Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy
Abstract
:1. Introduction
2. Results
2.1. Association of FLT3 Gene Mutations with Clinical Characteristics and Remission Status
2.2. The Characteristics of FLT3 Mutations
2.3. Patterns of Co-Occurrence in FLT3 Gene Mutations
2.4. FLT3 and Their Related Gene Expressions
2.5. Prognostic Impacts of FLT3 Mutations
3. Discussion
4. Methods and Materials
4.1. Participants and Study Design
4.2. Chemotherapy Protocol
4.3. Comprehensive Genetic Testing for Hematologic Tumors
4.4. RNA Sequencing
4.5. Treatment Response
4.6. Follow-Up
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosnet, O.; Matteï, M.-G.; Marchetto, S.; Birnbaum, D. Isolation and Chromosomal Localization of a Novel FMS-like Tyrosine Kinase Gene. Genomics 1991, 9, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Grafone, T.; Palmisano, M.; Nicci, C.; Storti, S. An Overview on the Role of FLT3-Tyrosine Kinase Receptor in Acute Myeloid Leukemia: Biology and Treatment. Oncol. Rev. 2012, 6, 8. [Google Scholar] [CrossRef]
- Gutierrez-Camino, A.; Richer, C.; Ouimet, M.; Fuchs, C.; Langlois, S.; Khater, F.; Caron, M.; Beaulieu, P.; St-Onge, P.; Bataille, A.R.; et al. Characterisation of FLT3 Alterations in Childhood Acute Lymphoblastic Leukaemia. Br. J. Cancer 2023, 130, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Qiu, Q.; Dai, H.; Shen, X.; Wu, T.; Du, J.; Wan, C.; Shen, H.; Wu, D.; Xue, S.; et al. Mutation Spectrum of FLT3 and Significance of Non-canonical FLT3 Mutations in Haematological Malignancy. Br. J. Haematol. 2023, 202, 539–549. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Wang, F.; Wang, M.; Liu, H.; Chen, X.; Cao, P.; Ma, X.; Teng, W.; Zhang, X.; et al. The Mutational Spectrum of FLT3 Gene in Acute Lymphoblastic Leukemia Is Different from Acute Myeloid Leukemia. Cancer Gene Ther. 2019, 27, 81–88. [Google Scholar] [CrossRef]
- Molina Garay, C.; Carrillo Sánchez, K.; Flores Lagunes, L.L.; Jiménez Olivares, M.; Muñoz Rivas, A.; Villegas Torres, B.E.; Flores Aguilar, H.; Núñez Enríquez, J.C.; Jiménez Hernández, E.; Bekker Méndez, V.C.; et al. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front. Pediatr. 2020, 8, 586. [Google Scholar] [CrossRef] [PubMed]
- Staffas, A.; Kanduri, M.; Hovland, R.; Rosenquist, R.; Ommen, H.B.; Abrahamsson, J.; Forestier, E.; Jahnukainen, K.; Jónsson, Ó.G.; Zeller, B. Presence of FLT3-ITD and High BAALC Expression Are Independent Prognostic Markers in Childhood Acute Myeloid Leukemia. Blood 2011, 118, 5905–5913. [Google Scholar] [CrossRef]
- Meshinchi, S.; Woods, W.G.; Stirewalt, D.L.; Sweetser, D.A.; Buckley, J.D.; Tjoa, T.K.; Bernstein, I.D.; Radich, J.P. Prevalence and Prognostic Significance of Flt3 Internal Tandem Duplication in Pediatric Acute Myeloid Leukemia. Blood 2001, 97, 89–94. [Google Scholar] [CrossRef]
- Qiu, K.; Liao, X.; Liu, Y.; Huang, K.; Li, Y.; Fang, J.; Zhou, D. Poor Outcome of Pediatric Patients with Acute Myeloid Leukemia Harboring High FLT3/ITD Allelic Ratios. Nat. Commun. 2022, 13, 3679. [Google Scholar] [CrossRef]
