Investigating Single Nucleotide Polymorphisms in the Etiology of Cleft Lip and Cleft Palate in the Polish Population
Abstract
1. Introduction
2. Results
3. Discussion
Study Limitations
4. Conclusions
5. Materials and Methods
5.1. Study Group
- Diagnosis of non-syndromic CL/P,
- Absence of other birth defects or genetic syndromes,
- Polish ancestry extending to two generations prior,
- Availability of comprehensive medical histories, anamneses, and clinical examination data.
- Presence of syndromic cleft lip and/or palate.
- Insufficient or incomplete medical history and clinical examination data.
- Severe systemic health conditions that could impact the study or treatment outcomes.
5.2. Control Group
5.3. Ethical Approval
5.4. Genetic Variants Selection and Genotyping
5.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Babai, A.; Irving, M. Orofacial Clefts: Genetics of Cleft Lip and Palate. Genes 2023, 14, 1603. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Heydari, M.; Bokaee, S.; Darvishi, F.; Mohammadi, M. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 110–120. [Google Scholar] [CrossRef]
- Wehby, G.L.; Cassell, C.H. The impact of orofacial clefts on quality of life and healthcare use and costs. Oral Dis. 2010, 16, 3–10. [Google Scholar] [CrossRef]
- Sreejith, V.P.; Arun, V.; Devarajan, A.P.; Gopinath, A.; Sunil, M. Psychological Effect of Prenatal Diagnosis of Cleft Lip and Palate: A Systematic Review. Contemp. Clin. Dent. 2018, 9, 304. [Google Scholar]
- Zawiślak, A.; Woźniak, K.; Tartaglia, G.; Agirre, X.; Gupta, S.; Kawala, B.; Znamirowska-Bajowska, A.; Grocholewicz, K.; Prosper, F.; Lubiński, J.; et al. Single-Nucleotide Polymorphisms in WNT Genes in Patients with Non-Syndromic Orofacial Clefts in a Polish Population. Diagnostics 2024, 14, 1537. [Google Scholar] [CrossRef]
- Nasreddine, G.; El Hajj, J.; Ghassibe-Sabbagh, M. Orofacial clefts embryology, classification, epidemiology, and genetics. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108373. [Google Scholar] [CrossRef]
- Yang, Y.; Suzuki, A.; Iwata, J.; Jun, G. Secondary Genome-Wide Association Study Using Novel Analytical Strategies Disentangle Genetic Components of Cleft Lip and/or Cleft Palate in 1q32.2. Genes 2020, 11, 1280. [Google Scholar] [CrossRef]
- Zawiślak, A.; Woźniak, K.; Kawala, B.; Gupta, S.; Znamirowska-Bajowska, A.; Janiszewska-Olszowska, J.; Lubiński, J.; Calvo-Guirado, J.L.; Grocholewicz, K.; Jakubowska, A. IRF6 and FGF1 polymorphisms in non-syndromic cleft lip with or without cleft palate in the Polish population. Open Med. 2023, 18, 20230677. [Google Scholar] [CrossRef]
- Wattanawong, K.; Rattanasiri, S.; McEvoy, M.; Attia, J.; Thakkinstian, A. Association between IRF6 and 8q24 polymorphisms and nonsyndromic cleft lip with or without cleft palate: Systematic review and meta-analysis. Birth Defects Res. A Clin. Mol. Teratol. 2016, 106, 773–788. [Google Scholar] [CrossRef]
- Duan, S.; Shi, J.; Shi, B.; Jia, Z. Association analysis of GWAS hits and non-syndromic cleft lip with/without palate with cleft alveolar in Han population of western China. Int. J. Clin. Exp. Pathol. 2020, 13, 2576–2585. [Google Scholar]
- Assis Machado, R.; de Toledo, I.P.; Martelli-Júnior, H.; Reis, S.R.; Neves Silva Guerra, E.; Coletta, R.D. Potential genetic markers for nonsyndromic oral clefts in the Brazilian population: A systematic review and meta-analysis. Birth Defects Res. 2018, 110, 827–839. [Google Scholar] [CrossRef]
- Gowans, L.J.; Adeyemo, W.L.; Eshete, M.; Mossey, P.A.; Busch, T.; Aregbesola, B.; Donkor, P.; Arthur, F.K.; Bello, S.A.; Martinez, A.; et al. Association Studies and Direct DNA Sequencing Implicate Genetic Susceptibility Loci in the Etiology of Nonsyndromic Orofacial Clefts in Sub-Saharan African Populations. J. Dent. Res. 2016, 95, 1245–1256. [Google Scholar] [CrossRef]
