Renoprotective Effects of Daprodustat in Patients with Chronic Kidney Disease and Renal Anemia
Abstract
:1. Introduction
2. Results
2.1. Effects on Anemia
2.2. Effects on Renal Function
2.3. Effects on Urinary Protein Excretion
2.4. Interaction of Renoprotective Effects and Serum Creatinine and Hemoglobin Levels
2.5. Interaction of Renoprotective Effects (The Changes in the Slopes of the eGFR) and the Increase in Hemoglobin Level (ΔHb)
2.6. Multiple Regression Analysis
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Renal Function Measurements
4.3. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jacobs, K.; Shoemaker, C.; Rudersdorf, R.; Neill, S.D.; Kaufman, R.J.; Mufson, A.; Seehra, J.; Jones, S.S.; Hewick, R.; Fritsch, E.F.; et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature 1985, 313, 806–810. [Google Scholar] [CrossRef]
- Miyake, T.; Kung, C.K.; Goldwasser, E. Purification of human erythropoietin. J. Biol. Chem. 1977, 252, 5558–5564. [Google Scholar] [CrossRef] [PubMed]
- Fishbane, S.; Schiller, B.; Locatelli, F.; Covic, A.C.; Provenzano, R.; Wiecek, A.; Levin, N.W.; Kaplan, M.; Macdougall, I.C.; Francisco, C.; et al. Peginesatide in patients with anemia undergoing hemodialysis. N. Engl. J. Med. 2013, 368, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Akizawa, T.; Iwasaki, M.; Otsuka, T.; Reusch, M.; Misumi, T. Roxadustat Treatment of Chronic Kidney Disease-Associated Anemia in Japanese Patients Not on Dialysis: A Phase 2, Randomized, Double-Blind, Placebo-Controlled Trial. Adv. Ther. 2019, 36, 1438–1454. [Google Scholar] [CrossRef] [PubMed]
- Babitt, J.L.; Lin, H.Y. Mechanisms of anemia in CKD. J. Am. Soc. Nephrol. 2012, 23, 1631–1634. [Google Scholar] [CrossRef]
- Locatelli, F.; Minutolo, R.; De Nicola, L.; Del Vecchio, L. Evolving Strategies in the Treatment of Anaemia in Chronic Kidney Disease: The HIF-Prolyl Hydroxylase Inhibitors. Drugs 2022, 82, 1565–1589. [Google Scholar] [CrossRef]
- Ishii, T.; Tanaka, T.; Nangaku, M. Profile of Daprodustat in the Treatment of Renal Anemia Due to Chronic Kidney Disease. Ther. Clin. Risk Manag. 2021, 17, 155–163. [Google Scholar] [CrossRef]
- Li, Z.L.; Tu, Y.; Liu, B.C. Treatment of Renal Anemia with Roxadustat: Advantages and Achievement. Kidney Dis. 2020, 6, 65–73. [Google Scholar] [CrossRef]
- Nangaku, M.; Akizawa, T.; Nagakubo, T.; Yonekawa, T.; Kimura, T.; Endo, Y.; Cobitz, A. Safety of daprodustat in patients with anemia of chronic kidney disease: A pooled analysis of phase 3 studies in Japan. Ther. Apher. Dial. 2022, 26, 1065–1078. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Burdmann, E.A.; Chen, C.Y.; Cooper, M.E.; de Zeeuw, D.; Eckardt, K.U.; Feyzi, J.M.; Ivanovich, P.; Kewalramani, R.; Levey, A.S.; et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 2009, 361, 2019–2032. [Google Scholar] [CrossRef]
