Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine
Abstract
:1. Introduction
2. Advantages of Mass Spectrometry in Clinical Applications
2.1. High Specificity and Sensitivity
2.2. Multiplexing Capabilities
2.3. Versatility
2.4. Isotope Dilution Internal Standardization
3. Applications in Biomarker Discovery and Personalized Medicine
3.1. Proteomics and Biomarker Discovery
3.2. Therapeutic Drug Monitoring
3.3. Endocrinology
3.4. Microbiology
4. Enhancing Accessibility and Integration of Mass Spectrometry in Clinical Laboratories
4.1. Simplified User Interfaces
4.2. Improved Automation
4.3. Novel Ionization Techniques
4.4. Different Mass Spectrometry Advantages and Disadvantages
4.5. Integration with Other Technologies
4.6. Data Analysis and Artificial Intelligence
5. Challenges and Opportunities in Implementing Mass Spectrometry in Clinical Laboratories
5.1. Complexity and Expertise
5.2. Standardization
5.3. Automation
5.4. Cost
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, X.; Zhang, W.; Ouyang, Z. Recent advances in on-site mass spectrometry analysis for clinical applications. TrAC Trends Anal. Chem. 2022, 149, 116548. [Google Scholar] [CrossRef]
- Wenk, D.; Zuo, C.; Kislinger, T.; Sepiashvili, L. Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. Clin. Proteom. 2024, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.N.; Thomas, S.N.; French, D.; French, D.; Jannetto, P.J.; Jannetto, P.J.; Rappold, B.A.; Rappold, B.A.; Clarke, W.A.; Clarke, W.A. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. Nat. Rev. Methods Prim. 2022, 2, 96. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, L.; Tan, Z.; Zhou, H.; Zhan, X.; Yin, J. Mass Spectrometry-Based Personalized Drug Therapy. Mass Spectrom. Rev. 2020, 39, 523–552. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, A.G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin. Proteom. 2023, 20, 32. [Google Scholar] [CrossRef] [PubMed]
- Rischke, S.; Hahnefeld, L.; Burla, B.; Behrens, F.; Gurke, R.; Garrett, T. Small molecule biomarker discovery: Proposed workflow for LC-MS-based clinical research projects. J. Mass Spectrom. Adv. Clin. Lab. 2023, 28, 47–55. [Google Scholar] [CrossRef]
- Grebe, S.K.; Singh, R.J. LC-MS/MS in the Clinical Laboratory—Where to From Here? Clin. Biochem. Rev. 2011, 32, 5–31. [Google Scholar]
- Beck, O.; Olin, A.-C.; Mirgorodskaya, E. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath. Clin. Chem. 2016, 62, 84–91. [Google Scholar] [CrossRef]
- Koomen, D.C.; May, J.C.; McLean, J.A. Insights and prospects for ion mobility-mass spectrometry in clinical chemistry. Expert Rev. Proteom. 2022, 19, 17–31. [Google Scholar] [CrossRef]
- Chouinard, C.D.; Wei, M.S.; Beekman, C.R.; Kemperman, R.H.J.; Yost, R.A. Ion Mobility in Clinical Analysis: Current Progress and Future Perspectives. Clin. Chem. 2016, 62, 124–133. [Google Scholar] [CrossRef]
- Huffman, R.G.; Leduc, A.; Wichmann, C.; Di Gioia, M.; Borriello, F.; Specht, H.; Derks, J.; Khan, S.; Khoury, L.; Emmott, E.; et al. Prioritized mass spectrometry increases the depth, sensitivity and data completeness of single-cell proteomics. Nat. Methods 2023, 20, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Arul, A.B.; Robinson, R.A.S. Sample Multiplexing Strategies in Quantitative Proteomics. Anal. Chem. 2018, 91, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Recchia, M.J.J.; Baumeister, T.U.H.; Liu, D.Y.; Linington, R.G. MultiplexMS: A Mass Spectrometry-Based Multiplexing Strategy for Ultra-High-Throughput Analysis of Complex Mixtures. Anal. Chem. 2023, 95, 11908–11917. [Google Scholar] [CrossRef]
