Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Bariatric Surgery
3.2. The Repercussion of Bariatric Surgery on Drug Pharmacokinetics
3.2.1. Anatomical and Physiological Alterations Following Bariatric Surgery with Potential Implications Regarding Drug Pharmacokinetics
3.2.2. Molecular Mechanisms Affecting Drug Pharmacokinetics after Bariatric Surgery
3.2.3. General Guidelines on Drug Management after Bariatric Surgery
3.3. Influence of Bariatric Procedures on Lipid Profile
3.4. Molecular Pharmacokinetic and Pharmacodynamic Changes of Statin Therapy Following Bariatric Surgery
3.5. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
BMI | body mass index |
T2DM | type II diabetes mellitus |
US | United States |
FDA | The Food and Drug Administration |
SG | sleeve gastrectomy |
RYGB | roux-en-Y gastric bypass |
LAGB | laparoscopic adjustable gastric banding |
BDP-DS | biliopancreatic diversion with duodenal switch |
P/D1 | programmed cell death protein 1 |
AUC | area under the curve |
CYP | cytochrome P450 |
UGT | uridine diphosphate glucuronosyltransferase |
P-gp | P-glycoprotein |
GLP-1 | glucagon-like peptide-1 |
GIP | glucose-dependent insulinotropic polypeptide |
TG | triglyceride |
HDL-c | high-density lipoprotein cholesterol |
LDL-c | low-density-lipoprotein cholesterol |
CVR | cardiovascular risk |
HMG-CoA | hydroxymethylglutaryl-CoA |
SAMs | statin-associated muscle symptoms |
BCS | The Biopharmaceutics Classification System |
ADAM | The Advanced Dissolution Absorption and Metabolism |
References
- Morrish, G.A.; Pai, M.P.; Green, B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin. Drug Metab. Toxicol. 2011, 7, 697–706. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 February 2024).
- Mohajan, D.; Mohajan, H.K. Body Mass Index (BMI) Is a Popular Anthropometric Tool to Measure Obesity among Adults. J. Innov. Med. Res. 2023, 2, 25–33. [Google Scholar] [CrossRef]
- Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body Mass Index, Waist Circumference and waist:hip ratio as predictors of cardiovascular risk—A review of the literature. Eur. J. Clin. Nutr. 2010, 64, 16–22. [Google Scholar] [CrossRef]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults. Circulation 2013, 129, S102–S138. [Google Scholar] [CrossRef]
- Pakhare, M.; Anjankar, A. Critical Correlation between Obesity and Cardiovascular Diseases and Recent Advancements in Obesity. Cureus 2024, 16, e51681. [Google Scholar] [CrossRef]
- Prospective Studies Collaboration. Body-Mass Index and Cause-Specific Mortality in 900 000 Adults: Collaborative Analyses of 57 Prospective Studies. Lancet 2009, 373, 1083–1096. [Google Scholar] [CrossRef]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Bray, G.A.; Frühbeck, G.; Ryan, D.H.; Wilding, J.P.H. Management of Obesity. Lancet 2016, 387, 1947–1956. [Google Scholar] [CrossRef]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Fujioka, K. Current and Emerging Medications for Overweight or Obesity in People with Comorbidities. Diabetes Obes. Metab. 2015, 17, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Gadde, K.M.; Pritham Raj, Y. Pharmacotherapy of Obesity: Clinical Trials to Clinical Practice. Curr. Diabetes Rep. 2017, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, L.; Lindroos, A.K.; Peltonen, M.; Torgerson, J.; Bouchard, C.; Carlsson, B.; Dahlgren, S.; Larsson, B.; Narbro, K.; Sjöström, C.D.; et al. Lifestyle, Diabetes, and Cardiovascular Risk Factors 10 Years after Bariatric Surgery. N. Engl. J. Med. 2004, 351, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Angrisani, L.; Santonicola, A.; Iovino, P.; Formisano, G.; Buchwald, H.; Scopinaro, N. Bariatric Surgery Worldwide 2013. Obes. Surg. 2015, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.È.; Auclair, A.; Harvey, J.; Marceau, S.; Poirier, P. How to Choose and Use Bariatric Surgery in 2015. Can. J. Cardiol. 2015, 31, 153–166. [Google Scholar] [CrossRef]
- Padwal, R.; Brocks, D.; Sharma, A.M. A Systematic Review of Drug Absorption Following Bariatric Surgery and Its Theoretical Implications. Obes. Rev. 2010, 11, 41–50. [Google Scholar] [CrossRef]
- Almukainzi, M.; Lukacova, V.; Löbenberg, R. Modelling the Absorption of Metformin with Patients Post Gastric Bypass Surgery. J. Diabetes Metab. 2014, 5, 353. [Google Scholar] [CrossRef]
