Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin—A Chromatographic, Spectroscopic, and In Silico Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC Study
2.1.1. Thermodynamic Characterization of Enantioseparation and Protein Binding
2.1.2. Determination of Bound Percentage between PPIs and Proteins by HPLC
2.2. Spectroscopic Study
2.2.1. Fluorescence Measurement
2.2.2. UV-Vis Results
2.3. HPLC and Fluorescence Displacement Study
2.4. Docking Study
3. Materials and Methods
3.1. Materials
3.2. HPLC Measurements
3.3. Fluorescence Studies
3.4. UV Titration
3.5. In Silico Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bteich, M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon 2019, 5, e02879. [Google Scholar] [CrossRef] [PubMed]
- Zemek, F.; Korabecny, J.; Sepsova, V.; Karasova Zdarova, J.; Musilek, K.; Kuca, K. Albumin and α1-acid glycoprotein: Old acquaintances. Expert. Opin. Drug Met. 2013, 9, 943–954. [Google Scholar] [CrossRef]
- Fasano, M.; Curry, S.; Terreno, E.; Galliano, M.; Fanali, G.; Narciso, P.; Notari, S.; Ascenzi, P. The extraordinary ligand binding properties of human serum albumin. Iubmb Life 2005, 57, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.A.; Lotfy, M.; Amin, A.; Ghattas, M.A. Characterization of human serum albumin’s interactions with safranal and crocin using multi-spectroscopic and molecular docking techniques. Biochem. Biophys. Rep. 2019, 20, 100670. [Google Scholar] [CrossRef] [PubMed]
- Venianakis, T.; Primikyri, A.; Opatz, T.; Petry, S.; Papamokos, I.P. Gerothanassis, NMR and Docking Calculations Reveal Novel Atomistic Selectivity of a Synthetic High-Affinity Free Fatty Acid vs. Free Fatty Acids in Sudlow’s Drug Binding Sites in Human Serum Albumin. Molecules 2023, 28, 7991. [Google Scholar] [CrossRef]
- Shamsi, A.; Shahwan, M.; Khan, M.S.; Alhumaydhi, F.A.; Alsagaby, S.A.; Al Abdulmonem, W.; Abdullaev, B.; Yadav, D.K. Mechanistic Insight into Binding of Huperzine A with Human Serum Albumin: Computational and Spectroscopic Approaches. Molecules 2022, 27, 797. [Google Scholar] [CrossRef]
- Abou-Zied, O.K.; Al-Lawatia, N. Exploring the Drug-Binding Site Sudlow I of Human Serum Albumin: The Role of Water and Trp214 in Molecular Recognition and Ligand Binding. Chemphyschem 2011, 12, 270–274. [Google Scholar] [CrossRef]
- Sreedevi, S.M.; Vinod, S.M.; Krishnan, A.; Perumal, T.; Alasmary, F.A.; Alsaiari, N.S.; Govindasamy, M.; Rajendran, K. Molecular Docking approach on the effect of Site-Selective and Site-Specific Drugs on the Molecular Interactions of Human Serum Albumin (HSA)—Acridinedione dye complex. Arab. J. Chem. 2023, 16, 104701. [Google Scholar] [CrossRef]
- Dombi, G.; Horváth, P.; Fiser, B.; Mirzahosseini, A.; Dobó, M.; Szabó, Z.I.; Tóth, G. Enantioselective Human Serum Albumin Binding of Apremilast: Liquid Chromatographic, Fluorescence and Molecular Docking Study. Int. J. Mol. Sci. 2023, 24, 2168. [Google Scholar] [CrossRef]