- Mead, A.J.; Linch, D.C.; Hills, R.K.; Wheatley, K.; Burnett, A.K.; Gale, R.E. FLT3 Tyrosine Kinase Domain Mutations Are Biologically Distinct from and Have a Significantly More Favorable Prognosis than FLT3 Internal Tandem Duplications in Patients with Acute Myeloid Leukemia. Blood 2007, 110, 1262–1270. [Google Scholar] [CrossRef]
- Alkhayat, N.; Elborai, Y.; Al Sharif, O.; Al Shahrani, M.; Alsuhaibani, O.; Awad, M.; Elghezal, H.; ben-abdallah Bouhajar, I.; Alfaraj, M.; Al Mussaed, E.; et al. Cytogenetic Profile and FLT3 Gene Mutations of Childhood Acute Lymphoblastic Leukemia. Clin. Med. Insights Oncol. 2017, 11, 117955491772171. [Google Scholar] [CrossRef]
- Jerchel, I.S.; Hoogkamer, A.Q.; Ariës, I.M.; Steeghs, E.M.P.; Boer, J.M.; Besselink, N.J.M.; Boeree, A.; van de Ven, C.; de Groot-Kruseman, H.A.; de Haas, V.; et al. RAS Pathway Mutations as a Predictive Biomarker for Treatment Adaptation in Pediatric B-Cell Precursor Acute Lymphoblastic Leukemia. Leukemia 2017, 32, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, S.A.; Mabon, M.E.; Silverman, L.B.; Li, A.; Gribben, J.G.; Fox, E.A.; Sallan, S.E.; Korsmeyer, S.J. FLT3 Mutations in Childhood Acute Lymphoblastic Leukemia. Blood 2004, 103, 3544–3546. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Wilson, C.S.; Harvey, R.C.; Chen, I.-M.; Murphy, M.H.; Atlas, S.R.; Bedrick, E.J.; Devidas, M.; Carroll, A.J.; Robinson, B.W.; et al. Gene Expression Profiles Predictive of Outcome and Age in Infant Acute Lymphoblastic Leukemia: A Children’s Oncology Group Study. Blood 2012, 119, 1872–1881. [Google Scholar] [CrossRef] [PubMed]
- Chillón, M.C.; Gómez-Casares, M.T.; López-Jorge, C.E.; Rodriguez-Medina, C.; Molines, A.; Sarasquete, M.E.; Alcoceba, M.; Miguel, J.D.G.-S.; Bueno, C.; Montes, R.; et al. Prognostic Significance of FLT3 Mutational Status and Expression Levels in MLL-AF4+ and MLL-Germline Acute Lymphoblastic Leukemia. Leukemia 2012, 26, 2360–2366. [Google Scholar] [CrossRef]
- Taketani, T. FLT3 Mutations in the Activation Loop of Tyrosine Kinase Domain Are Frequently Found in Infant ALL with MLL Rearrangements and Pediatric ALL with Hyperdiploidy. Blood 2003, 103, 1085–1088. [Google Scholar] [CrossRef]
- Elyamany, G.; Awad, M.; Alsuhaibani, O.; Fadalla, K.; Al Sharif, O.; Al Shahrani, M.; Alabbas, F.; Al-Abulaaly, A. Flt3 Internal Tandem Duplication and D835 Mutations in Patients with Acute Lymphoblastic Leukemia and its Clinical Significance. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014038. [Google Scholar] [CrossRef]
- Fedders, H.; Alsadeq, A.; Schmäh, J.; Vogiatzi, F.; Zimmermann, M.; Möricke, A.; Lenk, L.; Stadt, U.Z.; Horstmann, M.A.; Pieters, R.; et al. The Role of Constitutive Activation of FMS-Related Tyrosine Kinase-3 and NRas/KRas Mutational Status in Infants with KMT2A -Rearranged Acute Lymphoblastic Leukemia. Haematologica 2017, 102, e438–e442. [Google Scholar] [CrossRef]