- Khorgami, Z.; Shoar, S.; Andalib, A.; Aminian, A.; Brethauer, S.A.; Schauer, P.R. Trends in Utilization of Bariatric Surgery, 2010-2014: Sleeve Gastrectomy Dominates. Surg. Obes. Relat. Dis. 2017, 13, 774–778. [Google Scholar] [CrossRef]
- Clapp, B.; Ponce, J.; DeMaria, E.; Ghanem, O.; Hutter, M.; Kothari, S.; LaMasters, T.; Kurian, M.; English, W. American Society for Metabolic and Bariatric Surgery 2020 Estimate of Metabolic and Bariatric Procedures Performed in the United States. Surg. Obes. Relat. Dis. 2022, 18, 1134–1140. [Google Scholar] [CrossRef]
- Kheirvari, M.; Dadkhah Nikroo, N.; Jaafarinejad, H.; Farsimadan, M.; Eshghjoo, S.; Hosseini, S.; Anbara, T. The Advantages and Disadvantages of Sleeve Gastrectomy; Clinical Laboratory to Bedside Review. Heliyon 2020, 6, e03496. [Google Scholar] [CrossRef]
- Sjöström, L.; Narbro, K.; Sjöström, C.D.; Karason, K.; Larsson, B.; Wedel, H.; Lystig, T.; Sullivan, M.; Bouchard, C.; Carlsson, B.; et al. Effects of Bariatric Surgery on Mortality in Swedish Obese Subjects. N. Engl. J. Med. 2007, 357, 741–752. [Google Scholar] [CrossRef]
- Alsuhibani, A.; Thompson, J.R.; Wigle, P.R.; Guo, J.J.; Lin, A.C.; Rao, M.B.; Hincapie, A.L. Metabolic and Bariatric Surgery Utilization Trends in the United States: Evidence from 2012 to 2021 National Electronic Medical Records Network. Ann. Surg. Open 2023, 4, e317. [Google Scholar] [CrossRef] [PubMed]
- Al-Juhani, A.; Sharaf, G.F.; Alyaseen, E.M.; Alkurdi, A.; Azhari, A.S.; Alshaiban, S.H.; Otaif, A.A.; Abumadian, A.W.; Alshawi, A.J.; Aldarami, Y.A. Banded versus Non-Banded Sleeve Gastrectomy: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e52799. [Google Scholar] [CrossRef] [PubMed]
- Lauti, M.; Kularatna, M.; Hill, A.G.; MacCormick, A.D. Weight Regain Following Sleeve Gastrectomy—A Systematic Review. Obes. Surg. 2016, 26, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Ikramuddin, S.; Korner, J.; Lee, W.J.; Connett, J.E.; Inabnet, W.B.; Billington, C.B.; Thomas, A.J.; Leslie, D.B.; Chong, K.; Jeffery, R.W.; et al. Roux-En-Y Gastric Bypass versus Intensive Medical Management for the Control of Type 2 Diabetes, Hypertension and Hyperlipidemia: An International, Multicenter, Randomized Trial. JAMA 2013, 309, 2240–2249. [Google Scholar] [CrossRef]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef]
- Edwards, A.; Ensom, M.H. Pharmacokinetic Effects of Bariatric Surgery. Ann. Pharmacother. 2012, 46, 130–136. [Google Scholar] [CrossRef]
- Leven, C.; Hoffmann, C.; Roche, C.; Couturaud, F.; Thereaux, J.; Lacut, K. Impact of Bariatric Surgery on Oral Anticoagulants Pharmacology, and Consequences for Clinical Practice: A Narrative Review. Fundam. Clin. Pharmacol. 2020, 35, 53–61. [Google Scholar] [CrossRef]
- Furbetta, N.; Cervelli, R.; Furbetta, F. Laparoscopic Adjustable Gastric Banding, the Past, the Present and the Future. Ann. Transl. Med. 2020, 8, S4. [Google Scholar] [CrossRef] [PubMed]
- Gentileschi, P.; Bianciardi, E.; Siragusa, L.; Tognoni, V.; Benavoli, D.; D’Ugo, S. Banded Sleeve Gastrectomy Improves Weight Loss Compared to Nonbanded Sleeve: Midterm Results from a Prospective Randomized Study. J. Obes. 2020, 2020, 9792518. [Google Scholar] [CrossRef]
- Miedziaszczyk, M.; Ciabach, P.; Szałek, E. The Effects of Bariatric Surgery and Gastrectomy on the Absorption of Drugs, Vitamins, and Mineral Elements. Pharmaceutics 2021, 13, 2111. [Google Scholar] [CrossRef]
- Weiner, R.; Blanco-Engert, R.; Weiner, S.; Matkowitz, R.; Schaefer, L.; Pomhoff, I. Outcome after Laparoscopic Adjustable Gastric Banding-8 Years Experience. Obes. Surg. 2003, 13, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Suter, M.; Calmes, J.M.; Paroz, A.; Giusti, V. A 10-Year Experience with Laparoscopic Gastric Banding for Morbid Obesity: High Long-Term Complication and Failure Rates. Obes. Surg. 2006, 16, 829–835. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Wang, Z.; Jiang, T. First Study on the Outcomes of Biliopancreatic Diversion with Duodenal Switch in Chinese Patients with Obesity. Front. Surg. 2023, 9, 934434. [Google Scholar] [CrossRef] [PubMed]
- Conner, J.; Nottingham, J.M. Biliopancreatic Diversion with Duodenal Switch. Available online: https://www.ncbi.nlm.nih.gov/books/NBK563193/ (accessed on 19 March 2024).