- Ahmed, A.; Shamsi, A.; Khan, M.S.; Husain, F.M.; Bano, B. Methylglyoxal induced glycation and aggregation of human serum albumin: Biochemical and biophysical approach. Int. J. Biol. Macromol. 2018, 113, 269–276. [Google Scholar] [CrossRef]
- Ceciliani, F.; Lecchi, C. The Immune Functions of α Acid Glycoprotein. Curr. Protein Pept. Sc. 2019, 20, 505–524. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.A.K.; Huang, J.X.; Cooper, M.A.; Roberts, K.D.; Thompson, P.E.; Nation, R.L.; Li, J.; Velkov, T. Structure-activity relationships for the binding of polymyxins with human α-1-acid glycoprotein. Biochem. Pharmacol. 2012, 84, 278–291. [Google Scholar] [CrossRef]
- Dömötör, O.; Enyedy, É.A. Evaluation of In Vitro Distribution and Plasma Protein Binding of Selected Antiviral Drugs (Favipiravir, Molnupiravir and Imatinib) against SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 2849. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Zehe, M.; Holzgrabe, U. Characterization of binding properties of ephedrine derivatives to human alpha-1-acid glycoprotein. Eur. J. Pharm. Sci. 2023, 181, 106333. [Google Scholar] [CrossRef] [PubMed]
- Vuignier, K.; Schappler, J.; Veuthey, J.L.; Carrupt, P.A.; Martel, S. Drug-protein binding: A critical review of analytical tools. Anal. Bioanal. Chem. 2010, 398, 53–66. [Google Scholar] [CrossRef]
- Marciniak, A.; Kotynia, A.; Krzyzak, E.; Czyznikowska, Z.; Zielinska, S.; Kozlowska, W.; Bialas, M.; Matkowski, A.; Jezierska-Domaradzka, A. Protopine and Allocryptopine Interactions with Plasma Proteins. Int. J. Mol. Sci. 2024, 25, 5398. [Google Scholar] [CrossRef]
- Macii, F.; Biver, T. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: Tricky aspects and tips. J. Inorg. Biochem. 2021, 216, 111305. [Google Scholar] [CrossRef]
- Pacheco, M.E.; Bruzzone, L. Synchronous fluorescence spectrometry: Conformational investigation or inner filter effect? J. Lumin. 2013, 137, 138–142. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Mishra, A.K. Inner filter effect in fluorescence spectroscopy: As a problem and as a solution. J. Photoch Photobio C 2019, 41, 100318. [Google Scholar] [CrossRef]
- Hage, D.S. High-performance affinity chromatography: A powerful tool for studying serum protein binding. J. Chromatogr. B 2002, 768, 3–30. [Google Scholar] [CrossRef]
- Li, Z.; Beeram, S.R.; Bi, C.; Suresh, D.; Zheng, X.W.; Hage, D.S. High-Performance Affinity Chromatography: Applications in Drug-Protein Binding Studies and Personalized Medicine. Adv. Protein Chem. Str. 2016, 102, 1–39. [Google Scholar] [CrossRef]
- Ostergaard, J.; Heegaard, N.H.H. Capillary electrophoresis frontal analysis: Principles and applications for the study of drug-plasma protein binding. Electrophoresis 2003, 24, 2903–2913. [Google Scholar] [CrossRef]
