Oral Health and Nutraceutical Agents
Abstract
:1. Introduction
2. Classes of Nutraceuticals and Effects on Oral Health: General Overview
3. Classes of Nutraceuticals and Food Sources
3.1. Phenylpropanoids
Polyphenols | Foods and Beverages | Reference |
---|---|---|
Apigenin | Fruit and vegetables | [41] |
Ellagic acid | Fruit and vegetables | [42] |
Hesperidin | Citrus fruit | [43] |
Peppermint | [44] | |
Kaempferol | Green leafy vegetables | [45] |
Red wine | [46] | |
Black tea | [47] | |
Naringenin | Orange juice | [48] |
Grapefruit juice | [49] | |
Rosemary | [50] | |
Red wine | [51] | |
Oleuropein | Olives | [52] |
Quercetin | Fruit and vegetables | [53] |
Resveratrol | Grapes | [54] |
Red wine | [55] |
3.2. Isoprenoids
Terpenes | Plant Species | Common Plant Names | Reference |
---|---|---|---|
Capsidiol | Capsicum annuum L. | Red pepper | [67] |
Linalool Camphor Geraniol | Coriandrum sativum L. | Coriander | [68] |
Fenchone Limonene | Foeniculum vulgare Mill. | Fennel | [69] |
α-pinene β-pinene Sabinene | Laurus nobilis L. | Laurel | [70] |
Menthol Menthone Limonene Piperitone Carvone | Mentha piperita L. | Peppermint | [71] |
Linalool Eugenol Eucalyptol | Ocimum basilicum L. | Basil | [72] |
Thymol Carvacrol | Origanum vulgare L. | Oregano | [73] |
1,3,8-p-menthatriene β-phellandrene | Petroselinum crispum Mill. | Parsley | [74] |
α-pinene | Salvia rosmarinus L. | Rosemary | [75] |
Thymol Carvacrol | Thymus vulgaris L. | Thyme | [76] |
3.3. Alkaloids
4. Nutraceutical Agents in Dentistry: Biological Effects
4.1. Antimicrobial and Antiviral Activity against Oral Pathogens
4.2. Anti-Inflammatory Activity
4.3. Antitumor Activity
5. Oral Pathologies and Nutraceutical Agents
5.1. Dental Caries
5.2. Periodontal Diseases
5.3. Oral Mucosal Lesions
5.4. Oral Candidiasis
5.5. Oral Lichen Planus
5.6. Oral Leukoplakia
5.7. Oral Carcinoma
5.8. Oral Mucositis
5.9. Burning Mouth Syndrome
5.10. Oral Submucous Fibrosis
6. Granted Patents for Oral Care Products Containing Natural Compounds
7. Nutritional and Behavioral Preventive Recommendations
8. Controversial Aspects
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, L.J.; Lamster, I.B.; Greenspan, J.S.; Pitts, N.B.; Scully, C.; Warnakulasuriya, S. Global burden of oral diseases: Emerging concepts, management and interplay with systemic health. Oral Dis. 2016, 22, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Welti, R.; Jones, B.; Moynihan, P.; Silva, M. Evidence pertaining to modifiable risk factors for oral diseases: An umbrella review to Inform oral health messages for Australia. Aust. Dent. J. 2023, 68, 222–237. [Google Scholar] [CrossRef]
- Genco, R.J.; Borgnakke, W.S. Risk factors for periodontal disease. Periodontology 2000 2013, 62, 59–94. [Google Scholar] [CrossRef]
- Silva, P.; Araujo, R.; Lopes, F.; Ray, S. Nutrition and Food Literacy: Framing the Challenges to Health Communication. Nutrients 2023, 15, 4708. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suarez, V.J.; Beltran-Velasco, A.I.; Redondo-Florez, L.; Martin-Rodriguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Neuhouser, M.L. The importance of healthy dietary patterns in chronic disease prevention. Nutr. Res. 2019, 70, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Nan, F.; Liang, H.; Shu, P.; Fan, X.; Song, X.; Hou, Y.; Zhang, D. Excessive intake of sugar: An accomplice of inflammation. Front. Immunol. 2022, 13, 988481. [Google Scholar] [CrossRef]
- Billingsley, H.E.; Carbone, S.; Lavie, C.J. Dietary Fats and Chronic Noncommunicable Diseases. Nutrients 2018, 10, 1385. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Garza-Juárez, A.; Pérez-Carrillo, E.; Arredondo-Espinoza, E.U.; Islas, J.F.; Benítez-Chao, D.F.; Escamilla-García, E. Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods 2023, 12, 3262. [Google Scholar] [CrossRef]
- Kumar, S.; Korra, T.; Thakur, R.; Arutselvan, R.; Kashyap, A.S.; Nehela, Y.; Chaplygin, V.; Minkina, T.; Keswani, C. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress. Plant Stress 2023, 8, 100154. [Google Scholar]
- Dutta, C.; Neeser, J.-R.; German, B.J. Nutraceutical science and technology. In Bioprocesses and Biotechnology for Functional Foods and Nutraceuticals; Marcel Dekker, Inc.: New York, NY, USA, 2005. [Google Scholar]
- Bhattacharjee, B.; Sandhanam, K.; Ghose, S.; Barman, D.; Sahu, R.K. Market Overview of Herbal Medicines for Lifestyle Diseases. In Role of Herbal Medicines: Management of Lifestyle Diseases; Springer: Singapore, 2024; pp. 597–614. [Google Scholar]
- Isola, G. The Impact of Diet, Nutrition and Nutraceuticals on Oral and Periodontal Health. Nutrients 2020, 12, 2724. [Google Scholar] [CrossRef] [PubMed]
- Isola, G. Current Evidence of Natural Agents in Oral and Periodontal Health. Nutrients 2020, 12, 585. [Google Scholar] [CrossRef] [PubMed]
- Winn, D.M.; Ziegler, R.G.; Pickle, L.W.; Gridley, G.; Blot, W.J.; Hoover, R.N. Diet in the etiology of oral and pharyngeal cancer among women from the southern United States. Cancer Res. 1984, 44, 1216–1222. [Google Scholar]
- Chuang, S.-C.; Jenab, M.; Heck, J.E.; Bosetti, C.; Talamini, R.; Matsuo, K.; Castellsague, X.; Franceschi, S.; Herrero, R.; Winn, D.M. Diet and the risk of head and neck cancer: A pooled analysis in the INHANCE consortium. Cancer Causes Control 2012, 23, 69–88. [Google Scholar] [CrossRef]
- Lucenteforte, E.; Garavello, W.; Bosetti, C.; La Vecchia, C. Dietary factors and oral and pharyngeal cancer risk. Oral Oncol. 2009, 45, 461–467. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. Phenylpropanoid Derivatives and Their Role in Plants’ Health and as antimicrobials. Curr. Microbiol. 2023, 80, 380. [Google Scholar] [CrossRef]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef]
- Neelam; Khatkar, A.; Sharma, K.K. Phenylpropanoids and its derivatives: Biological activities and its role in food, pharmaceutical and cosmetic industries. Crit. Rev. Food Sci. Nutr. 2020, 60, 2655–2675. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Barros, J.; Dixon, R.A. Plant Phenylalanine/Tyrosine Ammonia-lyases. Trends Plant Sci. 2020, 25, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Sabra, A.; Netticadan, T.; Wijekoon, C. Grape bioactive molecules, and the potential health benefits in reducing the risk of heart diseases. Food Chem. X 2021, 12, 100149. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.O. Polyphenols and the human brain: Plant “secondary metabolite” ecologic roles and endogenous signaling functions drive benefits. Adv. Nutr. 2014, 5, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef]
- Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef]
- Safe, S.; Jayaraman, A.; Chapkin, R.S.; Howard, M.; Mohankumar, K.; Shrestha, R. Flavonoids: Structure-function and mechanisms of action and opportunities for drug development. Toxicol. Res. 2021, 37, 147–162. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. Materials 2021, 14, 4135. [Google Scholar] [CrossRef]
- Patel, K.R.; Scott, E.; Brown, V.A.; Gescher, A.J.; Steward, W.P.; Brown, K. Clinical trials of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef]
- Iriti, M. Editorial: Introduction to polyphenols, plant chemicals for human health. Mini Rev. Med. Chem. 2011, 11, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, Z.; Chen, F.; Chai, Y. Polyphenols in Oral Health: Homeostasis Maintenance, Disease Prevention, and Therapeutic Applications. Nutrients 2023, 15, 4384. [Google Scholar] [CrossRef] [PubMed]