- Cura, F.; Böhmer, A.C.; Klamt, J.; Schünke, H.; Scapoli, L.; Martinelli, M.; Carinci, F.; Nöthen, M.M.; Knapp, M.; Ludwig, K.U.; et al. Replication analysis of 15 susceptibility loci for nonsyndromic cleft lip with or without cleft palate in an italian population. Birth Defects Res. A Clin. Mol. Teratol. 2016, 106, 81–87. [Google Scholar] [CrossRef]
- Grant, S.F.; Wang, K.; Zhang, H.; Glaberson, W.; Annaiah, K.; Kim, C.E.; Bradfield, J.P.; Glessner, J.T.; Thomas, K.A.; Garris, M.; et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J. Pediatr. 2009, 155, 909–913. [Google Scholar] [CrossRef]
- Birnbaum, S.; Ludwig, K.U.; Reutter, H.; Herms, S.; Steffens, M.; Rubini, M.; Baluardo, C.; Ferrian, M.; Almeida de Assis, N.; Alblas, M.A.; et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat. Genet. 2009, 41, 473–477. [Google Scholar] [CrossRef]
- Mostowska, A.; Hozyasz, K.K.; Wojcicki, P.; Biedziak, B.; Paradowska, P.; Jagodzinski, P.P. Association between genetic variants of reported candidate genes or regions and risk of cleft lip with or without cleft palate in the polish population. Birth Defects Res. A Clin. Mol. Teratol. 2010, 88, 538–545. [Google Scholar] [CrossRef]
- Salagovic, J.; Klimcakova, L.; Zabavnikova, M.; Behunova, J.; Hudakova, T.; Fedeles, J.; Molnarova, A.; Podracka, L. Polymorphisms at 1q32, 8q24, and 17q22 loci are associated with nonsyndromic cleft lip with or without cleft palate risk in the Slovak population. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2017, 161, 152–157. [Google Scholar] [CrossRef]
- de Freitas, E.M.; Machado, R.A.; de Moura Santos, E.; de Matos, F.R.; Galvão, H.C.; Miranda Soares, P.B.; Freitas, R.A.; Martelli-Júnior, H. Polymorphisms associated with oral clefts as potential susceptibility markers for oral and breast cancer. Arch. Oral Biol. 2019, 99, 9–14. [Google Scholar] [CrossRef]
- Brito, L.A.; Bassi, C.F.; Masotti, C.; Malcher, C.; Rocha, K.M.; Schlesinger, D.; Bueno, D.F.; Cruz, L.A.; Barbara, L.K.; Bertola, D.R.; et al. IRF6 is a risk factor for nonsyndromic cleft lip in the Brazilian population. Am. J. Med. Genet. A 2012, 158A, 2170–2175. [Google Scholar] [CrossRef]
- Letra, A.; Silva, R.M.; Motta, L.G.; Blanton, S.H.; Hecht, J.T.; Granjeirol, J.M.; Vieira, A.R. Association of MMP3 and TIMP2 promoter polymorphisms with nonsyndromic oral clefts. Birth Defects Res. A Clin. Mol. Teratol. 2012, 94, 540–548. [Google Scholar] [CrossRef]
- Johnatty, S.E.; Beesley, J.; Chen, X.; Macgregor, S.; Duffy, D.L.; Spurdle, A.B.; DeFazio, A.; Gava, N.; Webb, P.M.; Rossing, M.A.; et al. Ovarian Cancer Association Consortium; Australian Ovarian Cancer Study Group; Australian Cancer Study (Ovarian Cancer). Evaluation of candidate stromal epithelial cross-talk genes identifies association between risk of serous ovarian cancer and TERT, a cancer susceptibility “hot-spot”. PLoS Genet. 2010, 6, e1001016. [Google Scholar] [CrossRef]
- Dey, S.; Stalin, S.; Gupta, A.; Saha, D.; Kesh, K.; Swarnakar, S. Matrix metalloproteinase3 gene promoter polymorphisms and their haplotypes are associated with gastric cancer risk in eastern Indian population. Mol. Carcinog. 2012, 51 (Suppl. S1), E42–E53. [Google Scholar] [CrossRef]
- Koch, W.; de Waha, A.; Hoppmann, P.; Schömig, A.; Kastrati, A. Haplotypes and 5A/6A polymorphism of the matrix metalloproteinase-3 gene in coronary disease: Case-control study and a meta-analysis. Atherosclerosis 2010, 208, 171–176. [Google Scholar] [CrossRef]
- Kao, C.C.; Cheng, S.Y.; Wu, M.Y.; Chien, S.C.; Lu, H.F.; Hsu, Y.W.; Zhang, Y.F.; Wu, M.S.; Chang, W.C. Associations of genetic variants of endothelin with cardiovascular complications in patients with renal failure. BMC Nephrol. 2017, 18, 291. [Google Scholar] [CrossRef]
- Murray, J.C. Gene/environment causes of cleft lip and/or palate. Clin. Genet. 2002, 61, 248–256. [Google Scholar] [CrossRef] [PubMed]
- WHO. International Statistical Classification of Diseases and Related Health Problems 10th Revision. 2019. Available online: https://icd.who.int/browse10/2019/en (accessed on 28 January 2021).