- El-Hady, D.; Kühne, S.; El-Maali, N.; Wätzig, H. Precision in affinity capillary electrophoresis for drug-protein binding studies. J. Pharm. Biomed. 2010, 52, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Holdgate, G.A.; Anderson, M.; Edfeldt, F.; Geschwindner, S. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: Matching high information content with high throughput. J. Struct. Biol. 2010, 172, 142–157. [Google Scholar] [CrossRef]
- Blanchard, J.; Harvey, S. Comparison of Ultrafiltration Devices for Assessing Theophylline Protein-Binding. Ther. Drug Monit. 1990, 12, 398–403. [Google Scholar] [CrossRef]
- Schuck, P. Analytical Ultracentrifugation as a Tool for Studying Protein Interactions. Biophys. Rev. 2013, 5, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.; Abian, O.; Johnson, C.M.; Ferreira-da-Silva, F.; Vega, S.; Jimenez-Alesanco, A.; Ortega-Alarcon, D.; Velazquez-Campoy, A. Isothermal titration calorimetry. Nat. Rev. Method. Prime 2023, 3, 17. [Google Scholar] [CrossRef]
- Dargó, G.; Bajusz, D.; Simon, K.; Müller, J.; Balogh, G.T. Human Serum Albumin Binding in a Vial: A Novel UV-pH Titration Method to Assist Drug Design. J. Med. Chem. 2020, 63, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Yeggoni, D.P.; Rachamallu, A.; Subramanyam, R. A comparative binding mechanism between human serum albumin and α-1-acid glycoprotein with corilagin: Biophysical and computational approach. Rsc Adv. 2016, 6, 40225–40237. [Google Scholar] [CrossRef]
- Zolek, T.; Dömötör, O.; Zabinski, J. Binding mechanism of pentamidine derivatives with human serum acute phase protein α1-acid glycoprotein. Int. J. Biol. Macromol. 2024, 266, 131405. [Google Scholar] [CrossRef]
- Mullin, J.M.; Gabello, M.; Murray, L.J.; Farrell, C.P.; Bellows, J.; Wolov, K.R.; Kearney, K.R.; Rudolph, D.; Thornton, J.J. Proton pump inhibitors: Actions and reactions. Drug Discov. Today 2009, 14, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Asghar, W.; Pittman, E.; Jamali, F. Comparative efficacy of esomeprazole and omeprazole: Racemate to single enantiomer switch. Daru 2015, 23, 50. [Google Scholar] [CrossRef] [PubMed]
- Hancu, G.; Modroiu, A. Chiral Switch: Between Therapeutical Benefit and Marketing Strategy. Pharmaceuticals 2022, 15, 240. [Google Scholar] [CrossRef] [PubMed]
- Dent, J. Review article: Pharmacology of esomeprazole and comparisons with omeprazole. Aliment. Pharmacol. Ther. 2003, 17 (Suppl. S1), 5–9. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, J.; Zheng, Y.; Zhai, Y.; Lin, M.; Wu, G.; Lv, D.; Shentu, J. Pharmacokinetic/Pharmacodynamic Evaluation of Dexlansoprazole Infusion Injection Compared with Lansoprazole in Healthy Chinese Adults. Clin. Drug Investig. 2019, 39, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yan, X.F.; Pan, W.S.; Zeng, S. Is the required therapeutic effect always achieved by racemic switch of proton-pump inhibitors? World J. Gastroenterol. 2008, 14, 2617–2619. [Google Scholar] [CrossRef]
