High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruggiero, S.M.; Xian, J.; Helbig, I. The current landscape of epilepsy genetics: Where are we, and where are we going? Curr. Opin. Neurol. 2023, 36, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.A.; Johnstone, D.L.; Dyment, D.A. Epilepsy genetics: Current knowledge, applications, and future directions. Clin. Genet. 2019, 95, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Assi, L.; Saklawi, Y.; Karam, P.E.; Obeid, M. Treatable Genetic Metabolic Epilepsies. Curr. Treat. Options Neurol. 2017, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Wadi, L.; Medlej, Y.; Obeid, M. A child with hyperekplexia and epileptic myoclonus. Epileptic Disord. 2018, 20, 279–282. [Google Scholar] [CrossRef] [PubMed]
- Sheidley, B.R.; Malinowski, J.; Bergner, A.L.; Bier, L.; Gloss, D.S.; Mu, W.; Mulhern, M.M.; Partack, E.J.; Poduri, A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2022, 63, 375–387. [Google Scholar] [CrossRef]
- Gardella, E.; Møller, R.S. Phenotypic and genetic spectrum of SCN 8A-related disorders, treatment options, and outcomes. Epilepsia 2019, 60, S77–S85. [Google Scholar] [CrossRef]
- Dhamija, R.; Gavrilova, R.H.; Wirrell, E.C. Valproate-induced worsening of seizures: Clue to underlying diagnosis. J. Child Neurol. 2011, 26, 1319–1321. [Google Scholar] [CrossRef]
- Knight, E.M.P.; Amin, S.; Bahi-Buisson, N.; Benke, T.A.; Cross, J.H.; Demarest, S.T.; Olson, H.E.; Specchio, N.; Fleming, T.R.; Aimetti, A.A. Safety and efficacy of ganaxolone in patients with CDKL5 deficiency disorder: Results from the double-blind phase of a randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2022, 21, 417–427. [Google Scholar] [CrossRef]
- Brunklaus, A.; Lal, D. Sodium channel epilepsies and neurodevelopmental disorders: From disease mechanisms to clinical application. Dev. Med. Child. Neurol. 2020, 62, 784–792. [Google Scholar] [CrossRef]
- Jaafar, F.; Obeid, M. Successful Treatment of Cerebral Folate Transporter Deficiency With Intravenous Folinic Acid. Pediatr. Neurol. 2022, 135, 22–24. [Google Scholar] [CrossRef]
- Appavu, B.; Mangum, T.; Obeid, M. Glucose Transporter 1 Deficiency: A Treatable Cause of Opsoclonus and Epileptic Myoclonus. Pediatr. Neurol. 2015, 53, 364–366. [Google Scholar] [CrossRef]
- Appenzeller, S.; Balling, R.; Barisic, N.; Baulac, S.; Caglayan, H.; Craiu, D.; De Jonghe, P.; Depienne, C.; Dimova, P.; Djémié, T. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 2014, 95, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Tumienė, B.; Maver, A.; Writzl, K.; Hodžić, A.; Čuturilo, G.; Kuzmanić-Šamija, R.; Čulić, V.; Peterlin, B. Diagnostic exome sequencing of syndromic epilepsy patients in clinical practice. Clin. Genet. 2018, 93, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.F.; Chi, C.S.; Tsai, C.R. Diagnostic yield and treatment impact of whole-genome sequencing in paediatric neurological disorders. Dev. Med. Child Neurol. 2021, 63, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, F.F.; Myers, C.T.; Cossette, P.; Lemay, P.; Spiegelman, D.; Laporte, A.D.; Nassif, C.; Diallo, O.; Monlong, J.; Cadieux-Dion, M. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am. J. Hum. Genet. 2017, 101, 664–685. [Google Scholar] [CrossRef]
- Olson, H.E.; Kelly, M.; LaCoursiere, C.M.; Pinsky, R.; Tambunan, D.; Shain, C.; Ramgopal, S.; Takeoka, M.; Libenson, M.H.; Julich, K. Genetics and genotype–phenotype correlations in early onset epileptic encephalopathy with burst suppression. Ann. Neurol. 2017, 81, 419–429. [Google Scholar] [CrossRef]