- Stam, R.W.; Schneider, P.; de Lorenzo, P.; Valsecchi, M.G.; den Boer, M.L.; Pieters, R. Prognostic Significance of High-Level FLT3 Expression in MLL-Rearranged Infant Acute Lymphoblastic Leukemia. Blood 2007, 110, 2774–2775. [Google Scholar] [CrossRef]
- Shen, H.; Laird, P.W. Interplay between the Cancer Genome and Epigenome. Cell 2013, 153, 38–55. [Google Scholar] [CrossRef]
- Pollard, J.A.; Alonzo, T.A.; Gerbing, R.; Brown, P.; Fox, E.; Choi, J.; Fisher, B.; Hirsch, B.; Kahwash, S.; Getz, K.; et al. Sorafenib in Combination with Standard Chemotherapy for Children with High Allelic Ratio FLT3/ITD+ Acute Myeloid Leukemia: A Report From the Children’s Oncology Group Protocol AAML1031. JCO 2022, 40, 2023–2035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Zhang, M.; Liu, C.; Liu, X.; Yin, J.; Wu, P.; Chen, X.; Yang, W.; Zhang, L.; et al. FLT3 Pathway Is a Potential Therapeutic Target for PRC2-Mutated T-Cell Acute Lymphoblastic Leukemia. Blood 2018, 132, 2520–2524. [Google Scholar] [CrossRef] [PubMed]
- Erba, H.P.; Montesinos, P.; Kim, H.-J.; Patkowska, E.; Vrhovac, R.; Žák, P.; Wang, P.-N.; Mitov, T.; Hanyok, J.; Kamel, Y.M.; et al. Quizartinib plus Chemotherapy in Newly Diagnosed Patients with FLT3-Internal-Tandem-Duplication-Positive Acute Myeloid Leukaemia (QuANTUM-First): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2023, 401, 1571–1583. [Google Scholar] [CrossRef]
- Brown, P.A.; Kairalla, J.A.; Hilden, J.M.; Dreyer, Z.E.; Carroll, A.J.; Heerema, N.A.; Wang, C.; Devidas, M.; Gore, L.; Salzer, W.L.; et al. FLT3 Inhibitor Lestaurtinib plus Chemotherapy for Newly Diagnosed KMT2A-Rearranged Infant Acute Lymphoblastic Leukemia: Children’s Oncology Group Trial AALL0631. Leukemia 2021, 35, 1279–1290. [Google Scholar] [CrossRef]
- Ley, T.J.; Mardis, E.R.; Ding, L.; Fulton, B.; McLellan, M.D.; Chen, K.; Dooling, D.; Dunford-Shore, B.H.; McGrath, S.; Hickenbotham, M.; et al. DNA Sequencing of a Cytogenetically Normal Acute Myeloid Leukaemia Genome. Nature 2008, 456, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Hunger, S.P. The Genomic Landscape of Pediatric Acute Lymphoblastic Leukemia and Precision Medicine Opportunities. Semin. Cancer Biol. 2020, 84, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Liu, L.; Xu, X.; Song, H.; Zhang, J.; Xu, W.; Zhao, F.; Liang, J.; Liao, C.; Wang, Y.; et al. Spectrum and Clinical Features of Gene Mutations in Chinese Pediatric Acute Lymphoblastic Leukemia. BMC Pediatr. 2023, 23, 62. [Google Scholar] [CrossRef]
- Bertrums, E.J.M.; Smith, J.L.; Harmon, L.; Ries, R.E.; Wang, Y.-C.J.; Alonzo, T.A.; Menssen, A.J.; Chisholm, K.M.; Leonti, A.R.; Tarlock, K.; et al. Comprehensive Molecular and Clinical Characterization of NUP98 Fusions in Pediatric Acute Myeloid Leukemia. Haematologica 2023, 108, 2044–2058. [Google Scholar] [CrossRef]