- de Moura, C.F.G.; Noguti, J.; de Jesus, G.P.P.; Ribeiro, F.A.; Garcia, F.A.; Gollucke, A.P.; Aguiar, O., Jr.; Ribeiro, D.A. Polyphenols as a chemopreventive agent in oral carcinogenesis: Putative mechanisms of action using in-vitro and in-vivo test systems. Eur. J. Cancer Prev. 2013, 22, 467–472. [Google Scholar] [CrossRef]
- De Stefani, E.; Deneo-Pellegrini, H.; Boffetta, P.; Ronco, A.L.; Aune, D.; Acosta, G.; Mendilaharsu, M.; Brennan, P.; Ferro, G. Dietary patterns and risk of cancer: A factor analysis in Uruguay. Int. J. Cancer 2009, 124, 1391–1397. [Google Scholar] [CrossRef]
- Rossi, M.; Garavello, W.; Talamini, R.; Negri, E.; Bosetti, C.; Dal Maso, L.; Lagiou, P.; Tavani, A.; Polesel, J.; Barzan, L. Flavonoids and the risk of oral and pharyngeal cancer: A case-control study from Italy. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1621–1625. [Google Scholar] [CrossRef]
- Vlachojannis, C.; Magora, F.; Chrubasik, S. Rise and fall of oral health products with Canadian bloodroot extract. Phytother. Res. 2012, 26, 1423–1426. [Google Scholar] [CrossRef]
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Pharmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef]
- Cannataro, R.; Fazio, A.; La Torre, C.; Caroleo, M.C.; Cione, E. Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants 2021, 10, 328. [Google Scholar] [CrossRef]
- Pyrzynska, K. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 14, 2387. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, A.; Iraji, A.; Esmaealzadeh, N.; Salehi, M.; Hashempur, M.H. Peppermint and menthol: A review on their biochemistry, pharmacological activities, clinical applications, and safety considerations. Crit. Rev. Food Sci. Nutr. 2024, 1–26. [Google Scholar] [CrossRef]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [PubMed]
- Zoechling, A.; Reiter, E.; Eder, R.; Wendelin, S.; Liebner, F.; Jungbauer, A. The flavonoid kaempferol is responsible for the majority of estrogenic activity in red wine. Am. J. Enol. Vitic. 2009, 60, 223–232. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Corke, H.; Zhu, H. Dynamic changes in flavonoids content during congou black tea processing. LWT 2022, 170, 114073. [Google Scholar] [CrossRef]
- Silva, L.C.R.C.e.; David, J.M.; Borges, R.d.S.Q.; Ferreira, S.L.C.; David, J.P.; Reis, P.S.d.; Bruns, R.E. Determination of Flavanones in Orange Juices Obtained from Different Sources by HPLC/DAD. J. Anal. Methods Chem. 2014, 2014, 296838. [Google Scholar] [CrossRef]
- Ribeiro, I.A.; Ribeiro, M.H.L. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control 2008, 19, 432–438. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; Camargo, S.E.A.; de Oliveira, L.D. Rosmarinus officinalis L. (rosemary) as therapeutic and prophylactic agent. J. Biomed. Sci. 2019, 26, 5. [Google Scholar] [CrossRef]
- Munoz-Bernal, O.A.; Vazquez-Flores, A.A.; de la Rosa, L.A.; Rodrigo-Garcia, J.; Martinez-Ruiz, N.R.; Alvarez-Parrilla, E. Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds. Foods 2023, 12, 1194. [Google Scholar] [CrossRef]
- Rocchetti, G.; Luisa Callegari, M.; Senizza, A.; Giuberti, G.; Ruzzolini, J.; Romani, A.; Urciuoli, S.; Nediani, C.; Lucini, L. Oleuropein from olive leaf extracts and extra-virgin olive oil provides distinctive phenolic profiles and modulation of microbiota in the large intestine. Food Chem. 2022, 380, 132187. [Google Scholar] [CrossRef]
- Shabir, I.; Kumar Pandey, V.; Shams, R.; Dar, A.H.; Dash, K.K.; Khan, S.A.; Bashir, I.; Jeevarathinam, G.; Rusu, A.V.; Esatbeyoglu, T.; et al. Promising bioactive properties of quercetin for potential food applications and health benefits: A review. Front. Nutr. 2022, 9, 999752. [Google Scholar] [CrossRef]
- Farhan, M.; Rizvi, A. The Pharmacological Properties of Red Grape Polyphenol Resveratrol: Clinical Trials and Obstacles in Drug Development. Nutrients 2023, 15, 4486. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef]
- Bouvier, F.; Rahier, A.; Camara, B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 2005, 44, 357–429. [Google Scholar] [CrossRef] [PubMed]
- Buhaescu, I.; Izzedine, H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin. Biochem. 2007, 40, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Wink, M.; Gershenzon, J. Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 258–303. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Padilla-Gonzalez, G.F.; Phumthum, M. Fundamental Chemistry of Essential Oils and Volatile Organic Compounds, Methods of Analysis and Authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Katekar, V.P.; Rao, A.B.; Sardeshpande, V.R. A hydrodistillation-based essential oils extraction: A quest for the most effective and cleaner technology. Sustain. Chem. Pharm. 2023, 36, 101270. [Google Scholar] [CrossRef]
- Solanki, K.; Matnani, M.; Kale, M.; Joshi, K.; Bavdekar, A.; Bhave, S.; Pandit, A. Transcutaneous absorption of topically massaged oil in neonates. Indian. Pediatr. 2005, 42, 998–1005. [Google Scholar]
- Bencze, B.; Temesfői, V.; Das, S.; Papp, H.; Kaltenecker, P.; Kuczmog, A.; Jakab, F.; Kocsis, B.; Kőszegi, T. Development of a novel, entirely herbal-based mouthwash effective against common oral bacteria and SARS-CoV-2. BMC Complement. Med. Ther. 2023, 23, 138. [Google Scholar] [CrossRef]
- Thosar, N.; Basak, S.; Bahadure, R.N.; Rajurkar, M. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. Eur. J. Dent. 2013, 7, S071–S077. [Google Scholar] [CrossRef]
- Richards, D. Effect of essential oil mouthwashes on plaque and gingivitis. Evid. Based Dent. 2017, 18, 39–40. [Google Scholar] [CrossRef] [PubMed]
- Farid Ayad, B.; Prado, R.; Dentales, D.E.; Mateo, L.R.; Stewart, B.; BSEng, M.G.S.; Arvanitidou, E.; Panagakos, P.F.S. A comparative investigation to evaluate the clinical efficacy of an alcohol-free CPC-containing mouthwash as compared to a control mouthwash in controlling dental plaque and gingivitis: A six-month clinical study on adults in San Jose, Costa Rica. J. Clin. Dent. 2011, XXII, 204. [Google Scholar]
- Stoeken, J.E.; Paraskevas, S.; Van Der Weijden, G.A. The long-term effect of a mouthrinse containing essential oils on dental plaque and gingivitis: A systematic review. J. Periodontol. 2007, 78, 1218–1228. [Google Scholar] [CrossRef]
- Reale, S.; Biancolillo, A.; Gasparrini, C.; Di Martino, L.; Di Cecco, V.; Manzi, A.; Di Santo, M.; D’Archivio, A.A. Geographical Discrimination of Bell Pepper (Capsicum annuum) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics. Molecules 2021, 26, 6177. [Google Scholar] [CrossRef]
- Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C.; Zulkifly, H.H.; Kifli, N.; Loy, M.J.; Sarker, M.M.R.; Al-Worafi, Y.M.; Goh, B.H.; Thuraisingam, S.; et al. Coriandrum sativum L.: A Review on Ethnopharmacology, Phytochemistry, and Cardiovascular Benefits. Molecules 2021, 27, 209. [Google Scholar] [CrossRef]
- Keskin, I.; Gunal, Y.; Ayla, S.; Kolbasi, B.; Sakul, A.; Kilic, U.; Gok, O.; Koroglu, K.; Ozbek, H. Effects of Foeniculum vulgare essential oil compounds, fenchone and limonene, on experimental wound healing. Biotech. Histochem. 2017, 92, 274–282. [Google Scholar] [CrossRef]
- Awada, F.; Hamade, K.; Kassir, M.; Hammoud, Z.; Mesnard, F.; Rammal, H.; Fliniaux, O. Laurus nobilis Leaves and Fruits: A Review of Metabolite Composition and Interest in Human Health. Appl. Sci. 2023, 13, 4606. [Google Scholar] [CrossRef]
