Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning
Abstract
:1. Introduction
2. Results and Discussion
2.1. Predicting Conformational Ensembles of the ABL Kinase Mutants Using Shallow MSA Subsampling AF2: Emerging Bias towards the Active ABL Form
2.2. Alanine Sequence Scanning Combined with Shallow MSA Subsampling Can Detect Population Shifts in State-Switching ABL Mutants
2.3. Principal Component Analysis and Comparison of the NMR Ensembles and AF2-Derived Conformational Ensembles for ABL States and State-Switching ABL Mutants
2.4. Network Analysis of the AF2 Conformational Ensembles for ABL Mutants: Mutational Sites Target Predicted Allosteric Hotspots and Induce State-Specific Allosteric Networks
3. Materials and Methods
3.1. MSA Shallow Subsampling Adaptation of AF2
3.2. AF2 with Randomized Alanine Sequence Scanning and Shallow Subsampling
3.3. Principal Component Analysis (PCA)
3.4. Protein Structure Network Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.; Kaiser, L.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Rives, A.; Meier, J.; Sercu, T.; Goyal, S.; Lin, Z.; Liu, J.; Guo, D.; Ott, M.; Zitnick, C.L.; Ma, J.; et al. Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences. Proc. Natl. Acad. Sci. USA 2021, 118, e2016239118. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef]
- Wu, R.; Ding, F.; Wang, R.; Shen, R.; Zhang, X.; Luo, S.; Su, C.; Wu, Z.; Xie, Q.; Berger, B.; et al. High-Resolution de Novo Structure Prediction from Primary Sequence. bioRxiv 2022. bioRxiv:2022.07.21.500999. [Google Scholar] [CrossRef]
- Fleishman, S.J.; Horovitz, A. Extending the New Generation of Structure Predictors to Account for Dynamics and Allostery. J. Mol. Biol. 2021, 433, 167007. [Google Scholar] [CrossRef]
- Sala, D.; Engelberger, F.; Mchaourab, H.S.; Meiler, J. Modeling Conformational States of Proteins with AlphaFold. Curr. Opin. Struct. Biol. 2023, 81, 102645. [Google Scholar] [CrossRef]
- Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking AlphaFold for Protein Complex Modeling Reveals Accuracy Determinants. Protein Sci. 2022, 31, e4379. [Google Scholar] [CrossRef]
- Kryshtafovych, A.; Montelione, G.T.; Rigden, D.J.; Mesdaghi, S.; Karaca, E.; Moult, J. Breaking the Conformational Ensemble Barrier: Ensemble Structure Modeling Challenges in CASP15. Proteins 2023, 91, 1903–1911. [Google Scholar] [CrossRef]
- Bret, H.; Gao, J.; Zea, D.J.; Andreani, J.; Guerois, R. From Interaction Networks to Interfaces, Scanning Intrinsically Disordered Regions Using AlphaFold2. Nat. Commun. 2024, 15, 597. [Google Scholar] [CrossRef] [PubMed]
- Saldaño, T.; Escobedo, N.; Marchetti, J.; Zea, D.J.; Mac Donagh, J.; Velez Rueda, A.J.; Gonik, E.; García Melani, A.; Novomisky Nechcoff, J.; Salas, M.N.; et al. Impact of Protein Conformational Diversity on AlphaFold Predictions. Bioinformatics 2022, 38, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, D.; Porter, L.L. AlphaFold2 Fails to Predict Protein Fold Switching. Protein Sci. 2022, 31, e4353. [Google Scholar] [CrossRef]
- Ma, P.; Li, D.; Brüschweiler, R. Predicting Protein Flexibility with AlphaFold. Proteins 2023, 91, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Versini, R.; Sritharan, S.; Aykac Fas, B.; Tubiana, T.; Aimeur, S.Z.; Henri, J.; Erard, M.; Nüsse, O.; Andreani, J.; Baaden, M.; et al. A Perspective on the Prospective Use of AI in Protein Structure Prediction. J. Chem. Inf. Model. 2024, 64, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Zhang, M.; Liu, Y.; Jang, H. AlphaFold, Artificial Intelligence (AI), and Allostery. J. Phys. Chem. B 2022, 126, 6372–6383. [Google Scholar] [CrossRef]
- Del Alamo, D.; Sala, D.; Mchaourab, H.S.; Meiler, J. Sampling Alternative Conformational States of Transporters and Receptors with AlphaFold2. eLife 2022, 11, e75751. [Google Scholar] [CrossRef]