- Thanasopoulou, A.; Tzankov, A.; Schwaller, J. Potent Co-Operation between the NUP98-NSD1 Fusion and the FLT3-ITD Mutation in Acute Myeloid Leukemia Induction. Haematologica 2014, 99, 1465–1471. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Ihsan, R.; Singh, L.C.; Gupta, D.K.; Mittal, V.; Kapur, S. Mutation of NPM1 and FLT3 Genes in Acute Myeloid Leukemia and Their Association with Clinical and Immunophenotypic Features. Dis. Markers 2013, 35, 581–588. [Google Scholar] [CrossRef]
- Kiyoi, H.; Ohno, R.; Ueda, R.; Saito, H.; Naoe, T. Mechanism of Constitutive Activation of FLT3 with Internal Tandem Duplication in the Juxtamembrane Domain. Oncogene 2002, 21, 2555–2563. [Google Scholar] [CrossRef] [PubMed]
- Fröhling, S.; Scholl, C.; Levine, R.L.; Loriaux, M.; Boggon, T.J.; Bernard, O.A.; Berger, R.; Döhner, H.; Döhner, K.; Ebert, B.L.; et al. Identification of Driver and Passenger Mutations of FLT3 by High-Throughput DNA Sequence Analysis and Functional Assessment of Candidate Alleles. Cancer Cell 2007, 12, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Spiekermann, K.; Bagrintseva, K.; Schwab, R.; Schmieja, K.; Hiddemann, W. Overexpression and Constitutive Activation of FLT3 Induces STAT5 Activation in Primary Acute Myeloid Leukemia Blast Cells. Clin. Cancer Res. 2003, 9, 2140–2150. [Google Scholar] [PubMed]
- Reindl, C.; Bagrintseva, K.; Vempati, S.; Schnittger, S.; Ellwart, J.W.; Wenig, K.; Hopfner, K.-P.; Hiddemann, W.; Spiekermann, K. Point Mutations in the Juxtamembrane Domain of FLT3 Define a New Class of Activating Mutations in AML. Blood 2006, 107, 3700–3707. [Google Scholar] [CrossRef]
- Chatain, N.; Perera, R.C.; Rossetti, G.; Rossa, J.; Carloni, P.; Schemionek, M.; Haferlach, T.; Brümmendorf, T.H.; Schnittger, S.; Koschmieder, S. Rare FLT3 Deletion Mutants May Provide Additional Treatment Options to Patients with AML: An Approach to Individualized Medicine. Leukemia 2015, 29, 2434–2438. [Google Scholar] [CrossRef] [PubMed]
- Kazi, J.U.; Chougule, R.A.; Li, T.; Su, X.; Moharram, S.A.; Rupar, K.; Marhäll, A.; Gazi, M.; Sun, J.; Zhao, H.; et al. Tyrosine 842 in the Activation Loop Is Required for Full Transformation by the Oncogenic Mutant FLT3-ITD. Cell. Mol. Life Sci. 2017, 74, 2679–2688. [Google Scholar] [CrossRef] [PubMed]
- Rocnik, J.L.; Okabe, R.; Yu, J.-C.; Lee, B.H.; Giese, N.; Schenkein, D.P.; Gilliland, D.G. Roles of Tyrosine 589 and 591 in STAT5 Activation and Transformation Mediated by FLT3-ITD. Blood 2006, 108, 1339–1345. [Google Scholar] [CrossRef]
- Moorman, A.V.; Ensor, H.M.; Richards, S.M.; Chilton, L.; Schwab, C.; Kinsey, S.E.; Vora, A.; Mitchell, C.D.; Harrison, C.J. Prognostic Effect of Chromosomal Abnormalities in Childhood B-Cell Precursor Acute Lymphoblastic Leukaemia: Results from the UK Medical Research Council ALL97/99 Randomised Trial. Lancet. Oncol. 2010, 11, 429–438. [Google Scholar] [CrossRef]
- Sutcliffe, M.J.; Shuster, J.J.; Sather, H.N.; Camitta, B.M.; Pullen, J.; Schultz, K.R.; Borowitz, M.J.; Gaynon, P.S.; Carroll, A.J.; Heerema, N.A. High Concordance from Independent Studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) Associating Favorable Prognosis with Combined Trisomies 4, 10, and 17 in Children with NCI Standard-Risk B-Precursor Acute Lymphoblastic Leukemia: A Children’s Oncology Group (COG) Initiative. Leukemia 2005, 19, 734–740. [Google Scholar] [CrossRef]