- Buchwald, H.; Oien, D.M. Metabolic/Bariatric Surgery Worldwide 2008. Obes. Surg. 2009, 19, 1605–1611. [Google Scholar] [CrossRef]
- Topart, P.; Becouarn, G.; Ritz, P. Comparative Early Outcomes of Three Laparoscopic Bariatric Procedures: Sleeve Gastrectomy, Roux-En-Y Gastric Bypass, and Biliopancreatic Diversion with Duodenal Switch. Surg. Obes. Relat. Dis. 2012, 8, 250–254. [Google Scholar] [CrossRef]
- Kingma, J.S.; Burgers, D.M.T.; Monpellier, V.M.; Wiezer, M.J.; Blussé van Oud-Alblas, H.J.; Vaughns, J.D.; Sherwin, C.M.T.; Knibbe, C.A.J. Oral Drug Dosing Following Bariatric Surgery: General Concepts and Specific Dosing Advice. Br. J. Clin. Pharmacol. 2021, 87, 4560–4576. [Google Scholar] [CrossRef]
- Hachon, L.; Declèves, X.; Faucher, P.; Carette, C.; Lloret-Linares, C. RYGB and Drug Disposition: How to Do Better? Analysis of Pharmacokinetic Studies and Recommendations for Clinical Practice. Obes. Surg. 2017, 27, 1076–1090. [Google Scholar] [CrossRef] [PubMed]
- Lorico, S.; Colton, B. Medication management and pharmacokinetic changes after bariatric surgery. Can. Fam. Physician 2020, 66, 409–416. [Google Scholar]
- Azran, C.; Wolk, O.; Zur, M.; Fine-Shamir, N.; Shaked, G.; Czeiger, D.; Sebbag, G.; Kister, O.; Langguth, P.; Dahan, A. Oral Drug Therapy Following Bariatric Surgery: An Overview of Fundamentals, Literature and Clinical Recommendations. Obes. Rev. 2016, 17, 1050–1066. [Google Scholar] [CrossRef]
- Sawaya, R.A.; Jaffe, J.; Friedenberg, L.; Friedenberg, F.K. Vitamin, Mineral, and Drug Absorption Following Bariatric Surgery. Curr. Drug Metab. 2012, 13, 1345–1355. [Google Scholar] [CrossRef]
- Dirksen, C.; Damgaard, M.; Bojsen-Møller, K.N.; Jørgensen, N.B.; Kielgast, U.; Jacobsen, S.H.; Naver, L.S.; Worm, D.; Holst, J.J.; Madsbad, S.; et al. Fast Pouch Emptying, Delayed Small Intestinal Transit, and Exaggerated Gut Hormone Responses after Roux-En-Y Gastric Bypass. Neurogastroenterol. Motil. 2013, 25, 346-e255. [Google Scholar] [CrossRef] [PubMed]
- Angeles, P.C.; Robertsen, I.; Seeberg, L.T.; Krogstad, V.; Skattebu, J.; Sandbu, R.; Åsberg, A.; Hjelmesæth, J. The Influence of Bariatric Surgery on Oral Drug Bioavailability in Patients with Obesity: A Systematic Review. Obes. Rev. 2019, 20, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidou, S.K.; Argyrakopoulou, G.; Dalamaga, M.; Kokkinos, A. The Effects of Bariatric Surgery on Pharmacokinetics of Drugs: A Review of Current Evidence. Curr. Nutr. Rep. 2023, 12, 695–708. [Google Scholar] [CrossRef]
- Hutch, C.R.; Sandoval, D.A. Physiological and molecular responses to bariatric surgery: Markers or mechanisms underlying T2DM resolution? Ann. N. Y. Acad. Sci. 2017, 1391, 5–19. [Google Scholar] [CrossRef]
- De Giorgi, S.; Campos, V.; Egli, L.; Toepel, U.; Carrel, G.; Cariou, B.; Rainteau, D.; Schneiter, P.; Tappy, L.; Giusti, V. Long-term effects of Roux-en-Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: A cross-sectional pilot study. Clin. Nutr. 2015, 34, 911–917. [Google Scholar] [CrossRef]
- Dahan, A.; Hoffman, A. Rationalizing the Selection of Oral Lipid Based Drug Delivery Systems by an in Vitro Dynamic Lipolysis Model for Improved Oral Bioavailability of Poorly Water Soluble Drugs. J. Control. Release 2008, 129, 1–10. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Friedman, J.; Alfayez, O.; Hartzema, A. Drug Absorption in Bariatric Surgery Patients: A Narrative Review. Health Sci. Rep. 2022, 5, e605. [Google Scholar] [CrossRef]
