Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice
Abstract
:1. Introduction
2. Results
2.1. Transcriptome Analysis of RH and TN1 after Needle Pricking Treatment
2.2. GO Enrichment Analysis of DEGs in the Four Treatment Groups
2.3. KEGG Pathway Enrichment Analysis of Differentially Expressed Genes in the Four Treatment Groups
2.4. Expression Profiles of DEGs during Growth Stages and in Response to Hormones
2.5. GUS Analysis of Candidate Promoters
2.6. Expression of OsLecRK1* Gene Driven by Promoters and Resistance Evaluation
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Preparation and Treatment of Rice Samples
4.3. Venn Diagram, Expression Pattern Clustering, KEGG, and GO Analysis of Transcriptome Data
4.4. Expression Profiling of Differential Genes across Developmental Stages and Hormone Responses
4.5. Construction of Promoter Vectors for Candidate Genes
4.6. Agrobacterium-Mediated Genetic Transformation of Rice
4.7. GUS Histochemical Staining of Transgenic Plants with Promoter Constructs
4.8. RNA Extraction, Reverse Transcription, and Expression Analysis in Rice Tissues
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, S.; Wang, H.; Nie, L.; Tan, D.; Zhou, C.; Zhang, Q.; Li, Y.; Du, B.; Guo, J.; Huang, J.; et al. Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. Mol. Plant 2021, 14, 1714–1732. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, C.; Guo, S.; Guo, Y.; Wei, T.; Chen, Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nat. Commun. 2024, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Su, Q.; Ren, J.; Tian, L.; Zeng, Y.; Yang, Y.; Wang, S.; Xie, W.; Wu, Q.; Li, Z.; et al. A novel salivary effector, BtE3, is essential for whitefly performance on host plants. J. Exp. Bot. 2023, 74, 2146–2159. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhu, Y.; Liu, W.; Zou, C.; Jia, B.; Chen, Z.; Han, Y.; Wu, J.; Yang, D.; Zhang, Z.; et al. Discovery of aphid-transmitted Rice tiller inhibition virus from native plants through metagenomic sequencing. PLoS Pathog. 2023, 19, e1011238. [Google Scholar] [CrossRef]
- da Silva Pinheiro, D.; do Espirito Santo, A.; Fasoli, J.; Sobral-Souza, T.; Campos, M. Unravelling the secrets of non-host resistance in plant-insect interactions. J. Exp. Bot. 2024, erae359. [Google Scholar] [CrossRef]
- Ma, F.; Yang, X.; Shi, Z.; Miao, X. Novel crosstalk between ethylene- and jasmonic acid-pathway responses to a piercing-sucking insect in rice. New Phytol. 2020, 225, 474–487. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, L.; He, G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. Curr. Opin. Insect Sci. 2021, 45, 14–20. [Google Scholar] [CrossRef]
- Chen, L.; Cao, T.; Zhang, J.; Lou, Y. Overexpression of OsGID1 Enhances the Resistance of Rice to the Brown Planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2018, 19, 2744. [Google Scholar] [CrossRef]
- Guo, H.; Sun, Y.; Yan, H.; Li, C.; Ge, F. O3-Induced Priming Defense Associated with the Abscisic Acid Signaling Pathway Enhances Plant Resistance to Bemisia tabaci. Front. Plant Sci. 2020, 11, 93. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Yuan, D.; Duan, M.; Liu, Y.; Shen, Z.; Yang, C.; Qiu, Z.; Liu, D.; Wen, P.; et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc. Natl. Acad. Sci. USA 2020, 117, 271–277. [Google Scholar] [CrossRef]
- Wang, H.; Hao, J.; Chen, X.; Hao, Z.; Wang, X.; Lou, Y.; Peng, Y.; Guo, Z. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol. Biol. 2007, 65, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Walker, G. Sieve element occlusion: Interactions with phloem sap-feeding insects. A Rev. J. Plant Physiol. 2022, 269, 153582. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.; Choudhary, M.; Barmukh, R.; Bagaria, P.; Samantara, K.; Razzaq, A.; Jaba, J.; Ba, M.; Varshney, R. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. Theor. Appl. Genet. 2022, 135, 3875–3895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Jander, G. Engineering insect resistance using plant specialized metabolites. Curr. Opin. Biotechnol. 2021, 70, 115–121. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chen, H.; Liu, Y.; He, J.; Kang, H.; Sun, Z.; Pan, G.; Wang, Q.; Hu, J.; et al. A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat. Biotechnol. 2015, 33, 301–305. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, F.; Chen, L.; Pan, Y.; Sun, L.; Bao, N.; Zhang, T.; Cui, C.; Qiu, Z.; Zhang, Y.; et al. Jasmonate-mediated wound signalling promotes plant regeneration. Nat. Plants 2019, 5, 491–497. [Google Scholar] [CrossRef]