- Stein, R.A.; Mchaourab, H.S. SPEACH_AF: Sampling Protein Ensembles and Conformational Heterogeneity with Alphafold2. PLoS Comput. Biol. 2022, 18, e1010483. [Google Scholar] [CrossRef]
- Wayment-Steele, H.K.; Ovchinnikov, S.; Colwell, L.; Kern, D. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 2024, 625, 832–839. [Google Scholar] [CrossRef]
- Sala, D.; Hildebrand, P.W.; Meiler, J. Biasing AlphaFold2 to Predict GPCRs and Kinases with User-Defined Functional or Structural Properties. Front. Mol. Biosci. 2023, 10, 1121962. [Google Scholar] [CrossRef]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. AlphaFold2 and Its Applications in the Fields of Biology and Medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Kornev, A.P. Protein Kinases: Evolution of Dynamic Regulatory Proteins. Trends Biochem. Sci. 2011, 36, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.S.; Wu, J.; Bruystens, J.G.H.; Del Rio, J.C.; Lu, T.-W.; Kornev, A.P.; Ten Eyck, L.F. From Structure to the Dynamic Regulation of a Molecular Switch: A Journey over 3 Decades. J. Biol. Chem. 2021, 296, 100746. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.K.; Bochar, D.A.; Vandecan, N.M.; Furtado, J.; Agius, M.P.; Phadke, S.; Soellner, M.B. Synergy and Antagonism between Allosteric and Active-Site Inhibitors of Abl Tyrosine Kinase. Angew. Chem. Int. Ed. 2021, 60, 20196–20199. [Google Scholar] [CrossRef]
- Kim, C.; Ludewig, H.; Hadzipasic, A.; Kutter, S.; Nguyen, V.; Kern, D. A Biophysical Framework for Double-Drugging Kinases. Proc. Natl. Acad. Sci. USA 2023, 120, e2304611120. [Google Scholar] [CrossRef]
- Paul, F.; Thomas, T.; Roux, B. Diversity of Long-Lived Intermediates along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD Simulations. J. Chem. Theory Comput. 2020, 16, 7852–7865. [Google Scholar] [CrossRef]
- Paul, F.; Meng, Y.; Roux, B. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of Apo-Abl. J. Chem. Theory Comput. 2020, 16, 1896–1912. [Google Scholar] [CrossRef]
- Saleh, T.; Rossi, P.; Kalodimos, C.G. Atomic View of the Energy Landscape in the Allosteric Regulation of Abl Kinase. Nat. Struct. Mol. Biol. 2017, 24, 893–901. [Google Scholar] [CrossRef]
- Xie, T.; Saleh, T.; Rossi, P.; Kalodimos, C.G. Conformational states dynamically populated by a kinase determine its function. Science 2020, 370, eabc2754. [Google Scholar] [CrossRef]
- Krishnan, K.; Tian, H.; Tao, P.; Verkhivker, G.M. Probing Conformational Landscapes and Mechanisms of Allosteric Communication in the Functional States of the ABL Kinase Domain Using Multiscale Simulations and Network-Based Mutational Profiling of Allosteric Residue Potentials. J. Chem. Phys. 2022, 157, 245101. [Google Scholar] [CrossRef]
- Faezov, B.; Dunbrack, R.L., Jr. AlphaFold2 Models of the Active Form of All 437 Catalytically Competent Human Protein Kinase Domains. bioRxiv 2023. bioRxiv:2023.07.21.550125. [Google Scholar] [CrossRef]
- Herrington, N.B.; Stein, D.; Li, Y.C.; Pandey, G.; Schlessinger, A. Exploring the Druggable Conformational Space of Protein Kinases Using AI-Generated Structures. bioRxiv 2023. bioRxiv:2023.08.31.555779. [Google Scholar] [CrossRef]
- Monteiro da Silva, G.; Cui, J.Y.; Dalgarno, D.C.; Lisi, G.P.; Rubenstein, B.M. High-Throughput Prediction of Protein Conformational Distributions with Subsampled AlphaFold2. Nat. Commun. 2024, 15, 2464. [Google Scholar] [CrossRef] [PubMed]
- Raisinghani, N.; Alshahrani, M.; Gupta, G.; Tian, H.; Xiao, S.; Tao, P.; Verkhivker, G. Interpretable Atomistic Prediction and Functional Analysis of Conformational Ensembles and Allosteric States in Protein Kinases Using AlphaFold2 Adaptation with Randomized Sequence Scanning and Local Frustration Profiling. bioRxiv 2024. bioRxiv:2024.02.15.580591. [Google Scholar] [CrossRef]
- Wang, L.; Wen, Z.; Liu, S.-W.; Zhang, L.; Finley, C.; Lee, H.-J.; Fan, H.-J.S. Overview of AlphaFold2 and breakthroughs in overcoming its limitations. Comput. Biol. Med. 2024, 176, 108620. [Google Scholar] [CrossRef] [PubMed]