- Paine, M.F.; Khalighi, M.; Fisher, J.M.; Shen, D.D.; Kunze, K.L.; Marsh, C.L.; Perkins, J.D.; Thummel, K.E. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J. Pharmacol. Exp. Ther. 1997, 283, 1552–1562. [Google Scholar] [PubMed]
- Dahan, A.; Lennernäs, H.; Amidon, G.L. The Fraction Dose Absorbed, in Humans, and High Jejunal Human Permeability Relationship. Mol. Pharm. 2012, 9, 1847–1851. [Google Scholar] [CrossRef]
- Berggren, S.; Gall, C.; Wollnitz, N.; Ekelund, M.; Karlbom, U.; Hoogstraate, J.; Schrenk, D.; Lennernäs, H. Gene and Protein Expression of P-Glycoprotein, MRP1, MRP2, and CYP3A4 in the Small and Large Human Intestine. Mol. Pharm. 2007, 4, 252–257. [Google Scholar] [CrossRef]
- Englund, G.; Rorsman, F.; Rönnblom, A.; Karlbom, U.; Lazorova, L.; Gråsjö, J.; Kindmark, A.; Artursson, P. Regional Levels of Drug Transporters along the Human Intestinal Tract: Co-Expression of ABC and SLC Transporters and Comparison with Caco-2 Cells. Eur. J. Pharm. Sci. 2006, 29, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Brill, M.J.; van Rongen, A.; van Dongen, E.P.; van Ramshorst, B.; Hazebroek, E.J.; Darwich, A.S.; Rostami-Hodjegan, A.; Knibbe, C.A. The Pharmacokinetics of the CYP3A Substrate Midazolam in Morbidly Obese Patients before and One Year after Bariatric Surgery. Pharm. Res. 2015, 32, 3927–3936. [Google Scholar] [CrossRef] [PubMed]
- Ulvestad, M.; Skottheim, I.B.; Jakobsen, G.S.; Bremer, S.; Molden, E.; Asberg, A.; Hjelmesæth, J.; Andersson, T.B.; Sandbu, R.; Christensen, H. Impact of OATP1B1, MDR1, and CYP3A4 Expression in Liver and Intestine on Interpatient Pharmacokinetic Variability of Atorvastatin in Obese Subjects. Clin. Pharmacol. Ther. 2013, 93, 275–282. [Google Scholar] [CrossRef]
- Lau, C.; van Kesteren, C.; Smeenk, R.; Huitema, A.; Knibbe, C.A.J. Impact of Bariatric Surgery in the Short and Long Term: A Need for Time-Dependent Dosing of Drugs. Obes. Surg. 2023, 33, 3266–3302. [Google Scholar] [CrossRef] [PubMed]
- Kohli, R.; Stefater, M.A.; Inge, T.H. Molecular insights from bariatric surgery. Rev. Endocr. Metab. Disord. 2011, 12, 211–217. [Google Scholar] [CrossRef]
- Gala, K.; Ghusn, W.; Abu Dayyeh, B.K. Gut motility and hormone changes after bariatric procedures. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 131–137. [Google Scholar] [CrossRef]
- Aukan, M.I.; Skårvold, S.; Brandsæter, I.Ø.; Rehfeld, J.F.; Holst, J.J.; Nymo, S.; Coutinho, S.; Martins, C. Gastrointestinal hormones and appetite ratings after weight loss induced by diet or bariatric surgery. Obesity 2023, 31, 399–411. [Google Scholar] [CrossRef]
- Greenblatt, H.K.; Greenblatt, D.J. Altered Drug Disposition Following Bariatric Surgery: A Research Challenge. Clin. Pharmacokinet. 2015, 54, 573–579. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Prifti, E.; Belda, E.; Ichou, F.; Kayser, B.D.; Dao, M.C.; Verger, E.O.; Hedjazi, L.; Bouillot, J.L.; Chevallier, J.M.; et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut 2019, 68, 70–82. [Google Scholar] [CrossRef]