- Yang, W.; Zhai, H.; Wu, F.; Deng, L.; Chao, Y.; Meng, X.; Chen, Q.; Liu, C.; Bie, X.; Sun, C.; et al. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024, 187, 3024–3038. [Google Scholar] [CrossRef]
- Guo, J.; Wang, H.; Guan, W.; Guo, Q.; Wang, J.; Yang, J.; Peng, Y.; Shan, J.; Gao, M.; Shi, S.; et al. A tripartite rheostat controls self-regulated host plant resistance to insects. Nature 2023, 618, 799–807. [Google Scholar] [CrossRef]
- Shangguan, X.; Zhang, J.; Liu, B.; Zhao, Y.; Wang, H.; Wang, Z.; Guo, J.; Rao, W.; Jing, S.; Guan, W.; et al. A Mucin-Like Protein of Planthopper Is Required for Feeding and Induces Immunity Response in Plants. Plant Physiol. 2018, 176, 552–565. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Li, J.; Tan, X.; Zhao, Z.; Jiang, L.; Hoffmann, A.; Fang, J.; Ji, R. Egg-associated secretions from the brown planthopper (Nilaparvata lugens) activate rice immune responses. Insect Sci. 2024, 31, 1135–1149. [Google Scholar] [CrossRef]
- Jia, D.; Chen, Q.; Mao, Q.; Zhang, X.; Wu, W.; Chen, H.; Yu, X.; Wang, Z.; Wei, T. Vector mediated transmission of persistently transmitted plant viruses. Curr. Opin. Virol. 2018, 28, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ye, Z.; Zhuo, J.; Li, J.; Zhang, C. A chromosome-level genome assembly of Stenchaetothrips biformis and comparative genomic analysis highlights distinct host adaptations among thrips. Commun. Biol. 2023, 6, 813. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Singh, A.; Srivastava, S.; Chandrashekar, K.; Sane, A. A strong early acting wound-inducible promoter, RbPCD1pro, activates cryIAc expression within minutes of wounding to impart efficient protection against insects. Plant Biotechnol. J. 2019, 17, 1458–1470. [Google Scholar] [CrossRef] [PubMed]
- Thorat, Y.; Dutta, T.; Jain, P.; Subramaniam, K.; Sirohi, A. A nematode-inducible promoter can effectively drives RNAi construct to confer Meloidogyne incognita resistance in tomato. Plant Cell Rep. 2023, 43, 3. [Google Scholar] [CrossRef]
- Li, C.; Li, W.; Zhou, Z.; Chen, H.; Xie, C.; Lin, Y. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnol. J. 2020, 18, 313–315. [Google Scholar] [CrossRef]
- Chang, X.; Yang, M.; Li, H.; Wu, J.; Zhang, J.; Yin, C.; Ma, W.; Chen, H.; Zhou, F.; Lin, Y. Cloning of the promoter of rice brown planthopper feeding-inducible gene OsTPS31 and identification of related cis-regulatory elements. Pest Manag. Sci. 2023, 79, 1809–1819. [Google Scholar] [CrossRef]
- Li, C.; Zha, W.; Wang, J.; Wu, Y.; Shi, S.; Wang, H.; Li, S.; Wu, B.; Liu, K.; Chen, J.; et al. Transcriptome analysis of biotic and abiotic stress mediated by the suction of brown planthopper in two rice cultivars. Plant Stress 2024, 11, 100380. [Google Scholar] [CrossRef]
- Christensen, A.; Quail, P. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 1996, 5, 213–218. [Google Scholar] [CrossRef]
- McElroy, D.; Zhang, W.; Cao, J.; Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 1990, 2, 163–171. [Google Scholar]
- Odell, J.; Nagy, F.; Chua, N. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 1985, 313, 810–812. [Google Scholar] [CrossRef]
- Kasuga, M.; Liu, Q.; Miura, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 1999, 17, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.; Lee, J.; Charng, Y.; Chan, M. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol. 2002, 130, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Capell, T.; Escobar, C.; Liu, H.; Burtin, D.; Lepri, O.; Christou, P. Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet. 1998, 97, 246–254. [Google Scholar] [CrossRef]
- Takasaki, H.; Maruyama, K.; Kidokoro, S.; Ito, Y.; Fujita, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K.; Nakashima, K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol. Genet. Genom. 2010, 284, 173–183. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Y.; Wu, D.; Rao, W.; Guo, J.; Ma, Y.; Wang, Z.; Shangguan, X.; Wang, H.; Xu, C.; et al. The coiled-coil and nucleotide binding domains of brown planthopper resistance14 function in signaling and resistance against planthopper in rice. Plant Cell 2017, 29, 3157–3185. [Google Scholar] [CrossRef] [PubMed]
- Furtado, A.; Henry, R.; Pellegrineschi, A. Analysis of promoters in transgenic barley and wheat. Plant Biotechnol. J. 2009, 7, 240–253. [Google Scholar] [CrossRef]