- Buel, G.R.; Walters, K.J. Can AlphaFold2 Predict the Impact of Missense Mutations on Structure? Nat. Struct. Mol. Biol. 2022, 29, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Pak, M.A.; Markhieva, K.A.; Novikova, M.S.; Petrov, D.S.; Vorobyev, I.S.; Maksimova, E.S.; Kondrashov, F.A.; Ivankov, D.N. Using AlphaFold to Predict the Impact of Single Mutations on Protein Stability and Function. PLoS ONE 2023, 18, e0282689. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.A.; Mchaourab, H.S. Rosetta Energy Analysis of AlphaFold2 Models: Point Mutations and Conformational Ensembles. bioRxiv 2024. bioRxiv:2023.09.05.556364. [Google Scholar] [CrossRef]
- McBride, J.M.; Polev, K.; Abdirasulov, A.; Reinharz, V.; Grzybowski, B.A.; Tlusty, T. AlphaFold2 Can Predict Single-Mutation Effects. Phys. Rev. Lett. 2023, 131, 218401. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Tlusty, T. AI-Predicted Protein Deformation Encodes Energy Landscape Perturbation. Phys. Rev. Lett. 2024, 133, 098401. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMseqs2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. Scoring Function for Automated Assessment of Protein Structure Template Quality. Proteins 2004, 57, 702–710. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, Y. How Significant Is a Protein Structure Similarity with TM-Score = 0.5? Bioinformatics 2010, 26, 889–895. [Google Scholar] [CrossRef]
- Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein Dynamics Inferred from Theory and Experiments. Bioinformatics 2011, 27, 1575–1577. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R Package for the Comparative Analysis of Protein Structures. Bioinformatics 2006, 22, 2695–2696. [Google Scholar] [CrossRef]
- Vijayabaskar, M.S.; Vishveshwara, S. Interaction energy based protein structure networks. Biophys. J. 2010, 99, 3704–3715. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Eargle, J.; Black, A.A.; Luthey-Schulten, Z. Dynamical networks in tRNA:protein complexes. Proc. Natl. Acad. Sci. USA 2009, 106, 6620–6625. [Google Scholar] [CrossRef] [PubMed]
- Stetz, G.; Verkhivker, G.M. Computational analysis of residue interaction networks and coevolutionary relationships in the Hsp70 chaperones: A community-hopping model of allosteric regulation and communication. PLoS Comput. Biol. 2017, 13, e1005299. [Google Scholar] [CrossRef] [PubMed]
- Astl, L.; Verkhivker, G.M. Atomistic Modeling of the ABL Kinase Regulation by Allosteric Modulators Using Structural Perturbation Analysis and Community-Based Network Reconstruction of Allosteric Communications. J. Chem. Theory Comput. 2019, 15, 3362–3380. [Google Scholar] [CrossRef]
- Verkhivker, G.M.; Agajanian, S.; Oztas, D.Y.; Gupta, G. Comparative Perturbation-Based Modeling of the SARS-CoV-2 Spike Protein Binding with Host Receptor and Neutralizing Antibodies: Structurally Adaptable Allosteric Communication Hotspots Define Spike Sites Targeted by Global Circulating Mutations. Biochemistry 2021, 60, 1459–1484. [Google Scholar] [CrossRef]
- Lange, O.F.; Grubmuller, H. Generalized Correlation for Biomolecular Dynamics. Proteins 2006, 62, 1053–1061. [Google Scholar] [CrossRef]
- Lindahl, E.; Hess, B.; Van Der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7, 306–317. [Google Scholar] [CrossRef]
- East, K.W.; Newton, J.C.; Morzan, U.N.; Narkhede, Y.B.; Acharya, A.; Skeens, E.; Jogl, G.; Batista, V.S.; Palermo, G.; Lisi, G.P. Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics. J. Am. Chem. Soc. 2020, 142, 1348–1358. [Google Scholar] [CrossRef]
- Nierzwicki, Ł.; Arantes, P.R.; Saha, A.; Palermo, G. Establishing the allosteric mechanism in CRISPR-Cas9. WIREs Comput. Mol. Sci. 2021, 11, e1503. [Google Scholar] [CrossRef] [PubMed]
- Floyd, R.W. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [Google Scholar]