- Lahiri, D.K.; Schnabel, B. DNA isolation by a rapid method from human blood samples: Effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem. Genet. 1993, 31, 321–328. [Google Scholar] [CrossRef]
- Zawiślak, A.; Woźniak, W.; Agirre, X.; Gupta, S.; Kawala, B.; Znamirowska-Bajowska, A.; Grocholewicz, K.; Lubiński, J.; Prosper, F.; Jakubowska, A. Association of ABCA4 Gene Polymorphisms with Cleft Lip with or without Cleft Palate in the Polish Population. Int. J. Environ. Res. Public Health 2021, 18, 11483. [Google Scholar] [CrossRef]
- Wald, A. Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 1943, 54, 426–482. [Google Scholar] [CrossRef]
- Jewell, N.P. Statistics for Epidemiology; Chapman & Hall/CRC: London, UK, 2004. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 20 July 2024).
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R Package Version 2.8.15. 2023. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 20 July 2024).
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Makowski, D.; Lüdecke, D.; Patil, I.; Thériault, R.; Ben-Shachar, M.; Wiernik, B. Automated Results Reporting as a Practical Tool to Improve Reproducibility and Methodological Best Practices Adoption. CRAN. 2023. Available online: https://easystats.github.io/report/ (accessed on 20 July 2024).
- Sjoberg, D.; Whiting, K.; Curry, M.; Lavery, J.; Larmarange, J. Reproducible Summary Tables with the gtsummary Package. R J. 2021, 13, 570–580. [Google Scholar] [CrossRef]
- Stevenson, M.; Sergeant, E. epiR: Tools for the Analysis of Epidemiological Data. R Package Version 2.0.75. 2024. Available online: https://CRAN.R-project.org/package=epiR (accessed on 20 July 2024).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation. R Package Version 1.1.3. 2023. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 20 July 2024).
Genetic Variant | N (total) | Genotype | Study Group n = 209 | Control Group n = 418 |
---|---|---|---|---|
rs987525 | AA | 13 (7.22%) | 14 (4.06%) | |
525 | AC | 79 (43.89%) | 99 (28.70%) | |
CC | 88 (48.89%) | 232 (67.25%) | ||
rs590223 | AA | 76 (46.06%) | 133 (45.24%) | |
459 | AG | 71 (43.03%) | 138 (46.94%) | |
GG | 18 (10.91%) | 23 (7.82%) | ||
rs522616 | 494 | AA | 125 (65.10%) | 207 (68.54%) |
AG | 61 (31.77%) | 83 (27.48%) | ||
GG | 6 (3.13%) | 12 (3.97%) | ||
rs4714384 | 552 | CC | 20 (10.47%) | 30 (8.31%) |
CT | 80 (41.88%) | 188 (52.08%) | ||
TT | 91 (47.64%) | 143 (39.61%) |
Genetic Variant | Genotype | OR with CI 95% | pM-H adj OR=1 | pWoolf homogeneity |
---|---|---|---|---|
rs987525 | AA | 1.86 (0.85–4.06) | 0.057 | 0.962 |
rs987525 | AC | 1.95 (1.34–2.83) | <0.001 | 0.226 |
rs987525 | CC | 0.46 (0.32–0.67) | <0.001 | 0.296 |
rs590223 | AA | 1.04 (0.71–1.52) | 0.428 | 0.391 |
rs590223 | AG | 0.85 (0.58–1.25) | 0.209 | 0.388 |
rs590223 | GG | 1.44 (0.75–2.75) | 0.137 | 0.899 |
rs522616 | AA | 0.86 (0.58–1.26) | 0.213 | 0.694 |
rs522616 | AG | 1.23 (0.83–1.82) | 0.151 | 0.647 |
rs522616 | GG | 0.77 (0.28–2.10) | 0.307 | 0.869 |
rs4714384 | CC | 1.30 (0.72–2.36) | 0.194 | 0.338 |