- Gudynaite-Savitch, L.; Johnson, D.; Miki, B. Strategies to mitigate transgene-promoter interactions. Plant Biotechnol. J. 2009, 7, 472–485. [Google Scholar] [CrossRef]
- Peremarti, A.; Twyman, R.; Gomez-Galera, S.; Naqvi, S.; Farre, G.; Sabalza, M.; Miralpeix, B.; Dashevskaya, S.; Yuan, D.; Ramessar, K.; et al. Promoter diversity in multigene transformation. Plant Mol. Biol. 2010, 73, 363–378. [Google Scholar] [CrossRef]
- Cheng, J.; Wei, F.; Zhang, M.; Li, N.; Song, T.; Wang, Y.; Chen, D.; Xiang, J.; Zhang, X. Identification of a 193 bp promoter region of TaNRX1-D gene from common wheat that contributes to osmotic or ABA stress inducibility in transgenic Arabidopsis. Genes Genom. 2021, 43, 1035–1048. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Han, K.; Guo, M.; Zou, Y.; Zhang, W.; Ma, W.; Hua, H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. Pest Manag. Sci. 2020, 76, 3177–3187. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Han, K.; Wang, Z.; Ma, W.; Lin, Y.; Hua, H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stal infestation in rice. J. Cell Physiol. 2022, 237, 1833–1844. [Google Scholar] [CrossRef] [PubMed]
- Samiksha, S.; Kesavan, A.; Sohal, S. Exploration of anti-insect potential of trypsin inhibitor purified from seeds of Sapindus mukorossi against Bactrocera cucurbitae. Sci. Rep. 2019, 9, 17025. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Jamal, F. Bio-potency of a 21 kDa Kunitz-type trypsin inhibitor from Tamarindus indica seeds on the developmental physiology of H. armigera. Pestic. Biochem. Physiol. 2014, 116, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Cingel, A.; Savić, J.; Lazarević, J.; Ćosić, T.; Raspor, M.; Smigocki, A.; Ninković, S. Co-expression of the proteinase inhibitors oryzacystatin I and oryzacystatin II in transgenic potato alters Colorado potato beetle larval development. Insect Sci. 2017, 24, 768–780. [Google Scholar] [CrossRef]
- Kaur, A.; Sohal, S. Purified winged bean protease inhibitor affects the growth of Bactrocera cucurbitae. Bull. Entomol. Res. 2019, 109, 550–558. [Google Scholar] [CrossRef]
- Machado, S.; de Oliveira, C.; Zério, N.; Parra, J.; Macedo, M. Inga laurina trypsin inhibitor (ILTI) obstructs Spodoptera frugiperda trypsins expressed during adaptive mechanisms against plant protease inhibitors. Arch. Insect Biochem. Physiol. 2017, 95, e21393. [Google Scholar] [CrossRef]
- Azzouz, H.; Cherqui, A.; Campan, E.; Rahbé, Y.; Duport, G.; Jouanin, L.; Kaiser, L.; Giordanengo, P. Effects of plant protease inhibitors, oryzacystatin I and soybean Bowman-Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera, Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera, Aphelinidae). J. Insect Physiol. 2005, 51, 75–86. [Google Scholar] [CrossRef]
- Li, C.; Luo, C.; Zhou, Z.; Wang, R.; Ling, F.; Xiao, L.; Lin, Y.; Chen, H. Gene expression and plant hormone levels in two con-trasting rice genotypes responding to brown planthopper infestation. BMC Plant Biol. 2017, 17, 57. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Z.; Xiong, X.; Li, C.; Li, C.; Shen, E.; Wang, J.; Zha, W.; Wu, B.; Chen, H.; et al. Development of a multi-resistance and high-yield rice variety using multigene transformation and gene editing. Plant Biotechnol. J. 2024. [Google Scholar] [CrossRef]
- Chen, T.; Wu, H.; Lin, Y.; Chen, H. General steps for the cultivation of transgenic rice materials. Bio-101 2018, e1010177. [Google Scholar]
- Lin, Y.; Zhang, Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 2005, 23, 540–547. [Google Scholar] [CrossRef]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Ma, Z.; Fu, D.; Wu, Y.; Zhou, Z.; Li, C.; Shen, J. Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice. Int. J. Mol. Sci. 2024, 25, 10564. https://doi.org/10.3390/ijms251910564
Wang J, Ma Z, Fu D, Wu Y, Zhou Z, Li C, Shen J. Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice. International Journal of Molecular Sciences. 2024; 25(19):10564. https://doi.org/10.3390/ijms251910564
Chicago/Turabian StyleWang, Jianyu, Zengfeng Ma, Dong Fu, Yan Wu, Zaihui Zhou, Changyan Li, and Junhao Shen. 2024. "Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice" International Journal of Molecular Sciences 25, no. 19: 10564. https://doi.org/10.3390/ijms251910564
APA StyleWang, J., Ma, Z., Fu, D., Wu, Y., Zhou, Z., Li, C., & Shen, J. (2024). Identification, Cloning, and Characterization of Two Acupuncture-Injury-Inducing Promoters in Rice. International Journal of Molecular Sciences, 25(19), 10564. https://doi.org/10.3390/ijms251910564