- Heerema, N.A.; Sather, H.N.; Sensel, M.G.; Zhang, T.; Hutchinson, R.J.; Nachman, J.B.; Lange, B.J.; Steinherz, P.G.; Bostrom, B.C.; Reaman, G.H.; et al. Prognostic Impact of Trisomies of Chromosomes 10, 17, and 5 among Children with Acute Lymphoblastic Leukemia and High Hyperdiploidy (>50 Chromosomes). JCO 2000, 18, 1876–1887. [Google Scholar] [CrossRef]
- Li, J.; Gao, J.; Liu, A.; Liu, W.; Xiong, H.; Liang, C.; Fang, Y.; Dai, Y.; Shao, J.; Yu, H.; et al. Homoharringtonine-Based Induction Regimen Improved the Remission Rate and Survival Rate in Chinese Childhood AML: A Report From the CCLG-AML 2015 Protocol Study. JCO 2023, 41, 4881–4892. [Google Scholar] [CrossRef] [PubMed]
- Schechter, T.; Gassas, A.; Chen, H.; Pollard, J.; Meshinchi, S.; Zaidman, I.; Hitzler, J.; Abdelhaleem, M.; Ho, R.; Domm, J.; et al. The Outcome of Allogeneic Hematopoietic Cell Transplantation for Children with FMS-Like Tyrosine Kinase 3 Internal Tandem Duplication–Positive Acute Myelogenous Leukemia. Biol. Blood. Marrow. Transplant. 2015, 21, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Madero-Marroquin, R.; DuVall, A.S.; Saygin, C.; Wang, P.; Gurbuxani, S.; Larson, R.A.; Stock, W.; Patel, A.A. Durable Responses in Acute Lymphoblastic Leukaemia with the Use of FLT3 and IDH Inhibitors. Br. J. Haematol. 2023, 204, 1238–1242. [Google Scholar] [CrossRef]
- Janssen, M.; Schmidt, C.; Bruch, P.-M.; Blank, M.F.; Rohde, C.; Waclawiczek, A.; Heid, D.; Renders, S.; Göllner, S.; Vierbaum, L.; et al. Venetoclax Synergizes with Gilteritinib in FLT3 Wildtype High-Risk Acute Myeloid Leukemia by Suppressing MCL-1. Blood 2022, 140, 2594–2610. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Zhang, Y.; He, J.; Huang, F.; Fan, Z.; Yang, K.; Xu, Y.; Xu, N.; Luo, Y.; Deng, L.; et al. Impact of Genetic Patterns on Sorafenib Efficacy in Patients with FLT3-ITD Acute Myeloid Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation: A Multi-Center, Cohort Study. Sig. Transduct. Target. Ther. 2023, 8, 348. [Google Scholar] [CrossRef]
- Jahn, N.; Jahn, E.; Saadati, M.; Bullinger, L.; Larson, R.A.; Ottone, T.; Amadori, S.; Prior, T.W.; Brandwein, J.M.; Appelbaum, F.R.; et al. Genomic Landscape of Patients with FLT3-Mutated Acute Myeloid Leukemia (AML) Treated within the CALGB 10603/RATIFY Trial. Leukemia 2022, 36, 2218–2227. [Google Scholar] [CrossRef]
- Smith, C.C.; Levis, M.J.; Perl, A.E.; Hill, J.E.; Rosales, M.; Bahceci, E. Molecular Profile of FLT3-Mutated Relapsed/Refractory Patients with AML in the Phase 3 ADMIRAL Study of Gilteritinib. Blood Adv. 2022, 6, 2144–2155. [Google Scholar] [CrossRef]
The Expression Level of Genes (FPKM) | Total (N = 206) | FLT3 Wild-Type (N = 176) | FLT3 Mutant Group (N = 30) | p |
---|---|---|---|---|
FLT3 (median [IQR]) | 31.34 [10.69, 80.33] | 23.11 [9.16, 59.14] | 108.02 [85.11, 142.06] | <0.001 |