- Kennedy, D.; Okello, E.; Chazot, P.; Howes, M.J.; Ohiomokhare, S.; Jackson, P.; Haskell-Ramsay, C.; Khan, J.; Forster, J.; Wightman, E. Volatile Terpenes and Brain Function: Investigation of the Cognitive and Mood Effects of Mentha × Piperita L. Essential Oil with In Vitro Properties Relevant to Central Nervous System Function. Nutrients 2018, 10, 1029. [Google Scholar] [CrossRef]
- Feriotto, G.; Marchetti, N.; Costa, V.; Torricelli, P.; Beninati, S.; Tagliati, F.; Mischiati, C. Selected terpenes from leaves of Ocimum basilicum L. induce hemoglobin accumulation in human K562 cells. Fitoterapia 2018, 127, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Agliassa, C.; Maffei, M.E. Origanum vulgare Terpenoids Induce Oxidative Stress and Reduce the Feeding Activity of Spodoptera littoralis. Int. J. Mol. Sci. 2018, 19, 2805. [Google Scholar] [CrossRef]
- Herrera-Calderon, O.; Saleh, A.M.; Mahmood, A.A.R.; Khalaf, M.A.; Calva, J.; Loyola-Gonzales, E.; Tataje-Napuri, F.E.; Chávez, H.; Almeida-Galindo, J.S.; Chavez-Espinoza, J.H.; et al. The Essential Oil of Petroselinum crispum (Mill) Fuss Seeds from Peru: Phytotoxic Activity and In Silico Evaluation on the Target Enzyme of the Glyphosate Herbicide. Plants 2023, 12, 2288. [Google Scholar] [CrossRef] [PubMed]
- Pieracci, Y.; Ciccarelli, D.; Giovanelli, S.; Pistelli, L.; Flamini, G.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Bertelloni, F.; Ebani, V.V. Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils. Antibiotics 2021, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevao-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of Thymol and Carvacrol, Constituents of Thymus vulgaris L. Essential Oil, on the Inflammatory Response. Evid. Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Ferreira, M.U. Alkaloids in Future Drug Discovery. Molecules 2022, 27, 1347. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and Bioactive Properties. In Plant-Derived Bioactives; Swamy, M., Ed.; Springer: Singapore, 2020; pp. 85–117. [Google Scholar] [CrossRef]
- Talapatra, S.K.; Talapatra, B. Atropine [(±)-Hyoscyamine] and Cocaine (Ornithine-Derived Alkaloids). In Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine; Springer: Berlin/Heidelberg, Germany, 2015; pp. 767–780. [Google Scholar] [CrossRef]
- Khan, F.; Qidwai, T.; Shukla, R.K.; Gupta, V. Alkaloids Derived from Tyrosine: Modified Benzyltetrahydroisoquinoline Alkaloids. In Natural Products; Springer: Berlin/Heidelberg, Germany, 2013; pp. 405–460. [Google Scholar] [CrossRef]
- Banyal, A.; Tiwari, S.; Sharma, A.; Chanana, I.; Patel, S.K.S.; Kulshrestha, S.; Kumar, P. Vinca alkaloids as a potential cancer therapeutics: Recent update and future challenges. 3 Biotech 2023, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Jiang, T.; Li, Q.; Ling, X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017, 7, 2350–2394. [Google Scholar]
- Talapatra, S.K.; Talapatra, B. Ephedrine and Pseudoephedrine (C6–C1 Part Derived from l-Phenylalanine and Nitrogen Derived by Transamination). In Chemistry of Plant Natural Products: Stereochemistry, Conformation, Synthesis, Biology, and Medicine; Springer: Berlin/Heidelberg, Germany, 2015; pp. 781–791. [Google Scholar] [CrossRef]
- Chen, C.; Lin, L. Alkaloids in Diet. In Handbook of Dietary Phytochemicals; Springer: Singapore, 2020; pp. 1–35. [Google Scholar] [CrossRef]
- Purkiewicz, A.; Pietrzak-Fiecko, R.; Sorgel, F.; Kinzig, M. Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients 2022, 14, 2196. [Google Scholar] [CrossRef]
- Mascarenhas, A.K.; Allen, C.M.; Loudon, J. The association between Viadent® use and oral leukoplakia. Epidemiology 2001, 12, 741–743. [Google Scholar] [CrossRef]
- della Salute, M. Linee Guida Nazionali per la Promozione Della Salute Orale e la Prevenzione Delle Patologie Orali in Età Adulta; Ministero della Salute: Rome, Italy, 2009.
- Gramza-Michałowska, A. Caffeine in tea Camellia sinensis—Content, absorption, benefits and risks of consumption. J. Nutr. Health Aging 2014, 18, 143–149. [Google Scholar] [CrossRef]
- Rudolph, E.; Farbinger, A.; Konig, J. Determination of the caffeine contents of various food items within the Austrian market and validation of a caffeine assessment tool (CAT). Food Addit. Contam. Part A 2012, 29, 1849–1860. [Google Scholar] [CrossRef]
- Sharangi, A.B. Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)—A review. Food Res. Int. 2009, 42, 529–535. [Google Scholar] [CrossRef]
- Dixit, T.; Pramanic, A.; Phadtare, S.; Barde, N.; Pundir, V.; Ravindran, S. Identification of Caffeine in Extracts of Camellia sinensis by Liquid Chromatography. J. Pharm. Negat. Results 2023, 14 (S.I. 2), 1045–1050. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Pu, Y.; Wang, X. Tea (Camellia sinensis): A Review of Nutritional Composition, Potential Applications, and Omics Research. Appl. Sci. 2022, 12, 5874. [Google Scholar] [CrossRef]
- Zeng, W.; Zeng, Z.; Teng, J.; Rothenberg, D.O.N.; Zhou, M.; Lai, R.; Lai, X.; Zhao, W.; Li, D.; Yan, C.; et al. Comparative Analysis of Purine Alkaloids and Main Quality Components of the Three Camellia Species in China. Foods 2022, 11, 627. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, A.M.; Marques, L.C.; Gonçalves, C.P.; Marcucci, M.C. Botanical Aspects, Caffeine Content and Antioxidant Activity of Coffea arabica. Am. J. Plant Sci. 2019, 10, 1013–1021. [Google Scholar] [CrossRef]
- Bobková, A.; Demianová, A.; Poláková, K.; Capcarová, M.; Lidiková, J.; Árvay, J.; Hegedűsová, A.; Bobko, M.; Jurčaga, L.; Belej, Ľ. Variability of caffeine content in green and roasted Coffea arabica regarding the origin, post-harvest processing, and altitude, and overview of recommended daily allowance. J. Environ. Sci. Health Part B 2022, 57, 989–998. [Google Scholar] [CrossRef]
- Cangeloni, L.; Bonechi, C.; Leone, G.; Consumi, M.; Andreassi, M.; Magnani, A.; Rossi, C.; Tamasi, G. Characterization of Extracts of Coffee Leaves (Coffea arabica L.) by Spectroscopic and Chromatographic/Spectrometric Techniques. Foods 2022, 11, 2495. [Google Scholar] [CrossRef]
- Meoni, G.; Luchinat, C.; Gotti, E.; Cadena, A.; Tenori, L. Phenotyping Green and Roasted Beans of Nicaraguan Coffea Arabica Varieties Processed with Different Post-Harvest Practices. Appl. Sci. 2021, 11, 11779. [Google Scholar] [CrossRef]
- Mazzafera, P.; Crozier, A.; Magalhães, A.C. Caffeine metabolism in Coffea arabica and other species of coffee. Phytochemistry 1991, 30, 3913–3916. [Google Scholar] [CrossRef]
- Perrois, C.; Strickler, S.R.; Mathieu, G.; Lepelley, M.; Bedon, L.; Michaux, S.; Husson, J.; Mueller, L.; Privat, I. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta 2015, 241, 179–191. [Google Scholar] [CrossRef]
- Júnior, P.C.G.; dos Santos, V.B.; Lopes, A.S.; de Souza, J.P.I.; Pina, J.R.S.; Chagas Júnior, G.C.A.; Marinho, P.S.B. Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control 2020, 108, 106887. [Google Scholar] [CrossRef]
- Edo, G.I.; Samuel, P.O.; Oloni, G.O.; Ezekiel, G.O.; Onoharigho, F.O.; Oghenegueke, O.; Nwachukwu, S.C.; Rapheal, O.A.; Ajokpaoghene, M.O.; Okolie, M.C.; et al. Review on the Biological and Bioactive components of Cocoa (Theobroma Cacao). Insight on Food, Health and Nutrition. Nat. Resour. Hum. Health 2023, 3, 426–448. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, M.a.d.R.; Gutiérrez, L.; Delgado, Y.; Gallignani, M.; Zambrano, A.; Gómez, Á.; Ramos, G.; Romero, C. Determination of theobromine, theophylline and caffeine in cocoa samples by a high-performance liquid chromatographic method with on-line sample cleanup in a switching-column system. Food Chem. 2007, 100, 459–467. [Google Scholar] [CrossRef]