- Pai, V.; Pai, N. Randomized, double-blind, comparative study of dexrabeprazole 10 mg rabeprazole 20 mg in the treatment of gastroesophageal reflux disease. World J. Gastroenterol. 2007, 13, 4100–4102. [Google Scholar] [CrossRef]
- Kim, K.A.; Shon, J.H.; Park, J.Y.; Yoon, Y.R.; Kim, M.J.; Yun, D.H.; Kim, M.K.; Cha, I.J.; Hyun, M.H.; Shin, J.G. Enantioselective disposition of lansoprazole in extensive and poor metabolizers of CYP2C19. Clin. Pharmacol. Ther. 2002, 72, 90–99. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Shi, S.Y.; Peng, M.J. Investigation of proton pump inhibitors binding with bovine serum albumin and their relationship to molecular structure. J. Lumin. 2012, 132, 1921–1928. [Google Scholar] [CrossRef]
- Deepa, K.N.; Kabir, S.; Amran, M.S. Fluorescence spectroscopic analysis of the interaction between Omeprazole and bovine serum albumin. World J. Pharm. Pharm. Sci. 2016, 5, 16–25. [Google Scholar] [CrossRef]
- Pawar, S.K.; Punith, R.; Naik, R.S.; Seetharamappa, J. Spectroscopic and molecular modeling approaches to investigate the binding of proton pump inhibitors to human serum albumin. J. Biomol. Struct. Dyn. 2017, 35, 3205–3220. [Google Scholar] [CrossRef] [PubMed]
- Bodapati, A.T.S.; Reddy, R.S.; Lavanya, K.; Madku, S.R.; Sahoo, B.K. A comprehensive biophysical and theoretical study on the binding of dexlansoprazole with human serum albumin. J. Mol. Liq. 2023, 380, 121777. [Google Scholar] [CrossRef]
- Xu, Y.J.; Hong, T.T.; Chen, X.P.; Ji, Y.B. Affinity capillary electrophoresis and fluorescence spectroscopy for studying enantioselective interactions between omeprazole enantiomer and human serum albumin. Electrophoresis 2017, 38, 1366–1373. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.; Hermansson, S. Optimisation of chiral separation of omeprazole and one of its metabolites on immobilized alpha(1)-acid glycoprotein using chemometrics. Chromatographia 1997, 44, 10–18. [Google Scholar] [CrossRef]
- do Carmo, J.P.; Phyo, Y.Z.; Palmeira, A.; Tiritan, M.E.; Afonso, C.; Kijjoa, A.; Pinto, M.M.M.; Fernandes, C. Enantioseparation, recognition mechanisms and binding of xanthones on human serum albumin by liquid chromatography. Bioanalysis 2019, 11, 1255–1274. [Google Scholar] [CrossRef]
- Ascoli, G.A.; Domenici, E.; Bertucci, C. Drug binding to human serum albumin: Abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality 2006, 18, 667–679. [Google Scholar] [CrossRef]
- Amézqueta, S.; Beltran, J.L.; Bolioli, A.M.; Campos-Vicens, L.; Luque, F.J.; Ràfols, C. Evaluation of the Interactions between Human Serum Albumin (HSA) and Non-Steroidal Anti-Inflammatory (NSAIDs) Drugs by Multiwavelength Molecular Fluorescence, Structural and Computational Analysis. Pharmaceuticals 2021, 14, 214. [Google Scholar] [CrossRef]
- Gianazza, E.; Frigerio, A.; Astruatestori, S.; Righetti, P.G. The Behavior of Serum-Albumin Upon Isoelectric-Focusing on Immobilized Ph Gradients. Electrophoresis 1984, 5, 310–312. [Google Scholar] [CrossRef]