KRAS (median [IQR]) | 22.18 [16.46, 30.70] | 22.05 [16.50, 29.30] | 25.03 [16.51, 34.23] | 0.476 |
HRAS (median [IQR]) | 2.72 [2.05, 3.67] | 2.77 [2.08, 3.88] | 2.35 [1.57, 3.16] | 0.044 |
NRAS (median [IQR]) | 33.62 [27.64, 40.39] | 33.46 [28.03, 40.29] | 35.90 [23.78, 42.71] | 0.865 |
PIK3CA (median [IQR]) | 19.99 [15.59, 26.74] | 20.08 [15.73, 27.08] | 18.62 [15.03, 25.17] | 0.355 |
PIK3CB (median [IQR]) | 5.76 [4.50, 7.15] | 5.74 [4.49, 7.16] | 5.83 [4.53, 7.04] | 0.786 |
PIK3CD (median [IQR]) | 29.48 [20.69, 37.98] | 29.63 [21.19, 38.09] | 28.03 [18.95, 34.27] | 0.409 |
PIK3R3 (median [IQR]) | 1.89 [0.90, 3.49] | 2.02 [1.03, 3.84] | 1.33 [0.69, 1.77] | 0.002 |
AKT1 (median [IQR]) | 7.22 [6.04, 9.22] | 7.40 [6.10, 9.23] | 7.09 [5.56, 8.63] | 0.527 |
AKT2 (median [IQR]) | 9.83 [8.21, 11.75] | 10.18 [8.33, 11.79] | 8.53 [7.36, 10.89] | 0.058 |
AKT3 (median [IQR]) | 7.01 [2.77, 12.78] | 6.91 [2.85, 12.67] | 8.50 [2.71, 15.05] | 0.510 |
MTOR (median [IQR]) | 9.90 [8.38, 11.71] | 9.98 [8.53, 11.76] | 9.66 [7.94, 10.84] | 0.267 |
CHUK (median [IQR]) | 8.83 [7.23, 10.21] | 8.78 [7.22, 10.19] | 9.35 [8.38, 10.58] | 0.256 |
IKBKB (median [IQR]) | 7.83 [6.60, 9.50] | 7.87 [6.64, 9.61] | 7.66 [6.39, 8.65] | 0.442 |
IKBKG (median [IQR]) | 0.65 [0.50, 0.97] | 0.64 [0.50, 0.90] | 0.79 [0.51, 1.19] | 0.105 |
BAD (median [IQR]) | 4.20 [3.04, 5.28] | 4.28 [3.11, 5.34] | 3.39 [2.25, 4.52] | 0.018 |
BRAF (median [IQR]) | 15.13 [12.18, 18.94] | 15.15 [12.25, 18.98] | 13.68 [11.77, 18.74] | 0.571 |
RAF1 (median [IQR]) | 19.67 [16.29, 24.23] | 20.09 [16.39, 24.41] | 18.88 [14.94, 21.54] | 0.108 |
MAP2K1 (median [IQR]) | 11.16 [8.73, 14.23] | 11.08 [8.70, 13.32] | 11.90 [8.77, 16.70] | 0.323 |
MAP2K2 (median [IQR]) | 8.00 [6.54, 9.93] | 8.06 [6.88, 10.10] | 6.84 [4.03, 9.53] | 0.017 |
MAPK1 (median [IQR]) | 15.53 [13.36, 18.54] | 15.53 [13.42, 18.67] | 15.54 [13.16, 17.06] | 0.378 |
MAPK3 (median [IQR]) | 5.93 [4.88, 7.14] | 6.01 [5.01, 7.16] | 5.21 [3.92, 6.62] | 0.028 |
STAT3 (median [IQR]) | 13.76 [11.41, 19.61] | 13.76 [11.21, 19.13] | 14.15 [12.30, 20.44] | 0.495 |
STAT5A (median [IQR]) | 14.12 [10.23, 19.31] | 14.58 [11.02, 19.61] | 12.31 [9.28, 15.57] | 0.029 |
STAT5B (median [IQR]) | 16.90 [12.38, 21.67] | 17.59 [12.63, 22.01] | 14.92 [11.93, 18.83] | 0.069 |
The Expression Level of Genes (FPKM) | Total (N = 57) | FLT3 Wild-Type (N = 38) | FLT3 Mutant Group (N = 19) | p |
---|---|---|---|---|
FLT3 (median [IQR]) | 44.22 [26.32, 68.30] | 34.56 [20.98, 48.28] | 74.77 [54.31, 109.46] | <0.001 |
KRAS (median [IQR]) | 16.35 [13.13, 19.84] | 16.53 [13.46, 19.49] | 15.84 [12.70, 22.22] | 0.852 |
HRAS (median [IQR]) | 2.96 [2.43, 3.89] | 2.77 [2.11, 3.77] | 3.17 [2.82, 3.91] | 0.123 |
NRAS (median [IQR]) | 29.83 [24.84, 33.57] | 29.86 [25.28, 33.55] | 28.48 [23.02, 33.50] | 0.813 |
PIK3CA (median [IQR]) | 10.25 [8.22, 12.43] | 10.46 [9.22, 13.13] | 9.06 [7.32, 11.24] | 0.09 |