- Ford, A.; Williams, A.; de Vries, M.S. New light on the use of Theobroma cacao by Late Classic Maya. Proc. Natl. Acad. Sci. USA 2022, 119, e2121821119. [Google Scholar] [CrossRef]
- Picciotti, M.; Di Vece, L.; Picciotti, V.; Lorenzini, G. L’attività antimicrobica dei fitoterapici in odontoiatria. Dent. Cadmos 2013, 81, 243–248. [Google Scholar]
- Chiu, K.C.; Shih, Y.H.; Wang, T.H.; Lan, W.C.; Li, P.J.; Jhuang, H.S.; Hsia, S.M.; Shen, Y.W.; Yuan-Chien Chen, M.; Shieh, T.M. In vitro antimicrobial and antipro-inflammation potential of honokiol and magnolol against oral pathogens and macrophages. J. Formos. Med. Assoc. 2021, 120, 827–837. [Google Scholar] [CrossRef]
- Petti, S.; Scully, C. Polyphenols, oral health and disease: A review. J. Dent. 2009, 37, 413–423. [Google Scholar]
- Yamanaka, A.; Kouchi, T.; Kasai, K.; Kato, T.; Ishihara, K.; Okuda, K. Inhibitory effect of cranberry polyphenol on biofilm formation and cysteine proteases of Porphyromonas gingivalis. J. Periodontal Res. 2007, 42, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Tsai, C.C.; Huang, J.S.; Chen, C.P.; Lin, T.C.; Lin, C.C. Antimicrobial activity of tannin components from Vaccinium vitis-idaea L. J. Pharm. Pharmacol. 2001, 53, 187–191. [Google Scholar] [CrossRef]
- Hirasawa, M.; Takada, K.; Makimura, M.; Otake, S. Improvement of periodontal status by green tea catechin using a local delivery system: A clinical pilot study. J. Periodontal Res. 2002, 37, 433–438. [Google Scholar] [CrossRef]
- Izui, S.; Sekine, S.; Maeda, K.; Kuboniwa, M.; Takada, A.; Amano, A.; Nagata, H. Antibacterial Activity of Curcumin Against Periodontopathic Bacteria. J. Periodontol. 2016, 87, 83–90. [Google Scholar] [CrossRef]
- Hu, J.P.; Takahashi, N.; Yamada, T. Coptidis Rhizoma inhibits growth and proteases of oral bacteria. Oral Dis. 2008, 6, 297–302. [Google Scholar] [CrossRef]
- Ghildiyal, R.; Prakash, V.; Chaudhary, V.; Gupta, V.; Gabrani, R. Phytochemicals as antiviral agents: Recent updates. In Plant-Derived Bioactives: Production, Properties and Therapeutic Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 279–295. [Google Scholar]
- Rathee, P.; Chaudhary, H.; Rathee, S.; Rathee, D.; Kumar, V.; Kohli, K. Mechanism of action of flavonoids as anti-inflammatory agents: A review. Inflamm. Allergy Drug Targets 2009, 8, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef]
- Willershausen, B.; Ross, A.; Forsch, M.; Willershausen, I.; Mohaupt, P.; Callaway, A. The influence of micronutrients on oral and general health. Eur. J. Med. Res. 2011, 16, 514–518. [Google Scholar] [CrossRef]
- Basilicata, M.; Di Lauro, M.; Campolattano, V.; Marrone, G.; Celotto, R.; Mitterhofer, A.P.; Bollero, P.; Di Daniele, N.; Noce, A. Natural Bioactive Compounds in the Management of Oral Diseases in Nephropathic Patients. Int. J. Environ. Res. Public Health 2022, 19, 1665. [Google Scholar] [CrossRef] [PubMed]
- Bodet, C.; Chandad, F.; Grenier, D. Anti-inflammatory Activity of a High-molecular-weight Cranberry Fraction on Macrophages Stimulated by Lipopolysaccharides from Periodontopathogens. J. Dent. Res. 2016, 85, 235–239. [Google Scholar] [CrossRef]
- Bodet, C.; Chandad, F.; Grenier, D. Cranberry components inhibit interleukin-6, interleukin-8, and prostaglandin E2 production by lipopolysaccharide-activated gingival fibroblasts. Eur. J. Oral Sci. 2007, 115, 64–70. [Google Scholar] [CrossRef]
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016, 29, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, S.; Mojarrab, M.; Farzaei, M.H.; Najafi, F.; Ghobadi, A. Evaluation of anti-aphthous activity of decoction of Nicotiana tabacum leaves as a mouthwash: A placebo-controlled clinical study. J. Tradit. Chin. Med. 2016, 36, 160–164. [Google Scholar] [CrossRef]
- Subramanyam, R. Occurrence of recurrent aphthous stomatitis only on lining mucosa and its relationship to smoking—A possible hypothesis. Med. Hypotheses 2011, 77, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Scheid, P.; Bohadana, A.; Martinet, Y. Nicotine patches for aphthous ulcers due to Behcet’s syndrome. N. Engl. J. Med. 2000, 343, 1816–1817. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Varoni, E.M. Chemopreventive potential of flavonoids in oral squamous cell carcinoma in human studies. Nutrients 2013, 5, 2564–2576. [Google Scholar] [CrossRef] [PubMed]
- Motallebi, M.; Bhia, M.; Rajani, H.F.; Bhia, I.; Tabarraei, H.; Mohammadkhani, N.; Pereira-Silva, M.; Kasaii, M.S.; Nouri-Majd, S.; Mueller, A.L.; et al. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci. 2022, 305, 120752. [Google Scholar] [CrossRef]
- Gao, W.; Wang, J.; Zhao, J. Describing a modern chemotherapeutic drug prepared by Au nanoparticles to treat the human oral squamous cell carcinoma: A pre-clinical trial study. Inorg. Chem. Commun. 2022, 136, 109138. [Google Scholar] [CrossRef]
- Fath, M.K.; Nasiri, K.; Ghasemzadeh, S.; Nejati, S.T.; Ghafari, N.; Masouleh, S.S.; Dadgar, E.; Kazemi, K.S.; Esfahaniani, M. Thymoquinone potentiates anti-cancer effects of cisplatin in oral squamous cell carcinoma via targeting oxidative stress. Chem. Biol. Drug Des. 2024, 103, e14492. [Google Scholar] [CrossRef]
- Sun, G.C.; Chen, H.H.; Liang, W.-Z.; Jan, C.-R. Exploration of the effect of the alkaloid colchicine on Ca2+ handling and its related physiology in human oral cancer cells. Arch. Oral Biol. 2019, 102, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xun, W.; Guo, S.; Wang, X.; Liu, X. Anticancer activity of heptazoline against the SCC-15 human oral cancer cells and inhibition of PI3K/AKT signalling pathway. All Life 2022, 15, 371–377. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Christine, D.W. Grape products and oral health. J. Nutr. 2009, 139, 1818S–1823S. [Google Scholar] [CrossRef]
- Srikanth, R.; Shashikiran, N.; Reddy, V.S. Chocolate mouth rinse: Effect on plaque accumulation and mutans streptococci counts when used by children. J. Indian Soc. Pedod. Prev. Dent. 2008, 26, 67–70. [Google Scholar]
- Campus, G.; Cagetti, M.G.; Cocco, F.; Sale, S.; Sacco, G.; Strohmenger, L.; Lingström, P. Effect of a sugar-free chewing gum containing magnolia bark extract on different variables related to caries and gingivitis: A randomized controlled intervention trial. Caries Res. 2011, 45, 393–399. [Google Scholar] [CrossRef]
- Messier, C.; Epifano, F.; Genovese, S.; Grenier, D. Licorice and its potential beneficial effects in common oro-dental diseases. Oral Dis. 2012, 18, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Feres, M.; Figueiredo, L.C.; Barreto, I.; Coelho, M.; Araujo, M.; Cortelli, S.C. In vitro antimicrobial activity of plant extracts and propolis in saliva samples of healthy and periodontally-involved subjects. J. Int. Acad. Periodontol. 2005, 7, 90–96. [Google Scholar] [PubMed]
- Waghmare, P.; Chaudhari, A.; Karhadkar, V.; Jamkhande, A. Comparative evaluation of turmeric and chlorhexidine gluconate mouthwash in prevention of plaque formation and gingivitis: A clinical and microbiological study. J. Contemp. Dent. Pract. 2011, 12, 221–224. [Google Scholar]