- Tsumagari, K.; Isobe, Y.; Imami, K.; Arita, M. Exploring protein lipidation by mass spectrometry-based proteomics. J. Biochem. 2023, 175, 225–233. [Google Scholar] [CrossRef]
- Egertson, J.D.; Kuehn, A.; Merrihew, G.E.; Bateman, N.W.; MacLean, B.X.; Ting, Y.S.; Canterbury, J.D.; Marsh, D.M.; Kellmann, M.; Zabrouskov, V.; et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 2013, 10, 744–746. [Google Scholar] [CrossRef] [PubMed]
- Swiner, D.J.; Jackson, S.; Burris, B.J.; Badu-Tawiah, A.K. Applications of Mass Spectrometry for Clinical Diagnostics: The Influence of Turnaround Time. Anal. Chem. 2019, 92, 183–202. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, J.H.; Kemper, G.E.; Hummon, A.B. Quantitative mass spectrometry imaging: Therapeutics & biomolecules. Chem. Commun. 2024, 60, 2137–2151. [Google Scholar] [CrossRef]
- Banerjee, S. Empowering Clinical Diagnostics with Mass Spectrometry. ACS Omega 2020, 5, 2041–2048. [Google Scholar] [CrossRef]
- Paglia, G.; Smith, A.J.; Astarita, G. Ion mobility mass spectrometry in the omics era: Challenges and opportunities for metabolomics and lipidomics. Mass Spectrom. Rev. 2021, 41, 722–765. [Google Scholar] [CrossRef]
- Zhang, G.; Annan, R.S.; Carr, S.A.; Neubert, T.A. Overview of Peptide and Protein Analysis by Mass Spectrometry. Curr. Protoc. Mol. Biol. 2014, 108, 10.21.1–10.21.30. [Google Scholar] [CrossRef]
- Lanekoff, I.; Stevens, S.L.; Stenzel-Poore, M.P.; Laskin, J. Matrix effects in biological mass spectrometry imaging: Identification and compensation. Analyst 2014, 139, 3528–3532. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Chen, X.; Liu, T.; Jiang, J.; Cui, X.; Zhao, Q.; Hu, P. Liquid chromatography-tandem mass spectrometry methods for quantification of roxadustat (FG-4592) in human plasma and urine and the applications in two clinical pharmacokinetic studies. J. Chromatogr. B 2022, 1203, 123274. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.L.; Markus, C.; Lim, C.Y.; Tan, R.Z.; Sethi, S.K.; Loh, T.P.; The IFCC Working Group on Method Evaluation Protocols. Calibration Practices in Clinical Mass Spectrometry: Review and Recommendations. Ann. Lab. Med. 2022, 43, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, J.; Carrascal, M.; Abian, J. Isotope dilution mass spectrometry for absolute quantification in proteomics: Concepts and strategies. J. Proteom. 2014, 96, 184–199. [Google Scholar] [CrossRef] [PubMed]
- Macklin, A.; Khan, S.; Kislinger, T. Recent advances in mass spectrometry based clinical proteomics: Applications to cancer research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin. Proteom. 2016, 13, 1. [Google Scholar] [CrossRef]
- Pejchinovski, M.; Magalhães, P.; Metzger, J. Editorial: Mass spectrometry-based proteomics in drug discovery and development. Front. Med. 2024, 11, 1448152. [Google Scholar] [CrossRef]