- Debédat, J.; Le Roy, T.; Voland, L.; Belda, E.; Alili, R.; Adriouch, S.; Bel Lassen, P.; Kasahara, K.; Hutchison, E.; Genser, L.; et al. Impact of bariatric surgery on type 2 diabetes: Contribution of inflammation and gut microbiome? Semin. Immunopathol. 2019, 41, 461–475. [Google Scholar] [CrossRef]
- Anhê, F.F.; Varin, T.V.; Schertzer, J.D.; Marette, A. The Gut Microbiota as a Mediator of Metabolic Benefits after Bariatric Surgery. Can. J. Diabetes 2017, 41, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Bjørklund, G.; Mujawdiya, P.K.; Semenova, Y.; Dosa, A.; Piscopo, S.; Pen, J.J.; Gasmi Benahmed, A.; Costea, D.O. Gut microbiota in bariatric surgery. Crit. Rev. Food Sci. Nutr. 2023, 63, 9299–9314. [Google Scholar] [CrossRef] [PubMed]
- Busetto, L.; Dicker, D.; Azran, C.; Batterham, R.L.; Farpour-Lambert, N.; Fried, M.; Hjelmesæth, J.; Kinzl, J.; Leitner, D.R.; Makaronidis, J.M.; et al. Practical Recommendations of the Obesity Management Task Force of the European Association for the Study of Obesity for the Post-Bariatric Surgery Medical Management. Obes. Facts 2017, 10, 597–632. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.D.; Smith, K.M. Medication and Nutrient Administration Considerations after Bariatric Surgery. Am. J. Health Syst. Pharm. 2006, 63, 1852–1857. [Google Scholar] [CrossRef] [PubMed]
- Brocks, D.R.; Ben-Eltriki, M.; Gabr, R.Q.; Padwal, R.S. The Effects of Gastric Bypass Surgery on Drug Absorption and Pharmacokinetics. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Piché, M.E.; Tardif, I.; Auclair, A.; Poirier, P. Bariatric Surgery and Lipid Profile. Metabolism 2020, 115, 154441. [Google Scholar] [CrossRef]
- Bays, H.E.; Toth, P.P.; Kris-Etherton, P.M.; Abate, N.; Aronne, L.J.; Brown, W.V.; Gonzalez-Campoy, J.M.; Jones, S.R.; Kumar, R.; La Forge, R.; et al. Obesity, Adiposity, and Dyslipidemia: A Consensus Statement from the National Lipid Association. J. Clin. Lipidol. 2013, 7, 304–383. [Google Scholar] [CrossRef]
- do Nascimento, I.M.C.; Padilha, B.M.; Araujo, M.L.D.; da Silva, P.C.; de Noronha, G.A.; Cabral, P.C.; Ferraz, Á.A.B. Vitamin D Levels and Lipid Profile in Patients Undergoing Bariatric Surgery. ABCD Arq. Bras. Cir. Dig. 2023, 36, e1753. [Google Scholar] [CrossRef]
- Zaki, M.K.S.; Al-Jefri, O.H.; Kordi, R.E.; Aljohani, A.H.; Rizq, M.A.; Kasem, G.H.; Abuasidah, S.B. Correlation of Bariatric Surgery Effect on Lipid Profile among Obese Patients. Cureus 2021, 13, e18118. [Google Scholar] [CrossRef]
- Milone, M.; Lupoli, R.; Maietta, P.; Di Minno, A.; Bianco, P.; Ambrosino, P.; Coretti, G.; Milone, F.; Di Minno, M.N.D.; Musella, M. Lipid Profile Changes in Patients Undergoing Bariatric Surgery: A Comparative Study between Sleeve Gastrectomy and Mini-Gastric Bypass. Int. J. Surg. 2015, 14, 28–32. [Google Scholar] [CrossRef]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, M.D.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric Surgery. JAMA 2004, 292, 1724. [Google Scholar] [CrossRef] [PubMed]
- Arnáiz, E.G.; Ballesteros Pomar, M.D.; Roza, L.G.; de la Maza, P.B.; Bachiller, B.R.; Cobo, D.A.; Fondo, A.U.; Rodríguez, I.C. Evaluation of Lipoprotein Profile and Residual Risk Three Years after Bariatric Surgery. Obes. Surg. 2021, 31, 4033–4044. [Google Scholar] [CrossRef]