- Hamazaki, K.; Itomura, M.; Hamazaki, T.; Sawazaki, S. Effects of cooking plant oils on recurrent aphthous stomatitis: A randomized, placebo-controlled, double-blind trial. Nutrition 2006, 22, 534–538. [Google Scholar] [CrossRef]
- Ramos-e-Silva, M.; Ferreira, A.F.; Bibas, R.; Carneiro, S. Clinical evaluation of fluid extract of Chamomilla recutita for oral aphthae. J. Drugs Dermatol. 2006, 5, 612–617. [Google Scholar]
- Babaee, N.; Mansourian, A.; Momen-Heravi, F.; Moghadamnia, A.; Momen-Beitollahi, J. The efficacy of a paste containing Myrtus communis (Myrtle) in the management of recurrent aphthous stomatitis: A randomized controlled trial. Clin. Oral Investig. 2010, 14, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Garnick, J.J.; Singh, B.; Winkley, G. Effectiveness of a medicament containing silicon dioxide, aloe, and allantoin on aphthous stomatitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998, 86, 550–556. [Google Scholar] [CrossRef]
- Moghadamnia, A.A.; Motallebnejad, M.; Khanian, M. The efficacy of the bioadhesive patches containing licorice extract in the management of recurrent aphthous stomatitis. Phytother. Res. 2009, 23, 246–250. [Google Scholar] [CrossRef]
- Pourahmad, M.; Rahiminejad, M.; Fadaei, S.; Kashafi, H. Effects of camel thorn distillate on recurrent oral aphthous lesions. J. Dtsch. Dermatol. Ges. 2010, 8, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Bakhshi, M.; Taheri, J.B.; Shabestari, S.B.; Tanik, A.; Pahlevan, R. Comparison of therapeutic effect of aqueous extract of garlic and nystatin mouthwash in denture stomatitis. Gerodontology 2012, 29, e680–e684. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, L.A.; Montandon, A.A.; Corbi, S.C.; Moraes, T.A.; Fais, L.M. Ricinus communis treatment of denture stomatitis in institutionalised elderly. J. Oral Rehabil. 2013, 40, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Zawawi, A.A. Efficacy of alcohol-based and alcohol-free melaleuca oral solution for the treatment of fluconazole-refractory oropharyngeal candidiasis in patients with AIDS. HIV Clin. Trials 2002, 3, 379–385. [Google Scholar] [CrossRef]
- Amanlou, M.; Beitollahi, J.M.; Abdollahzadeh, S.; Tohidast-Ekrad, Z. Miconazole gel compared with Zataria multiflora Boiss. gel in the treatment of denture stomatitis. Phytother. Res. 2006, 20, 966–969. [Google Scholar] [CrossRef]
- Vasconcelos, L.C.; Sampaio, M.C.; Sampaio, F.C.; Higino, J.S. Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis. Mycoses 2003, 46, 192–196. [Google Scholar] [CrossRef]
- Salazar-Sánchez, N.; López-Jornet, P.; Camacho-Alonso, F.; Sánchez-Siles, M. Efficacy of topical Aloe vera in patients with oral lichen planus: A randomized double-blind study. J. Oral Pathol. Med. 2010, 39, 735–740. [Google Scholar] [CrossRef]
- Choonhakarn, C.; Busaracome, P.; Sripanidkulchai, B.; Sarakarn, P. The efficacy of aloe vera gel in the treatment of oral lichen planus: A randomized controlled trial. Br. J. Dermatol. 2008, 158, 573–577. [Google Scholar] [CrossRef]
- Li, N.; Sun, Z.; Han, C.; Chen, J. The chemopreventive effects of tea on human oral precancerous mucosa lesions. Proc. Soc. Exp. Biol. Med. 1999, 220, 218–224. [Google Scholar]
- Tsao, A.S.; Liu, D.; Martin, J.; Tang, X.-m.; Lee, J.J.; El-Naggar, A.K.; Wistuba, I.; Culotta, K.S.; Mao, L.; Gillenwater, A. Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. 2009, 2, 931–941. [Google Scholar] [CrossRef]
- Mallery, S.R.; Zwick, J.C.; Pei, P.; Tong, M.; Larsen, P.E.; Shumway, B.S.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D. Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions. Cancer Res. 2008, 68, 4945–4957. [Google Scholar] [CrossRef]
- Hsieh, C. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, e2900. [Google Scholar]
- Sun, Z.; Guan, X.; Li, N.; Liu, X.; Chen, X. Chemoprevention of oral cancer in animal models, and effect on leukoplakias in human patients with ZengShengPing, a mixture of medicinal herbs. Oral Oncol. 2010, 46, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.L.; Baker, V.; Larios, E.; Chung, F.L. Molecular and cellular effects of green tea on oral cells of smokers: A pilot study. Mol. Nutr. Food Res. 2005, 49, 43–51. [Google Scholar] [CrossRef]
- Shumway, B.S.; Kresty, L.A.; Larsen, P.E.; Zwick, J.C.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D.; Mallery, S.R. Effects of a topically applied bioadhesive berry gel on loss of heterozygosity indices in premalignant oral lesions. Clin. Cancer Res. 2008, 14, 2421–2430. [Google Scholar] [CrossRef] [PubMed]
- Mazokopakis, E.; Vrentzos, G.; Papadakis, J.; Babalis, D.; Ganotakis, E. Wild chamomile (Matricaria recutita L.) mouthwashes in methotrexate-induced oral mucositis. Phytomedicine 2005, 12, 25–27. [Google Scholar] [CrossRef]
- Fidler, P.; Loprinzi, C.L.; O’Fallon, J.R.; Leitch, J.M.; Lee, J.K.; Hayes, D.L.; Novotny, P.; Clemens-Schutjer, D.; Bartel, J.; Michalak, J.C. Prospective evaluation of a chamomile mouthwash for prevention of 5-FU-induced oral mucositis. Cancer Interdiscip. Int. J. Am. Cancer Soc. 1996, 77, 522–525. [Google Scholar] [CrossRef]
- Pawar, D.; Neve, R.; Kalgane, S.; Riva, A.; Bombardelli, E.; Ronchi, M.; Petrangolini, G.; Morazzoni, P. SAMITAL® improves chemo/radiotherapy-induced oral mucositis in patients with head and neck cancer: Results of a randomized, placebo-controlled, single-blind Phase II study. Support. Care Cancer 2013, 21, 827–834. [Google Scholar] [CrossRef]
- Abdulrhman, M.; Samir Elbarbary, N.; Ahmed Amin, D.; Saeid Ebrahim, R. Honey and a mixture of honey, beeswax, and olive oil–propolis extract in treatment of chemotherapy-induced oral mucositis: A randomized controlled pilot study. Pediatr. Hematol. Oncol. 2012, 29, 285–292. [Google Scholar] [CrossRef]
- de Moraes, M.; do Amaral Bezerra, B.A.; da Rocha Neto, P.C.; de Oliveira Soares, A.C.A.; Pinto, L.P.; de Lisboa Lopes Costa, A. Randomized trials for the treatment of burning mouth syndrome: An evidence-based review of the literature. J. Oral Pathol. Med. 2012, 41, 281–287. [Google Scholar] [CrossRef]
- Petruzzi, M.; Lauritano, D.; De Benedittis, M.; Baldoni, M.; Serpico, R. Systemic capsaicin for burning mouth syndrome: Short-term results of a pilot study. J. Oral Pathol. Med. 2004, 33, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Spanemberg, J.C.; Cherubini, K.; de Figueiredo, M.A.Z.; Gomes, A.P.N.; Campos, M.M.; Salum, F.G. Effect of an herbal compound for treatment of burning mouth syndrome: Randomized, controlled, double-blind clinical trial. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 373–377. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Zhang, Y.; Yang, S.-K.; Zhang, H.; Lu, K.; Sun, G.-L. Efficacy of salvianolic acid B combined with triamcinolone acetonide in the treatment of oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, R.; Annigeri, R.G.; Sree Vijayabala, G. Aloe vera in the treatment for oral submucous fibrosis–a preliminary study. J. Oral Pathol. Med. 2012, 41, 755–761. [Google Scholar] [CrossRef]
- Marsh, P.D. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent. Clin. N. Am. 2010, 54, 441–454. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, X.; Wang, C.; Song, J.; Xu, J.; Liu, X.; Qian, Y.; Suo, H. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol. Res. 2024, 278, 127526. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Amato, I.; Ingenito, A.; Zarrelli, A.; Pinto, G.; Pollio, A. Plant polyphenols and their anti-cariogenic properties: A review. Molecules 2011, 16, 1486–1507. [Google Scholar] [CrossRef]