- Gobom, J.; Brinkmalm, A.; Brinkmalm, G.; Blennow, K.; Zetterberg, H. Alzheimer’s Disease Biomarker Analysis Using Targeted Mass Spectrometry. Mol. Cell. Proteom. 2024, 23, 100721. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G. Applications of multi-omics analysis in human diseases. Medcomm 2023, 4, e315. [Google Scholar] [CrossRef]
- Wang, W.; Rong, Z.; Wang, G.; Hou, Y.; Yang, F.; Qiu, M. Cancer metabolites: Promising biomarkers for cancer liquid biopsy. Biomark. Res. 2023, 11, 66. [Google Scholar] [CrossRef]
- Petrella, G.; Ciufolini, G.; Vago, R.; Cicero, D.O. Urinary Metabolic Markers of Bladder Cancer: A Reflection of the Tumor or the Response of the Body? Metabolites 2021, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Domingues, M.R.; Vitorino, R.; Guerra, I.M.S.; Santos, L.L.; Ferreira, J.A.; Ferreira, R. Unmasking the Metabolite Signature of Bladder Cancer: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 3347. [Google Scholar] [CrossRef]
- Müller, D.M.; Rentsch, K.M. Therapeutic drug monitoring by LC–MS–MS with special focus on anti-infective drugs. Anal. Bioanal. Chem. 2010, 398, 2573–2594. [Google Scholar] [CrossRef]
- Victoria Zhang, Y.; Garg, U. Mass Spectrometry in Clinical Laboratory: Applications in Therapeutic Drug Monitoring and Toxicology. Methods Mol. Biol. 2024, 2737, 1–13. [Google Scholar] [CrossRef]
- Al-Daffaie, F.M.; Al-Mudhafar, S.F.; Alhomsi, A.; Tarazi, H.; Almehdi, A.M.; El-Huneidi, W.; Abu-Gharbieh, E.; Bustanji, Y.; Alqudah, M.A.Y.; Abuhelwa, A.Y.; et al. Metabolomics and Proteomics in Prostate Cancer Research: Overview, Analytical Techniques, Data Analysis, and Recent Clinical Applications. Int. J. Mol. Sci. 2024, 25, 5071. [Google Scholar] [CrossRef] [PubMed]
- MacMullan, M.A.; Dunn, Z.S.; Graham, N.; Yang, L.; Wang, P. Quantitative Proteomics and Metabolomics Reveal Biomarkers of Disease as Potential Immunotherapy Targets and Indicators of Therapeutic Efficacy. Theranostics 2019, 9, 7872–7888. [Google Scholar] [CrossRef] [PubMed]
- Li, K.W.; Gonzalez-Lozano, M.A.; Koopmans, F.; Smit, A.B. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Front. Mol. Neurosci. 2020, 13, 564446. [Google Scholar] [CrossRef]
- Shi, T.; Song, E.; Nie, S.; Rodland, K.D.; Liu, T.; Qian, W.-J.; Smith, R.D. Advances in targeted proteomics and applications to biomedical research. Proteomics 2016, 16, 2160–2182. [Google Scholar] [CrossRef]
- Zhang, F.; Ge, W.; Huang, L.; Li, D.; Liu, L.; Dong, Z.; Xu, L.; Ding, X.; Zhang, C.; Sun, Y.; et al. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry. Mol. Cell. Proteom. 2023, 22, 100623. [Google Scholar] [CrossRef]
- Demicheva, E.; Dordiuk, V.; Espino, F.P.; Ushenin, K.; Aboushanab, S.; Shevyrin, V.; Buhler, A.; Mukhlynina, E.; Solovyova, O.; Danilova, I.; et al. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024, 14, 54. [Google Scholar] [CrossRef]
- French, D. Clinical utility of laboratory developed mass spectrometry assays for steroid hormone testing. J. Mass Spectrom. Adv. Clin. Lab. 2023, 28, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.T. A brief update on mass spectrometry applications to routine clinical endocrinology. Clin. Mass Spectrom. 2019, 13, 18–20. [Google Scholar] [CrossRef] [PubMed]
- D’Aurizio, F.; Cantù, M. Clinical endocrinology and hormones quantitation: The increasing role of mass spectrometry. Minerva Endocrinol. 2018, 43, 261–284. [Google Scholar] [CrossRef] [PubMed]