- Operating Guidelines for ChromTech CHIRAL-AGP, CHIRAL-HSA, and CHIRAL-CBH HPLC Columns. Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/824/081/t709074.pdf (accessed on 13 August 2024).
- Levkin, P.; Maier, N.M.; Lindner, W.; Schurig, V. A practical method for the quantitative assessment of non-enantioselective enantioselective interactions encountered in liquid chromatography on brush-type chiral stationary phase. J. Chromatogr. A 2012, 1269, 270–278. [Google Scholar] [CrossRef]
- Oberleitner, W.R.; Maier, N.M.; Lindner, W. Enantioseparation of various amino acid derivatives on a quinine based chiral anion-exchange selector at variable temperature conditions. Influence of structural parameters of the analytes on the apparent retention and enantioseparation characteristics. J. Chromatogr. A 2002, 960, 97–108. [Google Scholar] [CrossRef]
- Bertucci, C.; Cimitan, S.; Riva, A.; Morazzoni, P. Binding studies of taxanes to human serum albumin by bioaffinity chromatography and circular dichroism. J. Pharm. Biomed. 2006, 42, 81–87. [Google Scholar] [CrossRef]
- Tyukodi, L.; Zsidó, B.Z.; Hetényi, C.; Koszegi, T.; Huber, I.; Rozmer, Z. Serum albumin binding studies on antiproliferative cyclic C5-curcuminoid derivatives using spectroscopic methods and molecular modelling. J. Mol. Struct. 2023, 1287, 135761. [Google Scholar] [CrossRef]
- Brown, M.P.; Royer, C. Fluorescence spectroscopy as a tool to investigate protein interactions. Curr. Opin. Biotech. 1997, 8, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, L.; Hu, X.; Zeng, Z.; Wu, W.; Geng, F.; Li, H.; Wu, D. Evaluation of the binding affinity and antioxidant activity of phlorizin to pepsin and trypsin. Food Sci. Hum. Well 2024, 13, 392–400. [Google Scholar] [CrossRef]
- Wu, W.; Hu, X.; Zeng, Z.; Wu, D.; Li, H.; Li, H. Characterization of the Binding Properties of Sorafenib to c-MYC G-Quadruplexes: Evidence for Screening Potential Ligands. J. Phys. Chem. B 2023, 127, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Y.; Liu, R.H.; Yi, R.Q.; Yang, F.X.; Huang, H.W.; Chen, J.A.; Ji, D.H.; Yang, Y.; Li, X.F.; Yi, P.G. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy. Spectrochim. Acta A 2011, 78, 1329–1335. [Google Scholar] [CrossRef]
- Yu, X.Y.; Liu, R.H.; Yang, F.X.; Ji, D.H.; Li, X.F.; Chen, J.A.; Huang, H.W.; Yi, P.G. Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. J. Mol. Struct. 2011, 985, 407–412. [Google Scholar] [CrossRef]
- Lämmerhofer, M. Chiral recognition by enantioselective liquid chromatography: Mechanisms and modern chiral stationary phases. J. Chromatogr. A 2010, 1217, 814–856. [Google Scholar] [CrossRef]
- Ilisz, I.; Gecse, Z.; Lajkó, G.; Nonn, M.; Fülöp, F.; Lindner, W.; Péter, A. Investigation of the structure-selectivity relationships and van’t Hoff analysis of chromatographic stereoisomer separations of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on alkaloid-based chiral stationary phases. J. Chromatogr. A 2015, 1384, 67–75. [Google Scholar] [CrossRef]