- Elliott, S.; Tomita, D.; Endre, Z. Erythropoiesis stimulating agents and reno-protection: A meta-analysis. BMC Nephrol. 2017, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Tsuruya, K.; Hayashi, T.; Yamamoto, H.; Hase, H.; Nishi, S.; Yamagata, K.; Nangaku, M.; Wada, T.; Uemura, Y.; Ohashi, Y.; et al. Renal prognoses by different target hemoglobin levels achieved by epoetin beta pegol dosing to chronic kidney disease patients with hyporesponsive anemia to erythropoiesis-stimulating agent: A multicenter open-label randomized controlled study. Clin. Exp. Nephrol. 2021, 25, 456–466. [Google Scholar] [CrossRef]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P.; et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; Nanami, M.; Shimada, Y.; Nagaba, Y.; et al. Tubular Endogenous Erythropoietin Protects Renal Function against Ischemic Reperfusion Injury. Int. J. Mol. Sci. 2024, 25, 1223. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the Treatment of Anemia in Patients Not Undergoing Dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Pergola, P.E.; Farag, Y.M.K.; Agarwal, R.; Arnold, S.; Bako, G.; Block, G.A.; Burke, S.; Castillo, F.P.; Jardine, A.G.; et al. Vadadustat in Patients with Anemia and Non-Dialysis-Dependent CKD. N. Engl. J. Med. 2021, 384, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Odawara, M.; Nishi, H.; Nangaku, M. A spotlight on using HIF-PH inhibitors in renal anemia. Expert. Opin. Pharmacother. 2024, 1–9. [Google Scholar] [CrossRef]
- Locatelli, F.; Del Vecchio, L. Hypoxia-Inducible Factor-Prolyl Hydroxyl Domain Inhibitors: From Theoretical Superiority to Clinical Noninferiority Compared with Current ESAs? J. Am. Soc. Nephrol. 2022, 33, 1966–1979. [Google Scholar] [CrossRef]
- Nangaku, M.; Inagi, R.; Miyata, T.; Fujita, T. Hypoxia and hypoxia-inducible factor in renal disease. Nephron Exp. Nephrol. 2008, 110, e1–e7. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Fukuyama, T.; Izumi, Y.; Nakayama, Y.; Inoue, H.; Yanagita, K.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; et al. Erythropoietin production by the kidney and the liver in response to severe hypoxia evaluated by Western blotting with deglycosylation. Physiol. Rep. 2020, 8, e14485. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Fukuyama, T.; Izumi, Y.; Yamashita, T.; Nakayama, Y.; Inoue, H.; Yanagita, K.; Oshima, T.; Yamazaki, T.; Uematsu, T.; et al. Differentiation of endogenous erythropoietin and exogenous ESAs by Western blotting. Heliyon 2020, 6, e05389. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Sands, J.M.; Kawahara, K.; Nonoguchi, H. Progress in the Detection of Erythropoietin in Blood, Urine, and Tissue. Molecules 2023, 28, 4446. [Google Scholar] [CrossRef] [PubMed]
- Bin, S.; Cantarelli, C.; Horwitz, J.K.; Gentile, M.; Podestà, M.A.; La Manna, G.; Heeger, P.S.; Cravedi, P. Endogenous erythropoietin has immunoregulatory functions that limit the expression of autoimmune kidney disease in mice. Front. Immunol. 2023, 14, 1195662. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, O.M.; Sang, Y.; Grams, M.E.; Ballew, S.H.; Surapaneni, A.; Matsushita, K.; Go, A.S.; Shlipak, M.G.; Inker, L.A.; Eneanya, N.D.; et al. Association of Estimated GFR Calculated Using Race-Free Equations with Kidney Failure and Mortality by Black vs. Non-Black Race. Jama 2022, 327, 2306–2316. [Google Scholar] [CrossRef] [PubMed]
- Rovin, B.H.; Barratt, J.; Heerspink, H.J.L.; Alpers, C.E.; Bieler, S.; Chae, D.W.; Diva, U.A.; Floege, J.; Gesualdo, L.; Inrig, J.K.; et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 2023, 402, 2077–2090. [Google Scholar] [CrossRef]