- Ooshima, T.; Minami, T.; Aono, W.; Tamura, Y.; Hamada, S. Reduction of dental plaque deposition in humans by oolong tea extract. Caries Res. 1994, 28, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.; Woods, K.; Whittle, G.; Worthington, H.; Taylor, G. Sugar, drinks, deprivation and dental caries in 14-year-old children in the north west of England in 1995. Community Dent. Health 1999, 16, 68–71. [Google Scholar]
- Wynn, W.; Haldi, J.; Law, M.L. Influence of the ash of the cacao bean on the cariogenicity of a high-sucrose diet. J. Dent. Res. 1960, 39, 153–157. [Google Scholar] [CrossRef]
- Verakaki, E.; Duggal, M. A comparison of different kinds of European chocolates on human plaque pH. Eur. J. Paediatr. Dent. 2003, 4, 203–210. [Google Scholar]
- Goultschin, J.; Palmon, S.; Shapira, L.; Brayer, L.; Gedalia, I. Effect of glycyrrhizin-containing toothpaste on dental plaque reduction and gingival health in humans: A pilot study. J. Clin. Periodontol. 1991, 18, 210–212. [Google Scholar] [CrossRef]
- Steinberg, D.; Sgan-Cohen, H.; Stabholz, A.; Pizanty, S.; Segal, R.; Sela, M. The anticariogenic activity of glycyrrhizin: Preliminary clinical trials. Isr. J. Dent. Sci. 1989, 2, 153–157. [Google Scholar]
- Hu, C.h.; He, J.; Eckert, R.; Wu, X.y.; Li, L.n.; Tian, Y.; Lux, R.; Shuffer, J.A.; Gelman, F.; Mentes, J. Development and evaluation of a safe and effective sugar-free herbal lollipop that kills cavity-causing bacteria. Int. J. Oral Sci. 2011, 3, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.; Tallman, J.; Braun, T.; Jacobson, J. Clinical reduction of S. mutans in pre-school children using a novel liquorice root extract lollipop: A pilot study. Eur. Arch. Paediatr. Dent. 2010, 11, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Varma, R.; Ross, C.N. Liquorice: A root cause of secondary hypertension. JRSM Open 2017, 8, 2054270416685208. [Google Scholar] [CrossRef] [PubMed]
- Könönen, E.; Kumar, P.S. Bacteriology of Periodontal Diseases. In Molecular Medical Microbiology; Academic Press: Cambridge, MA, USA, 2015; pp. 957–968. [Google Scholar] [CrossRef]
- Mysak, J.; Podzimek, S.; Sommerova, P.; Lyuya-Mi, Y.; Bartova, J.; Janatova, T.; Prochazkova, J.; Duskova, J. Porphyromonas gingivalis: Major periodontopathic pathogen overview. J. Immunol. Res. 2014, 2014, 476068. [Google Scholar] [CrossRef]
- Antezack, A.; Etchecopar-Etchart, D.; La Scola, B.; Monnet-Corti, V. New putative periodontopathogens and periodontal health-associated species: A systematic review and meta-analysis. J. Periodontal Res. 2023, 58, 893–906. [Google Scholar] [CrossRef]
- Adline, V.D.; Ashwath, B.; Anitha, V.; Shanmugam, M. Aggregatibacter actinomycetemcomitans—A periodontopathogen. IP Int. J. Periodontol. Implantol. 2021, 6, 61–67. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, J.; Dou, J.; Hu, P.; Guo, Q. The Impact of Smoking on Subgingival Plaque and the Development of Periodontitis: A Literature Review. Front. Oral Health 2021, 2, 751099. [Google Scholar] [CrossRef]
- Kushiyama, M.; Shimazaki, Y.; Murakami, M.; Yamashita, Y. Relationship between intake of green tea and periodontal disease. J. Periodontol. 2009, 80, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.M.A.d.; Torres, T.C.; Pereira, S.L.d.S.; Mota, O.M.d.L.; Carlos, M.X. Effect of a dentifrice containing Aloe vera on plaque and gingivitis control: A double-blind clinical study in humans. J. Appl. Oral Sci. 2008, 16, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Hebbal, M.; Ankola, A.V.; Sharma, R.; Johri, S. Effectiveness of herbal and fluoridated toothpaste on plaque and gingival scores among residents of a working women’s hostel—A randomised controlled trial. Oral Health Prev. Dent. 2012, 10, 389–395. [Google Scholar]
- Shetty, S.; Bose, A.; Sridharan, S.; Satyanarayana, A.; Rahul, A. A clinico-biochemical evaluation of the role of a herbal (Ayurvedic) immunomodulator in chronic periodontal disease: A pilot study. Oral Health Dent. Manag. 2013, 12, 95–104. [Google Scholar] [PubMed]
- Samuels, N.; Grbic, J.T.; Saffer, A.J.; Wexler, I.D.; Williams, R.C. Effect of an herbal mouth rinse in preventing periodontal inflammation in an experimental gingivitis model: A pilot study. Compend. Contin. Educ. Dent. 2012, 33, 204–206, 208–211. [Google Scholar]
- Grbic, J.; Wexler, I.; Celenti, R.; Altman, J.; Saffer, A. A phase II trial of a transmucosal herbal patch for the treatment of gingivitis. J. Am. Dent. Assoc. 2011, 142, 1168–1175. [Google Scholar] [CrossRef]
- Varoni, E.M.; Lodi, G.; Sardella, A.; Carrassi, A.; Iriti, M. Plant polyphenols and oral health: Old phytochemicals for new fields. Curr. Med. Chem. 2012, 19, 1706–1720. [Google Scholar] [CrossRef]
- Rivera, C.; Muñoz-Pastén, M.; Núñez-Muñoz, E.; Hernández-Olivos, R. Recurrent Aphthous Stomatitis Affects Quality of Life. A Case-Control Study. Clin. Cosmet. Investig. Dent. 2022, 14, 217–223. [Google Scholar] [CrossRef]
- Mortazavi, H.; Safi, Y.; Baharvand, M.; Rahmani, S. Diagnostic Features of Common Oral Ulcerative Lesions: An Updated Decision Tree. Int. J. Dent. 2016, 2016, 7278925. [Google Scholar] [CrossRef] [PubMed]
- Akintoye, S.O.; Greenberg, M.S. Recurrent aphthous stomatitis. Dent. Clin. N. Am. 2014, 58, 281–297. [Google Scholar] [CrossRef]
- Tarakji, B.; Gazal, G.; Al-Maweri, S.A.; Azzeghaiby, S.N.; Alaizari, N. Guideline for the diagnosis and treatment of recurrent aphthous stomatitis for dental practitioners. J. Int. Oral Health 2015, 7, 74–80. [Google Scholar] [PubMed]
- Babaee, N.; Zabihi, E.; Mohseni, S.; Moghadamnia, A.A. Evaluation of the therapeutic effects of Aloe vera gel on minor recurrent aphthous stomatitis. Dent. Res. J. 2012, 9, 381–385. [Google Scholar]
- Das, S.K.; Das, V.; Gulati, A.K.; Singh, V.P. Deglycyrrhizinated liquorice in aphthous ulcers. J. Assoc. Physicians India 1989, 37, 647. [Google Scholar] [PubMed]
- Martin, M.D.; Sherman, J.; van der Ven, P.; Burgess, J. A controlled trial of a dissolving oral patch concerning glycyrrhiza (licorice) herbal extract for the treatment of aphthous ulcers. Gen. Dent. 2008, 56, 206–210; quiz 211–202, 224. [Google Scholar] [PubMed]
- Vila, T.; Sultan, A.S.; Montelongo-Jauregui, D.; Jabra-Rizk, M.A. Oral Candidiasis: A Disease of Opportunity. J. Fungi 2020, 6, 15. [Google Scholar] [CrossRef]
- Dadar, M.; Tiwari, R.; Karthik, K.; Chakraborty, S.; Shahali, Y.; Dhama, K. Candida albicans—Biology, molecular characterization, pathogenicity, and advances in diagnosis and control—An update. Microb. Pathog. 2018, 117, 128–138. [Google Scholar] [CrossRef]
- Sanchez-Martinez, C.; Perez-Martin, J. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis--similar inputs, different outputs. Curr. Opin. Microbiol. 2001, 4, 214–221. [Google Scholar] [CrossRef]
- Lu, S.Y. Oral Candidosis: Pathophysiology and Best Practice for Diagnosis, Classification, and Successful Management. J. Fungi 2021, 7, 555. [Google Scholar] [CrossRef]
- Tiwari, A.V.; Dangore-Khasbage, S. Oral Thrush: An Entity With a Diagnostic Dilemma. Cureus 2024, 16, e54916. [Google Scholar] [CrossRef]
- Rai, A.; Misra, S.R.; Panda, S.; Sokolowski, G.; Mishra, L.; Das, R.; Lapinska, B. Nystatin Effectiveness in Oral Candidiasis Treatment: A Systematic Review & Meta-Analysis of Clinical Trials. Life 2022, 12, 1677. [Google Scholar] [CrossRef]