- Szabó, Z.I.; Foroughbakhshfasaei, M.; Noszál, B.; Tóth, G. Enantioseparation of racecadotril using polysaccharide-type chiral stationary phases in polar organic mode. Chirality 2018, 30, 95–105. [Google Scholar] [CrossRef]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aid Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Sondergaard, C.R.; Olsson, M.H.M.; Rostkowski, M.; Jensen, J.H. Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of p Values. J. Chem. Theory Comput. 2011, 7, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.J.; Reboul, M.; Xiang, J.Y.; Wang, L.L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A. Identifying and Characterizing Binding Sites and Assessing Druggability. J. Chem. Inf. Model. 2009, 49, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des. 2007, 69, 146–148. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
Investigated Compounds | Protein | Enantioselectivity | Method(s) | Main Result(s) | Ref. |
---|---|---|---|---|---|
Omeprazole, Pantoprazole, Ilaprazole | BSA | No | Fluorescence, UV-Vis, and circular dichroism (CD) | Omeprazole (logK = 4.58) Pantoprazole (logK = 5.04) Ilaprazole (logK = 5.63) Binding to subdomain IIA | [39] |
Omeprazole | BSA | No | Fluorescence | K = 0.068 (µM−1) | [40] |
Omeprazole and S-omeprazole | HSA | Partially * | Fluorescence, CD, voltametry, and in silico | Omeprazole (logK = 4.61) S-omeprazole (logK = 4.70) Binding to subdomain IIA | [41] |
R-lansoprazole | HSA | Partially ** | Fluorescence, UV, and molecular docking | logK = 3.44 Binding to subdomain IIA | [42] |
S-omeprazole R-omeprazole | HSA | Yes | Affinity capillary electrophoresis and fluorescence | R-omeprazole (logK = 3.50) S-omeprazole (logK = 3.73) Enantioselective binding S-omeprazole bound to subdomain IIA, R-omeprazole bound to subdomain IIIA | [43] |
Omeprazole and its metabolite | AGP | Yes | HPLC using AGP column | Stereoselective binding | [44] |
Column | Modifier | % | Omeprazole | Rabeprazole | Lansoprazole | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 | k2 | Rs | EEO | k1 | k2 | Rs | EEO | k1 | k2 | Rs | EEO | |||
AGP | IPA | 2.5 | 13.24 | 16.18 | 1.2 | R < S | 14.89 | 21.66 | 2.5 | R < S | 15.75 | 19.61 | 1.5 | S < R |
5 | 5.46 | 5.46 | - | - | 6.68 | 7.89 | 1.0 | R < S | 6.88 | 9.12 | 1.7 | S < R | ||
7.5 | 2.88 | 2.88 | - | - | 3.901 | 3.90 | - | - | 4.00 | 5.28 | 1.5 | S < R | ||
10 | 1.87 | 1.87 | - | - | 2.47 | 2.47 | - | - | 2.67 | 3.47 | 1.3 | S < R | ||
12.5 | 1.33 | 1.33 | - | - | 1.72 | 1.72 | - | - | 1.95 | 2.47 | 1.1 | S < R | ||
15 | 1.01 | 1.01 | - | - | 1.27 | 1.27 | - | - | 1.48 | 1.83 | 0.8 | S < R | ||
EtOH | 5 | 12.69 | 15.14 | 1.0 | R < S | 13.04 | 20.84 | 2.9 | R < S | 14.52 | 18.43 | 1.3 | S < R | |
7.5 | 6.57 | 7.20 | 0.2 | R < S | 7.21 | 10.50 | 2.0 | R < S | 8.24 | 10.64 | 1.3 | S < R | ||
10 | 4.02 | 4.02 | - | - | 4.39 | 5.89 | 1.4 | R < S | 5.13 | 6.62 | 1.2 | S < R | ||