- Spivak, H.; Sakran, N.; Dicker, D.; Rubin, M.; Raz, I.; Shohat, T.; Blumenfeld, O. Different Effects of Bariatric Surgical Procedures on Dyslipidemia: A Registry-Based Analysis. Surg. Obes. Relat. Dis. 2017, 13, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Heffron, S.; Parikh, A.; Volodarskiy, A.; Ren-Fielding, C.; Schwartzbard, A.; Nicholson, J.; Bangalore, S. Changes in Lipid Profile of Obese Patients Following Contemporary Bariatric Surgery: A Meta-Analysis. Am. J. Med. 2016, 129, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Lubrano, C.; Mariani, S.; Badiali, M.; Cuzzolaro, M.; Barbaro, G.; Migliaccio, S.; Genovesi, G.; Rossi, F.; Celanetti, M.; Fiore, D.; et al. Metabolic or Bariatric Surgery? Long-Term Effects of Malabsorptive vs Restrictive Bariatric Techniques on Body Composition and Cardiometabolic Risk Factors. Int. J. Obes. 2010, 34, 1404–1414. [Google Scholar] [CrossRef]
- Benaiges, D.; Flores-Le-Roux, J.A.; Pedro-Botet, J.; Ramon, J.M.; Parri, A.; Villatoro, M.; Carrera, M.J.; Pera, M.; Sagarra, E.; Grande, L.; et al. Impact of Restrictive (Sleeve Gastrectomy) vs Hybrid Bariatric Surgery (Roux-En-Y Gastric Bypass) on Lipid Profile. Obes. Surg. 2012, 22, 1268–1275. [Google Scholar] [CrossRef]
- Sizar, O.; Khare, S.; Patel, P.; Talati, R. Statin Medications. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430940/ (accessed on 21 March 2024).
- Ward, N.C.; Watts, G.F.; Eckel, R.H. Statin Toxicity. Circ. Res. 2019, 124, 328–350. [Google Scholar] [CrossRef]
- Selva-O’Callaghan, A.; Alvarado-Cardenas, M.; Pinal-Fernández, I.; TralleroAraguás, E.; Milisenda, J.C.; Martínez, M.Á.; Marín, A.; Labrador-Horrillo, M.; Juárez, C.; Grau-Junyent, J.M. Statin-induced myalgia and myositis: An update on pathogenesis and clinical recommendations. Expert Rev. Clin. Immunol. 2018, 14, 215–224. [Google Scholar] [CrossRef]
- Bitzur, R.; Cohen, H.; Kamari, Y.; Harats, D. Intolerance to statins: Mechanisms and management. Diabetes Care 2013, 36, S325–S330. [Google Scholar] [CrossRef]
- Muntean, D.M.; Thompson, P.D.; Catapano, A.L.; Stasiolek, M.; Fabis, J.; Muntner, P.; Serban, M.C.; Banach, M. Statin-associated myopathy and the quest for biomarkers: Can we effectively predict statin-associated muscle symptoms? Drug Discov. Today 2017, 22, 85–96. [Google Scholar] [CrossRef]
- Karaźniewicz-Łada, M.; Bąba, K.; Dolatowski, F.; Dobrowolska, A.; Rakicka, M. Polymorphism of Statins: Influence on Physicochemical Properties. Polim. Med. 2018, 48, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Al-Heibshy, F.N.S.; Başaran, E.; Arslan, R.; Öztürk, N.; Erol, K.; Demirel, M. Physicochemical Characterization and Pharmacokinetic Evaluation of Rosuvastatin Calcium Incorporated Solid Lipid Nanoparticles. Int. J. Pharm. 2020, 578, 119106. [Google Scholar] [CrossRef] [PubMed]
- Darwich, A.S.; Henderson, K.; Burgin, A.; Ward, N.; Whittam, J.; Ammori, B.J.; Ashcroft, D.M.; Rostami-Hodjegan, A. Trends in Oral Drug Bioavailability Following Bariatric Surgery: Examining the Variable Extent of Impact on Exposure of Different Drug Classes. Br. J. Clin. Pharmacol. 2012, 74, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Skottheim, I.B.; Stormark, K.; Christensen, H.; Jakobsen, G.S.; Hjelmesæth, J.; Jenssen, T.; Reubsaet, J.L.; Sandbu, R.; Åsberg, A. Significantly Altered Systemic Exposure to Atorvastatin Acid Following Gastric Bypass Surgery in Morbidly Obese Patients. Clin. Pharmacol. Ther. 2009, 86, 311–318. [Google Scholar] [CrossRef]