- Costain, G.; Cordeiro, D.; Matviychuk, D.; Mercimek-Andrews, S. Clinical application of targeted next-generation sequencing panels and whole exome sequencing in childhood epilepsy. Neuroscience 2019, 418, 291–310. [Google Scholar] [CrossRef]
- Tsang, M.H.Y.; Leung, G.K.C.; Ho, A.C.C.; Yeung, K.S.; Mak, C.C.Y.; Pei, S.L.C.; Yu, M.H.C.; Kan, A.S.Y.; Chan, K.Y.K.; Kwong, K.L. Exome sequencing identifies molecular diagnosis in children with drug-resistant epilepsy. Epilepsia Open 2019, 4, 63–72. [Google Scholar] [CrossRef]
- Alsubaie, L.; Aloraini, T.; Amoudi, M.; Swaid, A.; Eyiad, W.; Al Mutairi, F.; Ababneh, F.; Alrifai, M.T.; Baarmah, D.; Altwaijri, W. Genomic testing and counseling: The contribution of next-generation sequencing to epilepsy genetics. Ann. Hum. Genet. 2020, 84, 431–436. [Google Scholar] [CrossRef]
- Yang, X.-A. Editorial: Next generation sequencing (NGS) for rare diseases diagnosis. Front. Genet. 2021, 12, 808042. [Google Scholar] [CrossRef]
- Platzer, K.; Yuan, H.; Schutz, H.; Winschel, A.; Chen, W.; Hu, C.; Kusumoto, H.; Heyne, H.O.; Helbig, K.L.; Tang, S.; et al. GRIN2B encephalopathy: Novel findings on phenotype, variant clustering, functional consequences and treatment aspects. J. Med. Genet. 2017, 54, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Chidambaram, S.; Manokaran, R.K. Favorable response to “Memantine” in a child with GRIN2B epileptic encephalopathy. Neuropediatrics 2022, 53, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Fine, A.; Wirrell, E.C. Seizures in children. Pediatr. Rev. 2020, 41, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Aaberg, K.M.; Surén, P.; Søraas, C.L.; Bakken, I.J.; Lossius, M.I.; Stoltenberg, C.; Chin, R. Seizures, syndromes, and etiologies in childhood epilepsy: The International League Against Epilepsy 1981, 1989, and 2017 classifications used in a population-based cohort. Epilepsia 2017, 58, 1880–1891. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef]
- Sanchez Fernandez, I.; Loddenkemper, T.; Gaínza-Lein, M.; Sheidley, B.R.; Poduri, A. Diagnostic yield of genetic tests in epilepsy: A meta-analysis and cost-effectiveness study. Neurology 2019, 92, e418–e428. [Google Scholar] [CrossRef]
- Stefanski, A.; Calle-López, Y.; Leu, C.; Pérez-Palma, E.; Pestana-Knight, E.; Lal, D. Clinical sequencing yield in epilepsy, autism spectrum disorder, and intellectual disability: A systematic review and meta-analysis. Epilepsia 2021, 62, 143–151. [Google Scholar] [CrossRef]
- Shin, S.; Lee, J.; Kim, Y.-G.; Ha, C.; Park, J.-H.; Kim, J.-W.; Lee, J.; Jang, J.-H. Genetic Diagnosis of Children With Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr. Neurol. 2023, 149, 44–52. [Google Scholar] [CrossRef]
- Shellhaas, R.A.; Wusthoff, C.J.; Tsuchida, T.N.; Glass, H.C.; Chu, C.J.; Massey, S.L.; Soul, J.S.; Wiwattanadittakun, N.; Abend, N.S.; Cilio, M.R. Profile of neonatal epilepsies: Characteristics of a prospective US cohort. Neurology 2017, 89, 893–899. [Google Scholar] [CrossRef]
- Jalkh, N.; Sahbatou, M.; Chouery, E.; Megarbane, A.; Leutenegger, A.-L.; Serre, J.-L. Genome-wide inbreeding estimation within Lebanese communities using SNP arrays. Eur. J. Hum. Genet. 2015, 23, 1364–1369. [Google Scholar] [CrossRef]
Development and Epileptic Encephalopathy (DEE) | Primarily Neurodegenerative | Metabolic & Neurodegenerative | Others |
---|---|---|---|
CYFIP2, DEE 65 | TPP1, neuronal ceroid lipofuscinosis type 2 (n = 2) | NARS2, combined oxidative phosphorylation deficiency 24 | IFIH1, Aicardi–Goutieres disease syndrome 7 |