15 | 1.81 | 1.81 | - | - | 2.11 | 2.48 | 0.6 | R < S | 2.54 | 3.21 | 1.0 | S < R | ||
MeOH | 5 | 25.74 | 37.33 | 1.8 | R < S | 20.89 | 42.82 | 3.7 | R < S | 22.63 | 28.55 | 1.2 | S < R | |
7.5 | 15.56 | 21.41 | 1.5 | R < S | 12.90 | 26.14 | 2.6 | R < S | 14.63 | 18.79 | 1.1 | S < R | ||
10 | 9.95 | 13.05 | 1.1 | R < S | 8.63 | 16.71 | 3.1 | R < S | 9.96 | 12.56 | 1.1 | S < R | ||
15 | 6.70 | 8.43 | 1.3 | R < S | 5.97 | 11.00 | 3.4 | R < S | 7.02 | 8.75 | 0.9 | S < R | ||
HSA | IPA | 1 | 9.53 | 9.53 | - | - | 7.21 | 7.21 | - | - | 11.17 | 18.27 | 1.8 | R < S |
2.5 | 8.66 | 8.66 | - | - | 5.45 | 5.45 | - | - | 9.26 | 12.87 | 1.0 | R < S | ||
5 | 4.34 | 4.34 | - | - | 3.32 | 3.32 | - | - | 5.79 | 6.63 | 0.2 | R < S | ||
7.5 | 2.82 | 2.82 | - | - | 2.37 | 2.37 | - | - | 4.37 | 4.37 | - | - | ||
10 | 2.03 | 2.03 | - | - | 1.79 | 1.79 | - | - | 3.45 | 3.45 | - | - | ||
12.5 | 1.50 | 1.50 | - | - | 1.37 | 1.37 | - | - | 2.71 | 2.71 | - | - | ||
EtOH | 1 | 9.89 | 9.89 | - | - | 6.16 | 6.16 | - | - | 10.13 | 14.32 | 1.0 | R < S | |
2.5 | 5.53 | 5.53 | - | - | 3.97 | 3.97 | - | - | 6.92 | 8.39 | 0.3 | R < S | ||
5 | 3.68 | 3.68 | - | - | 2.87 | 2.87 | - | - | 5.26 | 5.26 | - | - | ||
7.5 | 2.61 | 2.61 | - | - | 2.16 | 2.16 | - | - | 4.11 | 4.11 | - | - | ||
10 | 1.97 | 1.97 | - | - | 1.66 | 1.66 | - | - | 3.24 | 3.24 | - | - | ||
MeOH | 1 | 7.79 | 7.79 | - | - | 6.61 | 6.61 | - | - | 10.66 | 15.61 | 1.0 | R < S | |
2.5 | 6.37 | 6.37 | - | - | 5.08 | 5.08 | - | - | 7.92 | 10.16 | 0.8 | R < S | ||
5 | 4.95 | 4.95 | - | - | 3.68 | 3.68 | - | - | 6.05 | 7.29 | 0.2 | R < S | ||
7.5 | 3.82 | 3.82 | - | - | 2.95 | 2.95 | - | - | 4.92 | 4.92 | - | - | ||
10 | 2.97 | 2.97 | - | - | 2.34 | 2.34 | - | - | 4.03 | 4.03 | - | - |
Column | Compound | Equation | r2 | Δ(ΔH°) (kJ/mol) | Δ(ΔS°) (J/molK) | Δ(ΔG°) (kJ/mol) | Tiso (°C) | Q |
---|---|---|---|---|---|---|---|---|
AGP | S-lansoprazole | 3858.7x − 10.9 | 0.999 | −32.1 | −90.9 | −5.0 | ||
R-lansoprazole | 2681.1x − 6.3 | 0.999 | −22.2 | −52.7 | −6.6 | |||
−1177.6x + 4.6 | 0.995 | 9.7 | 11.4 | −1.6 | −16.3 | 0.9 | ||
HSA | R-lansoprazole | 1011.1x − 1.0 | 0.993 | −8.4 | −8.7 | −5.8 | ||
S-lansoprazole | 1357.9x − 1.9 | 0.996 | −11.2 | −15.9 | −6.6 | |||
346.9x − 0.9 | 0.982 | −2.8 | −7.2 | −0.7 | 128.9 | 1.4 |
Column | Modifier | Omeprazole (%) | Rabeprazole (%) | Lansoprazole (%) | |||
---|---|---|---|---|---|---|---|
S | R | S | R | S | R | ||
AGP | IPA | 99.38 | 98.97 | 99.39 | 98.60 | 98.62 | 98.93 |
EtOH | 97.39 | 96.74 | 98.17 | 96.69 | 96.92 | 97.60 | |
MeOH | 94.93 | 94.25 | 96.39 | 95.07 | 95.04 | 96.16 | |
Average | 97.23 ± 2.23 | 96.65 ± 2.36 | 97.98 ± 1.51 | 96.78 ± 1.77 | 96.86 ± 1.79 | 97.56 ± 1.39 | |
HSA | IPA | 91.15 | 91.15 | 88.24 | 88.24 | 93.67 | 91.77 |
EtOH | 92.97 | 92.97 | 88.85 | 88.85 | 94.85 | 92.69 | |
MeOH | 91.03 | 91.03 | 89.42 | 89.42 | 95.42 | 92.89 | |
Average | 91.76 ± 1.08 | 91.76 ± 1.08 | 88.84 ± 0.59 | 88.84 ± 0.59 | 94.64 ± 0.89 | 92.45 ± 0.59 |