- Collier, W.; Inker, L.A.; Haaland, B.; Appel, G.B.; Badve, S.V.; Caravaca-Fontán, F.; Chalmers, J.; Floege, J.; Goicoechea, M.; Imai, E.; et al. Evaluation of Variation in the Performance of GFR Slope as a Surrogate End Point for Kidney Failure in Clinical Trials that Differ by Severity of CKD. Clin. J. Am. Soc. Nephrol. 2023, 18, 183–192. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Omiya, H.; Pham, T.D.; Inoue, H.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; et al. Effects of Roxadustat on Erythropoietin Production in the Rat Body. Molecules 2022, 27, 1119. [Google Scholar] [CrossRef]
- Packer, M. Mechanistic and Clinical Comparison of the Erythropoietic Effects of SGLT2 Inhibitors and Prolyl Hydroxylase Inhibitors in Patients with Chronic Kidney Disease and Renal Anemia. Am. J. Nephrol. 2024, 55, 255–259. [Google Scholar] [CrossRef]
- Kato, H.; Ishida, J.; Imagawa, S.; Saito, T.; Suzuki, N.; Matsuoka, T.; Sugaya, T.; Tanimoto, K.; Yokoo, T.; Ohneda, O.; et al. Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. Faseb J. 2005, 19, 2023–2025. [Google Scholar] [CrossRef]
- Kato, H.; Ishida, J.; Matsusaka, T.; Ishimaru, T.; Tanimoto, K.; Sugiyama, F.; Yagami, K.; Nangaku, M.; Fukamizu, A. Erythropoiesis and Blood Pressure Are Regulated via AT1 Receptor by Distinctive Pathways. PLoS ONE 2015, 10, e0129484. [Google Scholar] [CrossRef]
- Kim, Y.C.; Mungunsukh, O.; Day, R.M. Erythropoietin Regulation by Angiotensin II. Vitam. Horm. 2017, 105, 57–77. [Google Scholar] [CrossRef]
- Kim, Y.C.; Mungunsukh, O.; McCart, E.A.; Roehrich, P.J.; Yee, D.K.; Day, R.M. Mechanism of erythropoietin regulation by angiotensin II. Mol. Pharmacol. 2014, 85, 898–908. [Google Scholar] [CrossRef] [PubMed]
- Yasuoka, Y.; Izumi, Y.; Fukuyama, T.; Inoue, H.; Oshima, T.; Yamazaki, T.; Uematsu, T.; Kobayashi, N.; Shimada, Y.; Nagaba, Y.; et al. Effects of Angiotensin II on Erythropoietin Production in the Kidney and Liver. Molecules 2021, 26, 5399. [Google Scholar] [CrossRef] [PubMed]
- Yasuoka, Y.; Izumi, Y.; Nagai, T.; Fukuyama, T.; Nakayama, Y.; Inoue, H.; Horikawa, K.; Kimura, M.; Nanami, M.; Yanagita, K.; et al. Fludrocortisone stimulates erythropoietin production in the intercalated cells of the collecting ducts. Biochem. Biophys. Res. Commun. 2018, 503, 3121–3127. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Imai, E.; Horio, M.; Nitta, K.; Yamagata, K.; Iseki, K.; Tsukamoto, Y.; Ito, S.; Makino, H.; Hishida, A.; Matsuo, S. Modification of the Modification of Diet in Renal Disease (MDRD) Study equation for Japan. Am. J. Kidney Dis. 2007, 50, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Essential points from evidence-based clinical practice guideline for chronic kidney disease 2023. Clin. Exp. Nephrol. 2024, 28, 473–495. [CrossRef]
Sex | No. | Age | Height | BW (kg) | BMI | s-Cr | eGFR | Hypertens | Hyperlipi |
---|---|---|---|---|---|---|---|---|---|
female | 13 | 82 | 147.4 | 45.5 | 20.8 | 1.74 | 28.4 | 85% | 31% |
SD | 9 | 8.3 | 9.7 | 3.0 | 0.98 | 13.3 | |||
male | 10 | 76 | 160.1 | 57.7 | 22.4 | 3.38 | 22.9 | 80% | 50% |