- Yucel, K.; Abusoglu, S.; Unlu, A. Comparison of Immunoassay and Liquid Chromatography-Tandem Mass Spectrometry Methods in the Measurement of Serum Androstenedione Levels. Clin. Lab. 2018, 64, 69–75. [Google Scholar] [CrossRef]
- Bowerbank, S.L.; Carlin, M.G.; Dean, J.R. A direct comparison of liquid chromatography-mass spectrometry with clinical routine testing immunoassay methods for the detection and quantification of thyroid hormones in blood serum. Anal. Bioanal. Chem. 2019, 411, 2839–2853. [Google Scholar] [CrossRef]
- Ciocan-Cartita, C.A.; Jurj, A.; Buse, M.; Gulei, D.; Braicu, C.; Raduly, L.; Cojocneanu, R.; Pruteanu, L.L.; Iuga, C.A.; Coza, O.; et al. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer “Omics”. Int. J. Mol. Sci. 2019, 20, 2576. [Google Scholar] [CrossRef] [PubMed]
- Hristova, J.; Svinarov, D. Enhancing precision medicine through clinical mass spectrometry platform. Biotechnol. Biotechnol. Equip. 2022, 36, 107–117. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Whiteaker, J.R.; Ivey, R.G.; Burian, A.; Chowdhury, S.; Tsai, C.-F.; Liu, T.; Lin, C.; Murillo, O.D.; Lundeen, R.A.; et al. Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Anal. Chem. 2022, 94, 9540–9547. [Google Scholar] [CrossRef]
- Selvam, S.; Ayyavoo, V. Biomarkers in neurodegenerative diseases: A broad overview. Explor. Neuroprot. Ther. 2024, 4, 119–147. [Google Scholar] [CrossRef]
- Plubell, D.L.; Huang, E.; Spencer, S.E.; Poston, K.; Montine, T.J.; MacCoss, M.J. Data Independent Acquisition to Inform the Development of Targeted Proteomics Assays Using a Triple Quadrupole Mass Spectrometer. bioRxiv 2024. [Google Scholar] [CrossRef]
- Martín-García, D.; García-Aranda, M.; Redondo, M. Biomarker Identification through Proteomics in Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 2283. [Google Scholar] [CrossRef] [PubMed]
- Djambazova, K.V.; Van Ardenne, J.M.; Spraggins, J.M. Advances in imaging mass spectrometry for biomedical and clinical research. TrAC Trends Anal. Chem. 2023, 169, 117344. [Google Scholar] [CrossRef]
- Qi, K.; Wu, L.; Liu, C.; Pan, Y. Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; So, P.-K.; Habib, A.; Xu, Y.; Bianchi, F. Editorial: Ambient ionization mass spectrometry: From fundamentals to real-life applications. Front. Chem. 2023, 11, 1182894. [Google Scholar] [CrossRef]
- Chaves, A.; Martins, R.; Maciel, L.; Silva, A.; Gondim, D.; Fortalo, J.; Santos, S.; Roque, J.; Vaz, B. Ambient Ionization Mass Spectrometry: Applications and New Trends for Environmental Matrices Analysis. Braz. J. Anal. Chem. 2022, 9, 52–77. [Google Scholar] [CrossRef]
- Li, D.; Yi, J.; Han, G.; Qiao, L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas. Sci. Au 2022, 2, 385–404. [Google Scholar] [CrossRef]
- Elbehiry, A.; Aldubaib, M.; Abalkhail, A.; Marzouk, E.; Albeloushi, A.; Moussa, I.; Ibrahem, M.; Albazie, H.; Alqarni, A.; Anagreyyah, S.; et al. How MALDI-TOF Mass Spectrometry Technology Contributes to Microbial Infection Control in Healthcare Settings. Vaccines 2022, 10, 1881. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, A.; Chezzi, C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024, 12, 322. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, V.; Das, A.; Sen, M.; Agarwal, J. Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) as an Indispensable Tool in Diagnostic Bacteriology: A Comparative Analysis with Conventional Technique. Cureus 2023, 15, 36984. [Google Scholar] [CrossRef]