PPI | logKAGP ± Stdev | logKHSA ± Stdev. |
---|---|---|
R-omeprazole | 4.69 ± 0.09 | 4.47 ± 0.30 |
S-omeprazole | 4.47 ± 0.11 | 4.02 ± 0.45 |
R-lansoprazole | 4.56 ± 0.28 | 4.22 ± 0.23 |
S-lansoprazole | 4.83 ± 0.24 | 4.66 ± 0.14 |
R-rabeprazole | 4.59 ± 0.03 | 4.33 ± 0.12 |
S-rabeprazole | 4.76 ± 0.16 | 4.42 ± 0.15 |
AGP/Lansoprazole | AGP/Rabeprazole | AGP/Omeprazole | |||
---|---|---|---|---|---|
R | S | R | S | R | S |
-TYR37 HO---H(N)- | -TYR37 HO---O=S- | -TYR37 OH---(O)- | n/a | -ARG90 (NH)---N- | -ARG90 (NH)---N- |
-TYR127 OH---N- | n/a | -TYR127 OH---N- | n/a | -GLU64 (COO)---HN- | n/a |
n/a | -GLU92 (COO)---HN | -TYR27 π---π | -TYR27 π---HC | n/a | -TYR27 π---HC |
-PHE49 π---FC- | n/a | n/a | -TYR127 π---HC | n/a | -TYR37 π---π |
-PHE112 π---HC | n/a | -PHE49 π---π | -PHE49 π ---HC | n/a | -TYR127 π---HC |
- | - | n/a | -PHE51 CH---π | n/a | -PHE49 π---HC |
- | - | -PHE112 π---π | -PHE112 π---π | n/a | -PHE112 π---HC |
HSA/Lansoprazole | HSA/Rabeprazole | HSA/Omeprazole | |||
---|---|---|---|---|---|
R | S | R | S | R | S |
-TRP214 π ---FC- | -TRP214 π---FC- | -TRP214 π---π | -TRP214 π---HC- | -LYS199 -NH---π | n/a |
-LEU238 HC---π | -LEU238 HC---π | n/a | -PHE211 π --- π | -ALA291 (C=O)---HN | n/a |
-LYS199 -CHxxxFC- | - | -LYS199 -CHxxxHC- | -LYS199 -CH xxx HC- | -ARG222 (NH)---(O=S) | n/a |
- | - | -LYS199 -NH xxx HC- | n/a | -LEU238 CH---π | -LEU238 CH---π |
- | - | -PHE211 -CHxxxHC- | -PHE211 -CHxxxHC- | n/a | -LYS195 -NH----O- |
- | - | - | - | n/a | -LYS199 -NH---(O=S) |
- | - | - | - | n/a | -ALA291 CH---π |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dombi, G.; Tyukodi, L.; Dobó, M.; Molnár, G.; Rozmer, Z.; Szabó, Z.-I.; Fiser, B.; Tóth, G. Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin—A Chromatographic, Spectroscopic, and In Silico Study. Int. J. Mol. Sci. 2024, 25, 10575. https://doi.org/10.3390/ijms251910575
Dombi G, Tyukodi L, Dobó M, Molnár G, Rozmer Z, Szabó Z-I, Fiser B, Tóth G. Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin—A Chromatographic, Spectroscopic, and In Silico Study. International Journal of Molecular Sciences. 2024; 25(19):10575. https://doi.org/10.3390/ijms251910575
Chicago/Turabian StyleDombi, Gergely, Levente Tyukodi, Máté Dobó, Gergely Molnár, Zsuzsanna Rozmer, Zoltán-István Szabó, Béla Fiser, and Gergő Tóth. 2024. "Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin—A Chromatographic, Spectroscopic, and In Silico Study" International Journal of Molecular Sciences 25, no. 19: 10575. https://doi.org/10.3390/ijms251910575
APA StyleDombi, G., Tyukodi, L., Dobó, M., Molnár, G., Rozmer, Z., Szabó, Z.-I., Fiser, B., & Tóth, G. (2024). Enantioselective Binding of Proton Pump Inhibitors to Alpha1-Acid Glycoprotein and Human Serum Albumin—A Chromatographic, Spectroscopic, and In Silico Study. International Journal of Molecular Sciences, 25(19), 10575. https://doi.org/10.3390/ijms251910575