- Patel, K.K.; Sehgal, V.S.; Kashfi, K. Molecular targets of statins and their potential side effects: Not all the glitter is gold. Eur. J. Pharmacol. 2022, 922, 174906. [Google Scholar] [CrossRef] [PubMed]
- Čēma, I.; Kakar, J.; Dzudzilo, M.; Murovska, M. Immunological Aspects of EBV and Oral Mucosa Interactions in Oral Lichen Planus. Appl. Sci. 2023, 13, 6735. [Google Scholar] [CrossRef]
- Lodi, G.; Varoni, E.; Salis, A.; Franchini, R. Oral lichen planus and lichenoid lesions. A guide for the dentist. Dent. Cadmos 2011, 79, 675–693. [Google Scholar] [CrossRef]
- Leong, X.Y.; Gopinath, D.; Syeed, S.M.; Veettil, S.K.; Shetty, N.Y.; Menon, R.K. Comparative Efficacy and Safety of Interventions for the Treatment of Oral Lichen Planus: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2023, 12, 2763. [Google Scholar] [CrossRef]
- Thongprasom, K.; Carrozzo, M.; Furness, S.; Lodi, G. Interventions for treating oral lichen planus. Cochrane Database Syst. Rev. 2011, CD001168. [Google Scholar] [CrossRef] [PubMed]
- Chainani-Wu, N.; Silverman, S., Jr.; Reingold, A.; Bostrom, A.; Mc Culloch, C.; Lozada-Nur, F.; Weintraub, J. A randomized, placebo-controlled, double-blind clinical trial of curcuminoids in oral lichen planus. Phytomedicine 2007, 14, 437–446. [Google Scholar] [CrossRef]
- Laskaris, G. Potentially Malignant Disorders. In Periodontal Manifestations of Local and Systemic Diseases: Color Atlas and Text; Springer: Cham, Switzerland, 2023; pp. 245–248. [Google Scholar] [CrossRef]
- Kumari, P.; Debta, P.; Dixit, A. Oral Potentially Malignant Disorders: Etiology, Pathogenesis, and Transformation Into Oral Cancer. Front. Pharmacol. 2022, 13, 825266. [Google Scholar] [CrossRef] [PubMed]
- Rubert, A.; Bagan, L.; Bagan, J.V. Retraction: Oral leukoplakia, a clinical-histopathological study in 412 patients. J. Clin. Exp. Dent. 2021, 13, e426–e432. [Google Scholar] [CrossRef]
- Halder, A.; Raychowdhury, R.; Ghosh, A.; De, M. Black tea (Camellia sinensis) as a chemopreventive agent in oral precancerous lesions. J. Environ. Pathol. Toxicol. Oncol. 2005, 24, 141–144. [Google Scholar] [CrossRef]
- Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral Squamous Cell Carcinoma and Concomitant Primary Tumors, What Do We Know? A Review of the Literature. Curr. Oncol. 2023, 30, 3721–3734. [Google Scholar] [CrossRef]
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ye, W.L.; Zhang, R.N.; He, X.S.; Wang, J.R.; Liu, Y.X.; Wang, Y.; Yang, X.M.; Zhang, Y.J.; Gan, W.J. The Role of TGF-beta Signaling Pathways in Cancer and Its Potential as a Therapeutic Target. Evid. Based Complement. Altern. Med. 2021, 2021, 6675208. [Google Scholar] [CrossRef]
- Galeone, C.; Tavani, A.; Pelucchi, C.; Turati, F.; Winn, D.M.; Levi, F.; Yu, G.-P.; Morgenstern, H.; Kelsey, K.; Dal Maso, L. Coffee and tea intake and risk of head and neck cancer: Pooled analysis in the international head and neck cancer epidemiology consortium. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1723–1736. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2019, 60, 2174–2211. [Google Scholar] [CrossRef]
- Turati, F.; Galeone, C.; La Vecchia, C.; Garavello, W.; Tavani, A. Coffee and cancers of the upper digestive and respiratory tracts: Meta-analyses of observational studies. Ann. Oncol. 2011, 22, 536–544. [Google Scholar] [CrossRef]
- Ide, R.; Fujino, Y.; Hoshiyama, Y.; Mizoue, T.; Kubo, T.; Pham, T.-M.; Shirane, K.; Tokui, N.; Sakata, K.; Tamakoshi, A. A prospective study of green tea consumption and oral cancer incidence in Japan. Ann. Epidemiol. 2007, 17, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, C.; Guo, Y.; Bian, Z.; Shen, Z.; Yang, L.; Chen, Y.; Wei, Y.; Zhang, H.; Qiu, Z.; et al. Association between tea consumption and risk of cancer: A prospective cohort study of 0.5 million Chinese adults. Eur. J. Epidemiol. 2019, 34, 753–763. [Google Scholar] [CrossRef]
- Truong, V.L.; Jeong, W.S. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int. J. Mol. Sci. 2021, 22, 9109. [Google Scholar] [CrossRef]
- Hildebrand, J.S.; Patel, A.V.; McCullough, M.L.; Gaudet, M.M.; Chen, A.Y.; Hayes, R.B.; Gapstur, S.M. Coffee, tea, and fatal oral/pharyngeal cancer in a large prospective US cohort. Am. J. Epidemiol. 2013, 177, 50–58. [Google Scholar] [CrossRef]
- Radoï, L.; Paget-Bailly, S.; Menvielle, G.; Cyr, D.; Schmaus, A.; Carton, M.; Guida, F.; Cénée, S.; Sanchez, M.; Guizard, A.-V. Tea and coffee consumption and risk of oral cavity cancer: Results of a large population-based case-control study, the ICARE study. Cancer Epidemiol. 2013, 37, 284–289. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Borrelli, F.; Izzo, A.A.; Fairweather-Tait, S.J.; Horneber, M.; Vinceti, M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020, 2021, CD005004. [Google Scholar] [CrossRef]
- Liao, Y.H.; Chou, W.Y.; Chang, C.W.; Lin, M.C.; Wang, C.P.; Lou, P.J.; Chen, T.C. Chemoprevention of oral cancer: A review and future perspectives. Head Neck 2023, 45, 1045–1059. [Google Scholar] [CrossRef] [PubMed]
- Grigolato, R.; Bizzoca, M.E.; Calabrese, L.; Leuci, S.; Mignogna, M.D.; Lo Muzio, L. Leukoplakia and Immunology: New Chemoprevention Landscapes? Int. J. Mol. Sci. 2020, 21, 6874. [Google Scholar] [CrossRef] [PubMed]
- Yoon, A.J.; Shen, J.; Santella, R.M.; Philipone, E.M.; Wu, H.-C.; Eisig, S.B.; Blitzer, A.; Close, L.G.; Zegarelli, D.J. Topical application of green tea polyphenol (−) epigallocatechin-3-gallate for prevention of recurrent oral neoplastic lesions. J. Orofac. Sci. 2012, 4, 43–50. [Google Scholar] [CrossRef]
- Ugalde, C.M.; Liu, Z.; Ren, C.; Chan, K.K.; Rodrigo, K.A.; Ling, Y.; Larsen, P.E.; Chacon, G.E.; Stoner, G.D.; Mumper, R.J. Distribution of anthocyanins delivered from a bioadhesive black raspberry gel following topical intraoral application in normal healthy volunteers. Pharm. Res. 2009, 26, 977–986. [Google Scholar] [CrossRef]
- Pulito, C.; Cristaudo, A.; Porta, C.L.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res. 2020, 39, 210. [Google Scholar] [CrossRef]
- Jicman Stan, D.; Sarbu, M.I.; Fotea, S.; Nechifor, A.; Balan, G.; Anghele, M.; Vasile, C.I.; Niculet, E.; Sarbu, N.; Rebegea, L.F.; et al. Oral Mucositis Induced by Chemoradiotherapy in Head and Neck Cancer-A Short Review about the Therapeutic Management and the Benefits of Bee Honey. Medicina 2022, 58, 751. [Google Scholar] [CrossRef] [PubMed]
- Lionel, D.; Christophe, L.; Marc, A.; Jean-Luc, C. Oral mucositis induced by anticancer treatments: Physiopathology and treatments. Ther. Clin. Risk Manag. 2006, 2, 159–168. [Google Scholar] [CrossRef]
- Worthington, H.V.; Clarkson, J.E.; Bryan, G.; Furness, S.; Glenny, A.-M.; Littlewood, A.; McCabe, M.G.; Meyer, S.; Khalid, T.; Riley, P. Interventions for preventing oral mucositis for patients with cancer receiving treatment. Cochrane Database Syst. Rev. 2011, 2021, CD000978. [Google Scholar] [CrossRef]
- Aravindhan, R.; Vidyalakshmi, S.; Kumar, M.S.; Satheesh, C.; Balasubramanium, A.M.; Prasad, V.S. Burning mouth syndrome: A review on its diagnostic and therapeutic approach. J. Pharm. Bioallied Sci. 2014, 6, S21–S25. [Google Scholar] [CrossRef]
- Chhabra, A.K.; Sune, R.; Reche, A. Oral Submucous Fibrosis: A Review of the Current Concepts in Management. Cureus 2023, 15, e47259. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N. Oral Care Composition. U.S. Patent 9554986B2, 31 January 2017. [Google Scholar]