PCDH19, DEE 9 (n = 2) | CLN6, neuronal ceroid lipofuscinosis type 6 | SERAC1, MEGDEL syndrome | CHRNE, slow-channel congenital myasthenic syndrome type 4A |
CACNA1A, DEE 42 (n = 2) | AP4M1, spastic paraplegia 50 | HIBCH, 3-hydroxyisobutryl-CoA hydrolase deficiency | TUBA1A, lissencephaly 3 |
GRIN2B, DEE 27 * | TSEN54, pontocerebellar hypoplasia | QDPR, BH4-deficient hyperphenylalaninemia type C * | GLRA1, hyperkeplexia type 1 |
ARV1, DEE 38 | EIF2B1, leukoencephalopathy with vanishing white matter | FOLR1, neurodegeneration due to cerebral folate transport deficiency * | SCN1A, generalized epilepsy with febrile seizure plus * |
SCN8A, DEE 13 * (n = 2) | Late-infantile neuronal ceroid-lipofuscinoses (CLN 2) | ||
PACS2, DEE 66 | SPAST, spastic paraplegia 4 | ||
ATP1A2, DEE 98 | HEXB, Sandhoff disease | ||
KCTD7, progressive myoclonic epilepsy type 3 |
Gene | Codon>DNA Base, Protein (Amino Acid Change) |
---|---|
AP4M1 | c.1321C>T, p.(Arg441 *) |
ARV1 | c.294+1G>A |
ATP1A2 | c.160C>T p.(Gln54 *) |
CACNA1A | c.4526T>C, p.(Phe1509Ser) |
CACNA1A | c.5018T>C, p.(Leu1673Pro) |
CHRNE | c.1052C>G, p.(Pro351Arg) |
CLN6 | c.662A>C, p.(Tyr221Ser) |
CLN6 | c.794_796del, p.(Ser265del) |
CYFIP2 | c.3282+858A>G |
EIF2B1 | c.878C>T, (p.Pro293Leu) |
FOLR1 | c.148G>A, p.(Glu50Lys) |
GLRA1 | c.994G>A, p.(Val332Ile) |
GRIN2B | c.2453T>C, p.(Met818Thr) |
HEXB | c.1082+5G>A |
HIBCH | c.452C>T, p.(Ser151Leu) |
IFIH1 | c.500T>G, p.(Leu167Arg) |
KCTD7 | c.509T>C, p.(Ile170Thr) |
NARS2 | c.500A>G, p.(His167Arg) |
PACS2 | c.2588T>C p.(Met863Thr) |
PCDH19 | c.2159C>T, p.(Thr720Ile) |
PCDH19 | c.2656C>T, p.(Arg886 *) |
QDPR | c.197A>G, p.(Gln66Arg) |
SCN1A | c.995A>T, p.(Asp332Val) |
SCN8A | c.2985C>A, p.(Asn995Lys) |
SCN8A | c.3502C>T, p.(Arg1168Trp) |
SERAC1 | c.1609T>C, p.(Ser537Pro) |
SPAST | c.1253_1255delAAG, p.(Glu418del) |
TPP1 | c.225A>G, p.(Gln75Gln) |
TPP1 | c.225A>G, p.(Gln75Gln) |
TSEN54 | c.919G>T p.(Ala307Ser) |
TUBA1A | c.652G>A, p.(Asp218Asn) |
Affected Genes | Resulting Condition | Change in Treatment Plan |
---|---|---|
FOLR1 | Neurodegeneration due to cerebral folate transport deficiency | Folinic acid added to regimen |
QDPR | BH4-deficient hyperphenylalaninemia type C | Tetrahydrobiopterin, folinic acid, and L-dopa added to regimen |
GRIN2B | Developmental and epileptic encephalopathy type 27 | Memantine added to regimen |
SCN1A | Infantile epileptic encephalopathy type 6 (Dravet syndrome) | LMT switched to another ASM |
SCN8A (two patients) | Developmental and epileptic encephalopathy type 13 | ASM switched to CBZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charouf, D.; Miller, D.; Haddad, L.; White, F.A.; Boustany, R.-M.; Obeid, M. High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. Int. J. Mol. Sci. 2024, 25, 9645. https://doi.org/10.3390/ijms25179645
Charouf D, Miller D, Haddad L, White FA, Boustany R-M, Obeid M. High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. International Journal of Molecular Sciences. 2024; 25(17):9645. https://doi.org/10.3390/ijms25179645
Chicago/Turabian StyleCharouf, Daniel, Derryl Miller, Laith Haddad, Fletcher A. White, Rose-Mary Boustany, and Makram Obeid. 2024. "High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study" International Journal of Molecular Sciences 25, no. 17: 9645. https://doi.org/10.3390/ijms25179645
APA StyleCharouf, D., Miller, D., Haddad, L., White, F. A., Boustany, R.-M., & Obeid, M. (2024). High Diagnostic Yield and Clinical Utility of Next-Generation Sequencing in Children with Epilepsy and Neurodevelopmental Delays: A Retrospective Study. International Journal of Molecular Sciences, 25(17), 9645. https://doi.org/10.3390/ijms25179645