- Rogers, C.C.; Alloway, R.R.; Alexander, J.W.; Cardi, M.; Trofe, J.; Vinks, A.A. Pharmacokinetics of Mycophenolic Acid, Tacrolimus and Sirolimus after Gastric Bypass Surgery in End-Stage Renal Disease and Transplant Patients: A Pilot Study. Clin. Transplant. 2008, 22, 281–291. [Google Scholar] [CrossRef]
- Marterre, W.F.; Hariharan, S.; First, M.R.; Alexander, J.W. Gastric bypass in morbidly obese kidney transplant recipients. Clin. Transplant. 1996, 10, 414–419. [Google Scholar]
- Skottheim, I.B.; Jakobsen, G.S.; Stormark, K.; Christensen, H.; Hjelmesæth, J.; Jenssen, T.; Åsberg, A.; Sandbu, R. Significant Increase in Systemic Exposure of Atorvastatin after Biliopancreatic Diversion with Duodenal Switch. Clin. Pharmacol. Ther. 2010, 87, 699–705. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Dunbar, D.; Ostrowska, A.; Zeisloft, S.; Yang, J.; Kaminsky, L.S. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos. 1999, 27, 804–809. [Google Scholar]
- Canaparo, R.; Finnström, N.; Serpe, L.; Nordmark, A.; Muntoni, E.; Eandi, M.; Rane, A.; Zara, G.P. Expression of CYP3A Isoforms and P-Glycoprotein in Human Stomach, Jejunum and Ileum. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1138–1144. [Google Scholar] [CrossRef]
- Hall, K.D. Predicting Metabolic Adaptation, Body Weight Change, and Energy Intake in Humans. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E449–E466. [Google Scholar] [CrossRef]
- Jakobsen, J.G.; Skottheim, I.B.; Sandbu, R.; Christensen, H.; Røislien, J.; Åsberg, A.; Hjelmesæth, J. Long-Term Effects of Gastric Bypass and Duodenal Switch on Systemic Exposure of Atorvastatin. Surg. Endosc. 2012, 27, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Dudrick, S.J.; Daly, J.M.; Castro, G.; Akhtar, M. Gastrointestinal Adaptation Following Small Bowel Bypass for Obesity. Ann. Surg. 1977, 185, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Fenyö, G.; Hallberg, D. Intestinal hypertrophy after small intestinal bypass in the rat. Studies on methods and reversibility of changes. Acta Chir. Scand. 1976, 142, 261–269. [Google Scholar] [PubMed]
- El-Zailik, A.; Cheung, L.K.; Wang, Y.; Sherman, V.; Chow, D.S.L. Longitudinal Impacts of Gastric Bypass Surgery on Pharmacodynamics and Pharmacokinetics of Statins. Obes. Surg. 2019, 29, 2584. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Patel, D.; Matheny, C.; Ho, M.; Chen, L.; Ellens, H. Inhibition of Intestinal OATP2B1 by the Calcium Receptor Antagonist Ronacaleret Results in a Significant Drug-Drug Interaction by Causing a 2-Fold Decrease in Exposure of Rosuvastatin. Drug Metab. Dispos. 2016, 45, 27–34. [Google Scholar] [CrossRef]
- Corsini, A.; Maggi, F.M.; Catapano, A.L. Pharmacology of Competitive Inhibitors of HMg-CoA Reductase. Pharmacol. Res. 1995, 31, 9–27. [Google Scholar] [CrossRef]
- Al Akhali, K.M.; Alavudeen, S.S. Multiple dose of liquid antacid enhance simvastatin bioavailability in Malaysian male volunteers. Asian J. Pharm. 2014, 8, 90–94. [Google Scholar] [CrossRef]
- Nigovic, B.; Mornar, A.; Sertic, M. A Review of Current Trends and Advances in Analytical Methods for Determination of Statins: Chromatography and Capillary Electrophoresis. Available online: https://www.intechopen.com/chapters/40372 (accessed on 24 March 2024).