SD | 9.4 | 6.7 | 12.8 | 3.8 | 2.42 | 14.9 | |||
total | 23 | 79.2 | 152.9 | 50.8 | 21.5 | 2.45 | 26.0 | 83% | 39% |
9.4 | 9.9 | 12.5 | 3.4 | 1.9 | 14.0 |
Age | Sex | Pri Dis | s-Cr | eGFR | Pre-Period | Post-Period | Pre-Hb | Post-Hb | Pre-UTp/Ucr | Post-Utp/Ucr |
---|---|---|---|---|---|---|---|---|---|---|
70 | f | NScl | 1.3 | 33.5 | 125 | 9 | 10.3 | 11.9 | 1.27 | 1.610 |
72 | m | CGN | 1.93 | 27.7 | 52 | 11 | 10.9 | 11.4 | 0.26 | 0.28 |
73 | f | CGN | 1.25 | 32.9 | 49 | 12 | 9.3 | 10.3 | 1.27 | 1.33 |
92 | f | CGN | 0.89 | 49.6 | 15 | 23 | 9.7 | 11.3 | ND | 0.31 |
87 | m | NScl | 1.31 | 40 | 32 | 20 | 11.0 | 10.8 | 0.13 | 0.09 |
91 | f | NScl | 1.33 | 28.9 | 89 | 13 | 7.9 | 8.7 | 1.68 | 1.80 |
65 | f | CGN | 4.51 | 8.3 | 60 | 5 | 10.0 | 11.5 | 1.37 | 1.80 |
82 | f | NScl | 0.79 | 52.6 | 43 | 9 | 11.9 | 11.0 | 0.00 | 0.00 |
83 | m | NScl | 1.04 | 52.7 | 37 | 26 | 9.7 | 10.2 | 0.17 | 0.46 |
94 | f | NScl | 1.87 | 19.3 | 102 | 12 | 10.4 | 11.0 | 0.34 | 0.25 |
62 | m | DMN | 6.82 | 7.3 | 39 | 2 | 7.8 | 8.8 | ND | 4.13 |
88 | f | NScl | 1.7 | 22.3 | 20 | 30 | 10.1 | 11.1 | 0 | 0.08 |
66 | m | CGN | 1.93 | 21.0 | 38 | 16 | 10.4 | 10.5 | 0.54 | 1.08 |
75 | f | NScl | 2.02 | 19.0 | 44 | 27 | 10.2 | 11.1 | 1.62 | 2.76 |
66 | m | CGN | 7.11 | 7.0 | 21 | 17 | 10.4 | 10.5 | 2.79 | 2.12 |
86 | m | NScl | 3.01 | 16.0 | 15 | 21 | 7.6 | 11.4 | 0.07 | 0.08 |
85 | m | DMN | 1.98 | 25.9 | 38 | 10 | 8.8 | 13.7 | 5.51 | 0.95 |
72 | m | DMN | 2.19 | 24.3 | 8 | 20 | 10.0 | 12.7 | 0.37 | 2.77 |
82 | f | CGN | 2.58 | 14.5 | 16 | 31 | 10.9 | 10.7 | 2.11 | 0.80 |
80 | m | NScl | 6.48 | 7.2 | 31 | 19 | 9.8 | 10.4 | 0.91 | 0.61 |
87 | f | CGN | 1.20 | 32.8 | 33 | 29 | 10.9 | 11.4 | 1.94 | 1.08 |
85 | f | CGN | 2.15 | 17.4 | 51 | 5 | 9.1 | 13.1 | ND | ND |
78 | f | NScl | 1.0P7 | 38.0 | 66 | 2 | 9.1 | 9.2 | 0.2 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimada, Y.; Izumi, Y.; Yasuoka, Y.; Oshima, T.; Nagaba, Y.; Nanami, M.; Sands, J.M.; Takahashi, N.; Kawahara, K.; Nonoguchi, H. Renoprotective Effects of Daprodustat in Patients with Chronic Kidney Disease and Renal Anemia. Int. J. Mol. Sci. 2024, 25, 9468. https://doi.org/10.3390/ijms25179468
Shimada Y, Izumi Y, Yasuoka Y, Oshima T, Nagaba Y, Nanami M, Sands JM, Takahashi N, Kawahara K, Nonoguchi H. Renoprotective Effects of Daprodustat in Patients with Chronic Kidney Disease and Renal Anemia. International Journal of Molecular Sciences. 2024; 25(17):9468. https://doi.org/10.3390/ijms25179468
Chicago/Turabian StyleShimada, Yoshitaka, Yuichiro Izumi, Yukiko Yasuoka, Tomomi Oshima, Yasushi Nagaba, Masayoshi Nanami, Jeff M. Sands, Noriko Takahashi, Katsumasa Kawahara, and Hiroshi Nonoguchi. 2024. "Renoprotective Effects of Daprodustat in Patients with Chronic Kidney Disease and Renal Anemia" International Journal of Molecular Sciences 25, no. 17: 9468. https://doi.org/10.3390/ijms25179468
APA StyleShimada, Y., Izumi, Y., Yasuoka, Y., Oshima, T., Nagaba, Y., Nanami, M., Sands, J. M., Takahashi, N., Kawahara, K., & Nonoguchi, H. (2024). Renoprotective Effects of Daprodustat in Patients with Chronic Kidney Disease and Renal Anemia. International Journal of Molecular Sciences, 25(17), 9468. https://doi.org/10.3390/ijms25179468