- Hou, T.-Y.; Chiang-Ni, C.; Teng, S.-H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef]
- Diehl, C.; Martins, A.; Almeida, A.; Silva, T.; Ribeiro, Ó.; Santinha, G.; Rocha, N.; Silva, A.G. Defining Recommendations to Guide User Interface Design: Multimethod Approach. JMIR Hum. Factors 2022, 9, e37894. [Google Scholar] [CrossRef]
- Silva, A.G.; Caravau, H.; Martins, A.; Almeida, A.M.P.; Silva, T.; Ribeiro, Ó.; Santinha, G.; Rocha, N.P. Procedures of User-Centered Usability Assessment for Digital Solutions: Scoping Review of Reviews Reporting on Digital Solutions Relevant for Older Adults. JMIR Hum. Factors 2021, 8, e22774. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Murray, C.I.; Karpov, O.A.; Van Eyk, J.E. Automated proteomic sample preparation: The key component for high throughput and quantitative mass spectrometry analysis. Mass Spectrom. Rev. 2021, 42, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Waldenmaier, H.E.; Gorre, E.; Poltash, M.L.; Gunawardena, H.P.; Zhai, X.A.; Li, J.; Zhai, B.; Beil, E.J.; Terzo, J.C.; Lawler, R.; et al. “Lab of the Future”—Today: Fully Automated System for High-Throughput Mass Spectrometry Analysis of Biotherapeutics. J. Am. Soc. Mass Spectrom. 2023, 34, 1073–1085. [Google Scholar] [CrossRef] [PubMed]
- Reilly, L.; Lara, E.; Ramos, D.; Li, Z.; Pantazis, C.B.; Stadler, J.; Santiana, M.; Roberts, J.; Faghri, F.; Hao, Y.; et al. A fully automated FAIMS-DIA mass spectrometry-based proteomic pipeline. Cell Rep. Methods 2023, 3, 100593. [Google Scholar] [CrossRef]
- Guo, X.; Wang, X.; Tian, C.; Dai, J.; Zhao, Z.; Duan, Y. Development of mass spectrometry imaging techniques and its latest applications. Talanta 2023, 264, 124721. [Google Scholar] [CrossRef]
- Feider, C.L.; Krieger, A.C.; DeHoog, R.J.; Eberlin, L.S. Ambient Ionization Mass Spectrometry: Recent Developments and Applications. Anal. Chem. 2019, 91, 4266–4290. [Google Scholar] [CrossRef]
- Shimma, S. Mass Spectrometry Imaging. Mass Spectrom. 2022, 11, A0102. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, H.; Maas, J.D.; Chappell, W.J.; Manicke, N.E.; Cooks, R.G.; Ouyang, Z. Paper spray ionization devices for direct, biomedical analysis using mass spectrometry. Int. J. Mass Spectrom. 2011, 312, 201–207. [Google Scholar] [CrossRef]
- Nguyen, T.M.H.; Song, W.-Y.; Kim, T.-Y. Characterization of Spray Modes and Factors Affecting the Ionization Efficiency of Paper Spray Ionization. Front. Chem. 2022, 10, 864184. [Google Scholar] [CrossRef]
- Chiang, S.; Zhang, W.; Ouyang, Z. Paper spray ionization mass spectrometry: Recent advances and clinical applications. Expert Rev. Proteom. 2018, 15, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rector, J.; Lin, J.Q.; Young, J.H.; Sans, M.; Katta, N.; Giese, N.; Yu, W.; Nagi, C.; Suliburk, J.; et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci. Transl. Med. 2017, 9, eaan3968. [Google Scholar] [CrossRef] [PubMed]
