
L-Lysine sulfate (65%) | 0.38 | 0.58 |
DL-Methionine (98%) | 0.28 | 0.17 |
L-Threonine (98.5%) | 0.15 | 0.12 |
L-Arginine (98%) | 0.02 | 0.00 |
L-Arginine sulfate (98%) | 0.00 | 0.12 |
L-Valine (98%) | 0.04 | 0.00 |
L-Isoleucine (90%) | 0.00 | 0.10 |
Sodium bicarbonate | 0.25 | 0.25 |
Nutrient composition, % 3 | ||
ME (kcal/kg) | 2930 | 3150 |
CP, % | 22.06 | 20.10 |
Lysine, % | 1.20 | 1.15 |
Methionine, % | 0.54 | 0.48 |
Methionine + Cysteine, % | 0.87 | 0.89 |
Threonine, % | 0.79 | 0.90 |
Calcium, % | 0.94 | 0.86 |
NPP, % | 0.37 | 0.30 |
Gene | Gene Bank ID | Primer Sequence (5′-3′) |
---|---|---|
β-actin | XM_027015741.1 | F: CAACACAGTGCTGTCTGGTGGTAC R: CTCCTGCTTGCTGATCCACATCTG |
Occludin | D21837.1 | F: ACGGCAGCACCTACCTCAA R: GGGCGAAGAAGCAGATGAG |
Claudin-1 | AY750897.1 | F: CATACTCCTGGGTCTGGTTGGT R: GACAGCCATCCGCATCTTCT |
ZO-1 1 | XM_413773 | F: CTTCAGGTGTTTCTCTTCCTCCTC R: CTGTGGTTTCATGGCTGGATC |
Mucin-2 | NM_001318434.1 | F: TCACCCTGCATGGATACTTGCTCA R: TGTCCATCTGCCTGAATCACAGGT |
GPX-1 2 | HM_590226.1 | F: ACGGCGCATCTTCCAAAG R: TGTTCCCCCAACCATTTCTC |
CAT 3 | NM_001031215.2 | F: AGACATCTTCGCTGTGGTGA R: CGAGGATGTTGATGCAGGTG |
SOD1 4 | NM_205064.1 | F: GGTGCTCACTTTAATCCTG R: CTACTTCTGCCACTCCTCC |
IL-10 5 | NM_001004414.3 | F: CAGACCAGCACCAGTCATCAG R: ATCCCGTTCTCATCCATCTTCTCG |
IL-6 6 | NM_204628.1 | F: CAAGAAGTTCACCGTGTGCG R: GGAGAGCTTCGTCAGGCATT |
TNF-α 7 | NM_204267.2 | F: CCTGCTGGGGGAATGCTAGG R: AGCGTTGTCTGCTCTGTAGC |
IL-1β 8 | NM_204524.1 | F: TCTGCCTGCAGAAGAAGCC R: CTCCGCAGCAGTTTGGTCAT |
NF-κB 9 | NM_205129.1 | F: ACCCCTTCAATGTGCCAATG R: TCAGCCCAGAAACGAACCTC |
MyD88 10 | NM_001030962.3 | F: TGCAAGACCATGAAGAACGA R: TCACGGCAGCAAGAGAGATT |
TLR-4 11 | NM_001030693.1 | F: GGATCTTTCAAGGTGCCACA R: CAAGTGTCCGATGGGTAGGT |
TLR-2 12 | NM_003264.3 | F: TAATACGACTCACTATAGGG R: TAGAAGGCACAGTCGAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Lang, A.; Yang, S.; Shahid, M.S.; Yuan, J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. Int. J. Mol. Sci. 2024, 25, 8396. https://doi.org/10.3390/ijms25158396
Huang Y, Lang A, Yang S, Shahid MS, Yuan J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. International Journal of Molecular Sciences. 2024; 25(15):8396. https://doi.org/10.3390/ijms25158396
Chicago/Turabian StyleHuang, Yihong, Aling Lang, Shan Yang, Muhammad Suhaib Shahid, and Jianmin Yuan. 2024. "The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers" International Journal of Molecular Sciences 25, no. 15: 8396. https://doi.org/10.3390/ijms25158396
APA StyleHuang, Y., Lang, A., Yang, S., Shahid, M. S., & Yuan, J. (2024). The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. International Journal of Molecular Sciences, 25(15), 8396. https://doi.org/10.3390/ijms25158396