- Hernandez, M.A. Use of Olive Oil in the Preparation of a Product for Oral Hygiene for Eliminating or Reducing Bacterial Plaque and/or Bacteria in the Mouth. U.S. Patent 7074391B1, 11 July 2006. [Google Scholar]
- Young, L.J.; Chul, K.H.; Mong, L.C.; Tai, L.G.; Kook, L.K. Oral Composition Containing Fermentative Extract of Galla Rhoids as Active Ingredient. KR20160041408A, 18 April 2016. [Google Scholar]
- Heon, Y.J. Composition for Prevention or Treatment of Oral Disease Comprising Icaritin. KR20180055521A, 25 May 2018. [Google Scholar]
- Liang, X. Multifunctional Tooth Powder. CN113318020A, 31 August 2021. [Google Scholar]
- Yu, J.; Sanghwa, L. Composition for Prevention or Treatment of Oral Disease Comprising Ginkgolide C. KR20190041801A, 23 April 2019. [Google Scholar]
- Jung, Y.; Hwa, L.S. Composition for Prevention or Treatment of Oral Disease Comprising Scutellaria Baicalensis Extract. KR20180047704A, 10 May 2018. [Google Scholar]
- Heon, Y.J.; Hwa, L.S. Composition for Prevention or Treatment of Oral Disease Comprising Salvianolic Acid A. KR20180055519A, 25 May 2018. [Google Scholar]
- Heon, Y.J.; Hwa, L.S. Composition for Prevention or Treatment of Oral Disease Comprising Neferine. KR20180055520A, 25 May 2018. [Google Scholar]
- Maruyama, T.; Kitagori, H. Oral Hygiene Composition. JP2006306844A, 11 September 2006. [Google Scholar]
- Sette, S.; Le Donne, C.; Piccinelli, R.; Arcella, D.; Turrini, A.; Leclercq, C.; Group, I.-S.S. The third Italian national food consumption survey, INRAN-SCAI 2005-06—Part 1: Nutrient intakes in Italy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Who, J.; Consultation, F.E. Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar]
- Riccardi, G.; Giosuè, A.; Calabrese, I.; Vaccaro, O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc. Res. 2022, 118, 1188–1204. [Google Scholar] [CrossRef]
- Mohd Sairazi, N.S.; Sirajudeen, K.N.S. Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. Evid. Based Complement. Altern. Med. 2020, 2020, 6565396. [Google Scholar] [CrossRef] [PubMed]
- Malcangi, G.; Patano, A.; Ciocia, A.M.; Netti, A.; Viapiano, F.; Palumbo, I.; Trilli, I.; Guglielmo, M.; Inchingolo, A.D.; Dipalma, G.; et al. Benefits of Natural Antioxidants on Oral Health. Antioxidants 2023, 12, 1309. [Google Scholar] [CrossRef]
- Moynihan, P.J. Dietary advice in dental practice. Br. Dent. J. 2002, 193, 563–568. [Google Scholar] [CrossRef]
- Forni, C.; Rossi, M.; Borromeo, I.; Feriotto, G.; Platamone, G.; Tabolacci, C.; Mischiati, C.; Beninati, S. Flavonoids: A Myth or a Reality for Cancer Therapy? Molecules 2021, 26, 3583. [Google Scholar] [CrossRef]
- McClure, J.B.; Divine, G.; Alexander, G.; Tolsma, D.; Rolnick, S.J.; Stopponi, M.; Richards, J.; Johnson, C.C. A comparison of smokers’ and nonsmokers’ fruit and vegetable intake and relevant psychosocial factors. Behav. Med. 2009, 35, 14–22. [Google Scholar] [CrossRef]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef]
- Tzimas, K.; Antoniadou, M.; Varzakas, T.; Voidarou, C. Plant-Derived Compounds: A Promising Tool for Dental Caries Prevention. Curr. Issues Mol. Biol. 2024, 46, 5257–5290. [Google Scholar] [CrossRef] [PubMed]
Oral Diseases | Plant/Insect Species | Substances | References |
---|---|---|---|
Dental Caries | Vitis vinifera | Grape juice | [130] |
Theobroma cacao | Cocoa | [131] | |
Magnolia grandiflora | Magnolia | [132] | |
Glycyrrhiza glabra | Licorice | [133] | |
Periodontal diseases | Vitis vinifera | Grape juice | [130] |
Apis mellifera | Propolis | [134] | |
Curcuma longa | Turmeric/Curcumin | [135] | |
Punica sinensis | Green tea/Catechins | [109] | |
Oral mucosal lesions | Perilla frutescens | Oil | [136] |
Chamomilla recutita | Chamomile | [137] | |
Myrtus communis | Myrtle | [138] | |
Aloe vera | Aloe | [139] | |
Glycyrrhiza glabra | Licorice | [140] | |
Acacia erioloba | Distillate | [141] | |
Oral candidiasis | Allium sativum | Garlic | [142] |
Ricinus communis | Castor oil | [143] | |
Melaleuca alternifolia | Tea tree | [144] | |
Zataria multiflora | Gel | [145] | |
Punica granatum | Pomegranate | [146] | |
Oral lichen planus | Aloe vera | Extract/Gel | [147,148] |
Oral leukoplakia | Camellia sinensis | Black tea/Green tea | [149,150] |
Rubus sp. | Gel (Anthocyanins) | [151] | |
Curcuma longa | Turmeric/Curcumin | [152] | |
Sophora tonkinensis, Polygonum bistorta, Prunella vulgaris, Sonchus brachyotus, Dictamnus dasycarpus, Dioscorea bulbifera | Mixture of herbs | [153] | |
Oral carcinoma | Camellia sinensis | Green tea | [154] |
Rubus sp. | Gel (Anthocyanins) | [155] | |
Oral mucositis | Matricaria recutita | Chamomile | [156,157] |
Vaccinium myrtillus, Macleaya cordata, Echinacea angustifolia | Mixture of herbs | [158] | |
Honey, olive oil, propolis, beeswax | Ointment | [159] | |
Burning Mouth Syndrome (BMS) | Capsicum sp. | Capsaicin | [160,161] |
Paullinia cupana, Trichilia catigua, Zingiber officinalis, Ptychopetalum olacoides | Mixture of herbs | [162] | |
Oral Submucous Fibrosis | Salvia sp. | Salvianolic acid | [163] |
Aloe vera | Aloe | [164] |
Patent | Jurisdiction * | Title | Publication Date | Reference |
---|---|---|---|---|
US9554986B2 | US | Oral care composition | 31 January 2017 | [234] |
US7074391B1 | US | Use of olive oil in the preparation of a product for oral hygiene for eliminating or reducing bacterial plaque and/or bacteria in the mouth | 11 July 2006 | [235] |
KR20160041408A | KR | Oral composition containing fermentative extract of galla rhoids as active ingredient | 18 April 2016 | [236] |
KR20180055521A | KR | Composition for prevention or treatment of oral disease comprising icaritin | 25 May 2018 | [237] |
CN113318020A | CN | Multifunctional tooth powder | 31 August 2021 | [238] |
KR20190041801A | KR | Composition for prevention or treatment of oral disease comprising Ginkgolide C | 23 April 2019 | [239] |
KR20180047704A | KR | Composition for prevention or treatment of oral disease comprising Scutellaria baicalensis extract | 10 May 2018 | [240] |
KR20180055519A | KR | Composition for prevention or treatment of oral disease comprising salvianolic acid A | 25 May 2018 | [241] |
KR20180055520A | KR | Composition for prevention or treatment of oral disease comprising neferine | 25 May 2018 | [242] |
JP2006306844A | JP | Oral hygiene composition | 9 November 2006 | [243] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leo, M.; D’Angeli, F.; Genovese, C.; Spila, A.; Miele, C.; Ramadan, D.; Ferroni, P.; Guadagni, F. Oral Health and Nutraceutical Agents. Int. J. Mol. Sci. 2024, 25, 9733. https://doi.org/10.3390/ijms25179733
Leo M, D’Angeli F, Genovese C, Spila A, Miele C, Ramadan D, Ferroni P, Guadagni F. Oral Health and Nutraceutical Agents. International Journal of Molecular Sciences. 2024; 25(17):9733. https://doi.org/10.3390/ijms25179733
Chicago/Turabian StyleLeo, Mariantonietta, Floriana D’Angeli, Carlo Genovese, Antonella Spila, Chiara Miele, Dania Ramadan, Patrizia Ferroni, and Fiorella Guadagni. 2024. "Oral Health and Nutraceutical Agents" International Journal of Molecular Sciences 25, no. 17: 9733. https://doi.org/10.3390/ijms25179733
APA StyleLeo, M., D’Angeli, F., Genovese, C., Spila, A., Miele, C., Ramadan, D., Ferroni, P., & Guadagni, F. (2024). Oral Health and Nutraceutical Agents. International Journal of Molecular Sciences, 25(17), 9733. https://doi.org/10.3390/ijms25179733