- Garza, K.Y.; King, M.E.; Nagi, C.; DeHoog, R.J.; Zhang, J.; Sans, M.; Krieger, A.; Feider, C.L.; Bensussan, A.V.; Keating, M.F.; et al. Intraoperative Evaluation of Breast Tissues During Breast Cancer Operations Using the MasSpec Pen. JAMA Netw. Open 2024, 7, e242684. [Google Scholar] [CrossRef]
- Frey, B.S.; Damon, D.E.; Badu-Tawiah, A.K. Emerging trends in paper spray mass spectrometry: Microsampling, storage, direct analysis, and applications. Mass Spectrom. Rev. 2019, 39, 336–370. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Cheng, T.-L.; Chang, H.-C.; Shiea, J. Using Laser-Induced Acoustic Desorption/Electrospray Ionization Mass Spectrometry to Characterize Small Organic and Large Biological Compounds in the Solid State and in Solution Under Ambient Conditions. Anal. Chem. 2008, 81, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Lu, Q.; Lin, Z.; Hang, W.; Huang, B. Laser-induced acoustic desorption coupled with electrospray ionization mass spectrometry for rapid qualitative and quantitative analysis of glucocorticoids illegally added in creams. Analyst 2020, 145, 6625–6631. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Yannell, K.E.; Jarmusch, A.K.; Pirro, V.; Ouyang, Z.; Cooks, R.G. Ambient Ionization Mass Spectrometry for Point-of-Care Diagnostics and Other Clinical Measurements. Clin. Chem. 2016, 62, 99–110. [Google Scholar] [CrossRef]
- Moore, J.L.; Patterson, N.H.; Norris, J.L.; Caprioli, R.M. Prospective on Imaging Mass Spectrometry in Clinical Diagnostics. Mol. Cell. Proteom. 2023, 22, 100576. [Google Scholar] [CrossRef]
- Lee, S.; Chintalapudi, K.; Badu-Tawiah, A.K. Clinical Chemistry for Developing Countries: Mass Spectrometry. Annu. Rev. Anal. Chem. 2021, 14, 437–465. [Google Scholar] [CrossRef]
- Romero, K.I.; Fernandez-Maestre, R. Ion mobility spectrometry: The diagnostic tool of third millennium medicine. Rev. Assoc. Med. Bras. 2018, 64, 861–868. [Google Scholar] [CrossRef]
- Hrušková, H.; Voráčová, I.; Řemínek, R.; Foret, F. Current applications of capillary electrophoresis-mass spectrometry for the analysis of biologically important analytes in urine (2017 to mid-2021): A review. J. Sep. Sci. 2021, 45, 305–324. [Google Scholar] [CrossRef]
- Mischak, H.; Coon, J.J.; Novak, J.; Weissinger, E.M.; Schanstra, J.P.; Dominiczak, A.F. Capillary electrophoresis–mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: An update of recent developments. Mass Spectrom. Rev. 2008, 28, 703–724. [Google Scholar] [CrossRef] [PubMed]
- Guillarme, D.; Nguyen, D.T.-T.; Rudaz, S.; Veuthey, J.-L. Recent developments in liquid chromatography—Impact on qualitative and quantitative performance. J. Chromatogr. A 2007, 1149, 20–29. [Google Scholar] [CrossRef]
- Nowak, P.M.; Sekuła, E.; Kościelniak, P. Assessment and Comparison of the Overall Analytical Potential of Capillary Electrophoresis and High-Performance Liquid Chromatography Using the RGB Model: How Much Can We Find Out? Chromatographia 2020, 83, 1133–1144. [Google Scholar] [CrossRef]
- Wei, B.; Goyon, A.; Zhang, K. Analysis of therapeutic nucleic acids by capillary electrophoresis. J. Pharm. Biomed. Anal. 2022, 219, 114928. [Google Scholar] [CrossRef] [PubMed]
- Voeten, R.L.C.; Ventouri, I.K.; Haselberg, R.; Somsen, G.W. Capillary Electrophoresis: Trends and Recent Advances. Anal. Chem. 2018, 90, 1464–1481. [Google Scholar] [CrossRef]