PIK3CB (median [IQR]) | 18.85 [14.46, 23.19] | 17.60 [13.28, 19.85] | 23.05 [18.81, 25.80] | 0.006 |
PIK3CD (median [IQR]) | 18.70 [15.47, 24.77] | 18.50 [15.39, 24.73] | 19.53 [16.52, 25.39] | 0.813 |
PIK3R3 (median [IQR]) | 0.26 [0.18, 0.57] | 0.26 [0.18, 0.66] | 0.26 [0.16, 0.44] | 0.542 |
AKT1 (median [IQR]) | 8.32 [6.19, 10.41] | 7.40 [5.55, 8.88] | 9.66 [8.38, 11.61] | 0.003 |
AKT2 (median [IQR]) | 7.31 [5.61, 8.81] | 7.32 [5.57, 8.72] | 7.28 [6.35, 8.82] | 0.531 |
AKT3 (median [IQR]) | 1.66 [1.00, 4.42] | 1.52 [1.01, 3.34] | 2.50 [1.00, 5.00] | 0.379 |
MTOR (median [IQR]) | 8.02 [7.21, 9.56] | 7.70 [6.79, 8.65] | 9.33 [7.75, 11.35] | 0.006 |
CHUK (median [IQR]) | 7.63 [6.33, 9.19] | 7.62 [6.29, 8.80] | 7.82 [6.36, 9.82] | 0.542 |
IKBKB (median [IQR]) | 7.96 [6.63, 9.41] | 7.59 [6.39, 9.54] | 8.55 [7.81, 9.36] | 0.128 |
IKBKG (median [IQR]) | 0.72 [0.56, 0.88] | 0.71 [0.56, 0.87] | 0.76 [0.61, 0.91] | 0.488 |
BAD (median [IQR]) | 3.47 [2.58, 4.20] | 3.12 [2.44, 4.05] | 3.76 [2.90, 4.61] | 0.108 |
BRAF (median [IQR]) | 12.03 [10.37, 14.27] | 11.37 [9.61, 13.19] | 13.38 [11.63, 15.12] | 0.015 |
RAF1 (median [IQR]) | 18.03 [15.47, 20.86] | 17.99 [15.39, 20.16] | 18.44 [17.02, 21.18] | 0.623 |
MAP2K1 (median [IQR]) | 10.33 [7.56, 13.11] | 11.78 [7.00, 14.80] | 9.87 [8.22, 11.14] | 0.335 |
MAP2K2 (median [IQR]) | 9.76 [7.95, 11.72] | 9.30 [7.55, 11.59] | 10.04 [9.58, 11.68] | 0.123 |
MAPK1 (median [IQR]) | 13.25 [11.09, 16.73] | 12.72 [11.02, 14.92] | 14.84 [13.07, 17.90] | 0.029 |
MAPK3 (median [IQR]) | 6.65 [5.51, 7.69] | 6.95 [5.50, 7.99] | 6.19 [5.81, 7.25] | 0.416 |
STAT3 (median [IQR]) | 26.38 [22.24, 30.81] | 26.59 [22.31, 30.70] | 25.97 [22.98, 30.17] | 0.879 |
STAT5A (median [IQR]) | 28.60 [22.79, 34.60] | 29.87 [21.83, 35.70] | 26.04 [23.79, 30.46] | 0.509 |
STAT5B (median [IQR]) | 20.34 [17.39, 23.76] | 20.43 [17.92, 23.75] | 20.34 [17.29, 23.88] | 0.787 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Chen, H.; Lan, F.; Hao, J.; Zhang, W.; Li, Y.; Yin, Y.; Huang, M.; Wu, X. Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy. Int. J. Mol. Sci. 2024, 25, 9581. https://doi.org/10.3390/ijms25179581
Zhao L, Chen H, Lan F, Hao J, Zhang W, Li Y, Yin Y, Huang M, Wu X. Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy. International Journal of Molecular Sciences. 2024; 25(17):9581. https://doi.org/10.3390/ijms25179581
Chicago/Turabian StyleZhao, Lizhen, Hongbo Chen, Fengli Lan, Jinjin Hao, Wenzhi Zhang, Ying Li, Yuhong Yin, Minchun Huang, and Xiaoyan Wu. 2024. "Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy" International Journal of Molecular Sciences 25, no. 17: 9581. https://doi.org/10.3390/ijms25179581
APA StyleZhao, L., Chen, H., Lan, F., Hao, J., Zhang, W., Li, Y., Yin, Y., Huang, M., & Wu, X. (2024). Distinct FLT3 Pathways Gene Expression Profiles in Pediatric De Novo Acute Lymphoblastic and Myeloid Leukemia with FLT3 Mutations: Implications for Targeted Therapy. International Journal of Molecular Sciences, 25(17), 9581. https://doi.org/10.3390/ijms25179581