rs4714384 | CT | 0.66 (0.46–0.94) | 0.011 | 0.573 |
rs4714384 | TT | 1.39 (0.97–1.98) | 0.051 | 0.300 |
Predictors | OFC | |||||
---|---|---|---|---|---|---|
Model 1 | Model 2 | |||||
OR | CI 95% | p | OR | CI 95% | p | |
(Intercept) | 0.41 | 0.27–0.59 | <0.001 | 0.86 | 0.57–1.29 | 0.458 |
rs4714384 CT | 0.72 | 0.47–1.09 | 0.123 | 0.72 | 0.47–1.09 | 0.119 |
rs987525 AC | 1.95 | 1.28–2.98 | 0.002 | - | - | - |
rs987525 CC | - | - | - | 0.43 | 0.28–0.65 | <0.001 |
CL/P | SNP | Genotype | OR with CI 95% | pM-H adj OR=1 |
---|---|---|---|---|
BCL/P | rs522616 | AA | 0.53 (0.28–0.99) | 0.022 |
CL | rs522616 | AA | 0.53 (0.28–0.99) | 0.022 |
UCL/P | rs987525 | AC | 2.40 (1.54–3.73) | <0.001 |
rs987525 | CC | 0.37 (0.24–0.58) | <0.001 |
Predictor | OFC | OR | CI 95% | p |
---|---|---|---|---|
(Intercept) | BCL/P | 0.11 | 0.05–0.19 | <0.001 |
rs522616 AA | BCL/P | 0.46 | 0.23–0.93 | 0.029 |
(Intercept) | CL | 0.03 | 0.01–0.12 | <0.001 |
rs522616 AA | CL | 0.43 | 0.13–1.44 | 0.162 |
(Intercept) | UCL/P | 0.12 | 0.05–0.19 | <0.001 |
rs987525 AC | UCL/P | 2.66 | 1.58–4.50 | <0.001 |
(Intercept) | UCL/P | 0.33 | 0.20–0.52 | <0.001 |
rs987525 CC | UCL/P | 0.31 | 0.18–0.52 | <0.001 |
SNP | Location | Position | Function | Alleles | MAF |
---|---|---|---|---|---|
rs987525 | Chromosome 8q24.21 | chr8:128933908 | N/A | C > A | A = 0.0224 |
rs590223 | TRAF3IP3 | chr1:209773362 | Intron Variant | G > A | G = 0.3666 |
rs522616 | MMP3 | chr11:102844317 | 2KB Upstream Variant | T > C | C = 0.2059 |
rs4714384 | EDN1 | chr6:12297620 | 500B Downstream Variant | T > C | C = 0.3304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawiślak, A.; Woźniak, K.; Kawala, B.; Gupta, S.; Znamirowska-Bajowska, A.; Grocholewicz, K.; Lubiński, J.; Jakubowska, A. Investigating Single Nucleotide Polymorphisms in the Etiology of Cleft Lip and Cleft Palate in the Polish Population. Int. J. Mol. Sci. 2024, 25, 9310. https://doi.org/10.3390/ijms25179310
Zawiślak A, Woźniak K, Kawala B, Gupta S, Znamirowska-Bajowska A, Grocholewicz K, Lubiński J, Jakubowska A. Investigating Single Nucleotide Polymorphisms in the Etiology of Cleft Lip and Cleft Palate in the Polish Population. International Journal of Molecular Sciences. 2024; 25(17):9310. https://doi.org/10.3390/ijms25179310
Chicago/Turabian StyleZawiślak, Alicja, Krzysztof Woźniak, Beata Kawala, Satish Gupta, Anna Znamirowska-Bajowska, Katarzyna Grocholewicz, Jan Lubiński, and Anna Jakubowska. 2024. "Investigating Single Nucleotide Polymorphisms in the Etiology of Cleft Lip and Cleft Palate in the Polish Population" International Journal of Molecular Sciences 25, no. 17: 9310. https://doi.org/10.3390/ijms25179310
APA StyleZawiślak, A., Woźniak, K., Kawala, B., Gupta, S., Znamirowska-Bajowska, A., Grocholewicz, K., Lubiński, J., & Jakubowska, A. (2024). Investigating Single Nucleotide Polymorphisms in the Etiology of Cleft Lip and Cleft Palate in the Polish Population. International Journal of Molecular Sciences, 25(17), 9310. https://doi.org/10.3390/ijms25179310