- Kahle, J.; Maul, K.J.; Wätzig, H. The next generation of capillary electrophoresis instruments: Performance of CE-SDS protein analysis. Electrophoresis 2017, 39, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhong, W. Recent. (2018–2020) development in capillary electrophoresis. Anal. Bioanal. Chem. 2021, 414, 115–130. [Google Scholar] [CrossRef]
- Chen, D.; McCool, E.N.; Yang, Z.; Shen, X.; Lubeckyj, R.A.; Xu, T.; Wang, Q.; Sun, L. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom. Rev. 2021, 42, 617–642. [Google Scholar] [CrossRef]
- Ebbels, T.M.; van der Hooft, J.J.; Chatelaine, H.; Broeckling, C.; Zamboni, N.; Hassoun, S.; Mathé, E.A. Recent advances in mass spectrometry-based computational metabolomics. Curr. Opin. Chem. Biol. 2023, 74, 102288. [Google Scholar] [CrossRef]
- Zhang, X.; Jonassen, I.; Goksoyr, A. Machine Learning Approaches for Biomarker Discovery Using Gene Expression Data. In Bioinformatics; Helder, I.N., Ed.; Exon Publications: Brisbane, Australia, 2021. [Google Scholar]
- Beck, A.G.; Muhoberac, M.; Randolph, C.E.; Beveridge, C.H.; Wijewardhane, P.R.; Kenttämaa, H.I.; Chopra, G. Recent Developments in Machine Learning for Mass Spectrometry. ACS Meas. Sci. Au 2024, 4, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Swan, A.L.; Mobasheri, A.; Allaway, D.; Liddell, S.; Bacardit, J. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology. OMICS A J. Integr. Biol. 2013, 17, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Naji, Y.; Mahdaoui, M.; Klevor, R.; Kissani, N.; Raymond, K. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus 2023, 15, e45412. [Google Scholar] [CrossRef]
- Bonacchi, R.; Filippi, M.; Rocca, M.A. Role of artificial intelligence in MS clinical practice. NeuroImage Clin. 2022, 35, 103065. [Google Scholar] [CrossRef]
- Adam, G.; Rampášek, L.; Safikhani, Z.; Smirnov, P.; Haibe-Kains, B.; Goldenberg, A. Machine learning approaches to drug response prediction: Challenges and recent progress. npj Precis. Oncol. 2020, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Boiko, D.A.; Kozlov, K.S.; Burykina, J.V.; Ilyushenkova, V.V.; Ananikov, V.P. Fully Automated Unconstrained Analysis of High-Resolution Mass Spectrometry Data with Machine Learning. J. Am. Chem. Soc. 2022, 144, 14590–14606. [Google Scholar] [CrossRef]
- Torun, F.M.; Winter, S.V.; Doll, S.; Riese, F.M.; Vorobyev, A.; Mueller-Reif, J.B.; Geyer, P.E.; Strauss, M.T. Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data. J. Proteome Res. 2022, 22, 359–367. [Google Scholar] [CrossRef]
- Abdelmoula, W.M.; Lopez, B.G.-C.; Randall, E.C.; Kapur, T.; Sarkaria, J.N.; White, F.M.; Agar, J.N.; Wells, W.M.; Agar, N.Y.R. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat. Commun. 2021, 12, 5544. [Google Scholar] [CrossRef]
- Chace, D.H. Mass Spectrometry in the Clinical Laboratory. Chem. Rev. 2001, 101, 445–478. [Google Scholar] [CrossRef]
- Annesley, T. Mass Spectrometry in the Clinical Laboratory: How Have We Done, and Where Do We Need to Be? Clin. Chem. 2009, 55, 1236–1239. [Google Scholar] [CrossRef]