- Jemal, M.; Xia, Y.Q. Bioanalytical method validation design for the simultaneous quantitation of analytes that may undergo interconversion during analysis. J. Pharm. Biomed. Anal. 2000, 22, 813–827. [Google Scholar] [CrossRef]
- Darwich, A.S.; Pade, D.; Ammori, B.J.; Jamei, M.; Ashcroft, D.M.; Rostami-Hodjegan, A. A Mechanistic Pharmacokinetic Model to Assess Modified Oral Drug Bioavailability Post Bariatric Surgery in Morbidly Obese Patients: Interplay between CYP3A Gut Wall Metabolism, Permeability and Dissolution. J. Pharm. Pharmacol. 2012, 64, 1008–1024. [Google Scholar] [CrossRef]
- Darwich, A.; Pade, D.; Rowland-Yeo, K.; Jamei, M.; Åsberg, A.; Christensen, H.; Ashcroft, D.M.; Rostami-Hodjegan, A. Evaluation of an in Silico PBPK Post-Bariatric Surgery Model through Simulating Oral Drug Bioavailability of Atorvastatin and Cyclosporine. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, 1–9. [Google Scholar] [CrossRef]
Anatomical/Physiological Alterations Post-BS | Type of Procedure | Potential Pharmacokinetic Implications for Oral Dosage Form | |
---|---|---|---|
Reduced gastric capacity | Restrictive | Decreased dissolution, disintegration Change in the Cmax and Tmax | |
Accelerated gastric emptying time | Restrictive | ||
Increased gastric pH | Malabsorptive | Restrictive | Decreased basic drug solubility Increased acidic drug solubility |
Reduced absorptive surface area in the small intestine | Malabsorptive | Decreased dissolution, absorption | |
Decreased exposure to metabolizing enzymes | Malabsorptive | Decreased first-pass metabolism (especially CYP3A4 substrates) | |
Decreased exposure to carrier proteins | Malabsorptive | Variable absorption (influx transporters/efflux pumps) | |
Restricted enterohepatic circulation | Malabsorptive | Decreased lipophilic drug dissolution and absorption | |
Dissociation of bile salt flow | Malabsorptive | ||
Decreased intestinal transit time | Malabsorptive | Incomplete dissolution Change in the Cmax and Tmax | |
Increased gastrointestinal pH | Malabsorptive | + | Change in the Cmax, Tmax, AUC |
Drug | Dosage Form | BS Technique | N | Follow-Up (Post-BS) | Pharmacokinetic Impact (AUC) |
---|---|---|---|---|---|
Atorvastatin | Oral | RYGB | 12 | 3–8 weeks | Threefold increase/twofold decrease [83] |
Atorvastatin | Oral | BPD | 10 | 4–8 weeks | Twofold increase [86] |
Atorvastatin | Oral | RYGB, BPD | 20 | 21–45 months | Long-term normalization/ decrease [90] |
Atorvastatin | Oral | RYGB | 3 | 3 and 6 months | Decrease of 58% at 3 months, 75% at 6 months [93] |
Rosuvastatin | Oral | RYGB | 4 | 3 and 6 months | Decrease of 43% at 3 months, 61% at 6 months [93] |
Simvastatin | Oral | RYGB | 5 | 3, 6 and 12 months | Increase of 33% and 150% at 3 months, doubled at 6 months; decline to pre-operative levels at 1 year [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrinović, M.; Majetić, D.; Bakula, M.; Pećin, I.; Fabris-Vitković, D.; Deškin, M.; Tešanović Perković, D.; Bakula, M.; Gradišer, M.; Ćurčić, I.B.; et al. Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery. Int. J. Mol. Sci. 2024, 25, 10375. https://doi.org/10.3390/ijms251910375
Petrinović M, Majetić D, Bakula M, Pećin I, Fabris-Vitković D, Deškin M, Tešanović Perković D, Bakula M, Gradišer M, Ćurčić IB, et al. Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery. International Journal of Molecular Sciences. 2024; 25(19):10375. https://doi.org/10.3390/ijms251910375
Chicago/Turabian StylePetrinović, Matea, Domagoj Majetić, Miro Bakula, Ivan Pećin, Daniela Fabris-Vitković, Marin Deškin, Deša Tešanović Perković, Maja Bakula, Marina Gradišer, Ines Bilić Ćurčić, and et al. 2024. "Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery" International Journal of Molecular Sciences 25, no. 19: 10375. https://doi.org/10.3390/ijms251910375
APA StylePetrinović, M., Majetić, D., Bakula, M., Pećin, I., Fabris-Vitković, D., Deškin, M., Tešanović Perković, D., Bakula, M., Gradišer, M., Ćurčić, I. B., & Canecki-Varžić, S. (2024). Molecular Mechanisms Affecting Statin Pharmacokinetics after Bariatric Surgery. International Journal of Molecular Sciences, 25(19), 10375. https://doi.org/10.3390/ijms251910375