- Hagberg, A.; Schult, D.A.; Swart, P.J. Exploring Network Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Millman, J., Eds.; pp. 11–15. [Google Scholar]
- Girvan, M.; Newman, M.E. Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar]
- Newman, M.E.; Girvan, M. Finding and Evaluating Community Structure in Networks. Phys. Rev. E 2004, 69, 026113. [Google Scholar]
- Newman, M.E. Modularity and Community Structure in Networks. Proc. Natl. Acad. Sci. USA 2006, 103, 8577–8582. [Google Scholar]
- Jensen, P.; Morini, M.; Karsai, M.; Venturini, T.; Vespignani, A.; Jacomy, M.; Cointet, J.-P.; Mercklé, P.; Fleury, E. Detecting Global Bridges in Networks. J. Complex Netw. 2016, 4, 319–329. [Google Scholar]
- Rao, C.R. Diversity and Dissimilarity Coefficients: A Unified Approach. Theor. Popul. Biol. 1982, 21, 24–43. [Google Scholar] [CrossRef]
- Stirling, A. A general Framework for Analyzing Diversity in Science, Technology and Society. J. R. Soc. Interface 2007, 4, 707–719. [Google Scholar] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [PubMed]
- Kovács, I.A.; Palotai, R.; Szalay, M.S.; Csermely, P. Community landscapes: An integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE 2010, 5, e12528. [Google Scholar]
- Szalay-Beko, M.; Palotai, R.; Szappanos, B.; Kovacs, I.A.; Papp, B.; Csermely, P. ModuLand plug-in for Cytoscape: Determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics 2012, 28, 2202–2204. [Google Scholar] [CrossRef] [PubMed]
- Clementel, D.; Del Conte, A.; Monzon, A.M.; Camagni, G.F.; Minervini, G.; Piovesan, D.; Tosatto, S.C.E. RING 3.0: Fast Generation of Probabilistic Residue Interaction Networks from Structural Ensembles. Nucleic Acids Res. 2022, 50, W651–W656. [Google Scholar] [CrossRef] [PubMed]
- Del Conte, A.; Camagni, G.F.; Clementel, D.; Minervini, G.; Monzon, A.M.; Ferrari, C.; Piovesan, D.; Tosatto, S.C.E. RING 4.0: Faster Residue Interaction Networks with Novel Interaction Types across over 35,000 Different Chemical Structures. Nucleic Acids Res. 2024, 52, W306–W312. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.P.; Stein, R.A.; Meiler, J.; Mchaourab, H.S. Approximating Projections of Conformational Boltzmann Distributions with AlphaFold2 Predictions: Opportunities and Limitations. J. Chem. Theory Comput. 2024, 20, 1434–1447. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Roy, R.; Al-Hashimi, H.M. AlphaFold3 Takes a Step toward Decoding Molecular Behavior and Biological Computation. Nat. Struct. Mol. Biol. 2024, 31, 997–1000. [Google Scholar] [CrossRef]
- Callaway, E. Who Will Make AlphaFold3 Open Source? Scientists Race to Crack AI Model. Nature 2024, 630, 14–15. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Xue, Y.; Ye, X.; Zhu, K.; Li, Y.; Liu, Y.; Zhang, X.; Fang, X. Technical Report of HelixFold3 for Biomolecular Structure Prediction. arXiv 2024, arXiv:2408.16975. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raisinghani, N.; Alshahrani, M.; Gupta, G.; Verkhivker, G. Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning. Int. J. Mol. Sci. 2024, 25, 10082. https://doi.org/10.3390/ijms251810082
Raisinghani N, Alshahrani M, Gupta G, Verkhivker G. Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning. International Journal of Molecular Sciences. 2024; 25(18):10082. https://doi.org/10.3390/ijms251810082
Chicago/Turabian StyleRaisinghani, Nishank, Mohammed Alshahrani, Grace Gupta, and Gennady Verkhivker. 2024. "Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning" International Journal of Molecular Sciences 25, no. 18: 10082. https://doi.org/10.3390/ijms251810082
APA StyleRaisinghani, N., Alshahrani, M., Gupta, G., & Verkhivker, G. (2024). Predicting Mutation-Induced Allosteric Changes in Structures and Conformational Ensembles of the ABL Kinase Using AlphaFold2 Adaptations with Alanine Sequence Scanning. International Journal of Molecular Sciences, 25(18), 10082. https://doi.org/10.3390/ijms251810082