- Clarke, W.; Rhea, J.M.; Molinaro, R. Challenges in implementing clinical liquid chromatography–tandem mass spectrometry methods—seeing the light at the end of the tunnel. J. Mass Spectrom. 2013, 48, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Mugueta, C.; González, A.; Deza, S.; Roca, C.A.; Contreras, T.; Puig, N.; Varo, N. Mass spectrometry in clinical protein laboratories. Adv. Lab. Med./Av. Med. Lab. 2024, 5, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Vesper, H.W.; Myers, G.L.; Miller, W.G. Current practices and challenges in the standardization and harmonization of clinical laboratory tests. Am. J. Clin. Nutr. 2016, 104, 907S–912S. [Google Scholar] [CrossRef] [PubMed]
- Annesley, T.M.; Cooks, R.G.; Herold, D.A.; Hoofnagle, A.N. Clinical Mass Spectrometry—Achieving Prominence in Laboratory Medicine. Clin. Chem. 2016, 62, 1–3. [Google Scholar] [CrossRef]
- Bittremieux, W.; Tabb, D.L.; Impens, F.; Staes, A.; Timmerman, E.; Martens, L.; Laukens, K. Quality control in mass spectrometry-based proteomics. Mass Spectrom. Rev. 2017, 37, 697–711. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Heaney, L.M. Mass spectrometry in the clinical laboratory. A short journey through the contribution to the scientific literature by CCLM. Clin. Chem. Lab. Med. 2022, 61, 873–879. [Google Scholar] [CrossRef]
- Vicente, F.B.; Lin, D.C.; Haymond, S. Automation of chromatographic peak review and order to result data transfer in a clinical mass spectrometry laboratory. Clin. Chim. Acta 2019, 498, 84–89. [Google Scholar] [CrossRef]
- Lunt, A.M.; Fakhruldeen, H.; Pizzuto, G.; Longley, L.; White, A.; Rankin, N.; Clowes, R.; Alston, B.; Gigli, L.; Day, G.M.; et al. Modular, multi-robot integration of laboratories: An autonomous workflow for solid-state chemistry. Chem. Sci. 2023, 15, 2456–2463. [Google Scholar] [CrossRef]
- Junger, S.; Hoene, M.; Shipkova, M.; Danzl, G.; Schöberl, C.; Peter, A.; Lehmann, R.; Wieland, E.; Braitmaier, H. Automated LC-MS/MS: Ready for the clinical routine Laboratory? J. Mass Spectrom. Adv. Clin. Lab. 2023, 30, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Pursell, M.E.; DeVor, A.; Awoyemi, O.; Valentine, S.J.; Li, P. Portable mass spectrometry system: Instrumentation, applications, and path to ‘omics analysis. Proteomics 2022, 22, e2200112. [Google Scholar] [CrossRef]
- Houfani, A.A.; Foster, L.J. Review of the Real and Sometimes Hidden Costs in Proteomics Experimental Workflows. Methods Mol. Biol. 2022, 2456, 1–14. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, A.; Kim, W.; Park, J.; Park, Y.; Lee, W.; Lee, S.; Kim, H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. Int. J. Mol. Sci. 2024, 25, 9880. https://doi.org/10.3390/ijms25189880
Son A, Kim W, Park J, Park Y, Lee W, Lee S, Kim H. Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. International Journal of Molecular Sciences. 2024; 25(18):9880. https://doi.org/10.3390/ijms25189880
Chicago/Turabian StyleSon, Ahrum, Woojin Kim, Jongham Park, Yongho Park, Wonseok Lee, Sangwoon Lee, and Hyunsoo Kim. 2024. "Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine" International Journal of Molecular Sciences 25, no. 18: 9880. https://doi.org/10.3390/ijms25189880
APA StyleSon, A., Kim, W., Park, J., Park, Y., Lee, W., Lee, S., & Kim, H. (2024). Mass Spectrometry Advancements and Applications for Biomarker Discovery, Diagnostic Innovations, and Personalized Medicine. International Journal of Molecular Sciences, 25(18), 9880. https://doi.org/10.3390/ijms25189880