Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies
Abstract
:1. Introduction
2. Diagnosis
3. Systemic Treatment of Advanced Disease—Chemotherapy, Vascular-Endothelial Growth Factor and Other Non-Immunotherapy Strategies
4. Immunotherapy—Relapsed/Refractory Disease
4.1. Tremilimumab
4.2. Pembrolizumab
4.3. Nivolumab
4.4. Avelumab
4.5. Dual Immune-Checkpoint Inhibition
5. Immunotherapy—First-Line
6. Novel Immunotherapeutic Strategies and Cellular Therapies
Cellular Therapies
7. Other Strategies for Advanced Disease
8. Early-Stage Disease
9. Discussion and Future Direction
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, G.A.; Maskell, N.A.; Bibby, A. Recent Advances in Mesothelioma. Curr. Pulmonol. Rep. 2024, 13, 256–265. [Google Scholar] [CrossRef]
- Robinson, B.M. Malignant pleural mesothelioma: An epidemiological perspective. Ann. Cardiothorac. Surg. 2012, 1, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, S.C.; Pang, W.S.; Chow, S.H.; Lok, V.; Zhang, L.; Lin, X.; Lucero-Prisno, D.E., 3rd; Xu, W.; Zheng, Z.J.; et al. Global Incidence, Risk Factors, and Temporal Trends of Mesothelioma: A Population-Based Study. J. Thorac. Oncol. 2023, 18, 792–802. [Google Scholar] [CrossRef]
- Zhu, W.; Liu, J.; Li, Y.; Shi, Z.; Wei, S. Global, regional, and national trends in mesothelioma burden from 1990 to 2019 and the predictions for the next two decades. SSM Popul. Health 2023, 23, 101441. [Google Scholar] [CrossRef] [PubMed]
- Board, W. classification of tumours. In Thoracic Tumours; IARC Publications: Lyon, France, 2021; pp. 20–29. [Google Scholar]
- Shavelle, R.; Vavra-Musser, K.; Lee, J.; Brooks, J. Life Expectancy in Pleural and Peritoneal Mesothelioma. Lung Cancer Int. 2017, 2017, 2782590. [Google Scholar] [CrossRef] [PubMed]
- Dacic, S. Pleural mesothelioma classification-update and challenges. Mod. Pathol. 2022, 35 (Suppl. S1), 51–56. [Google Scholar] [CrossRef]
- National Cancer Institute. SEER*Explorer: An Interactive Website for SEER Cancer Statistics. Available online: https://seer.cancer.gov/statistics-network/explorer/ (accessed on 29 July 2024).
- Henderson, D.W.; Reid, G.; Kao, S.C.; van Zandwijk, N.; Klebe, S. Challenges and controversies in the diagnosis of mesothelioma: Part 1. Cytology-only diagnosis, biopsies, immunohistochemistry, discrimination between mesothelioma and reactive mesothelial hyperplasia, and biomarkers. J. Clin. Pathol. 2013, 66, 847–853. [Google Scholar] [CrossRef]
- Bibby, A.C.; Tsim, S.; Kanellakis, N.; Ball, H.; Talbot, D.C.; Blyth, K.G.; Maskell, N.A.; Psallidas, I. Malignant pleural mesothelioma: An update on investigation, diagnosis and treatment. Eur. Respir. Rev. 2016, 25, 472–486. [Google Scholar] [CrossRef]
- Rusch, V.W.; Giroux, D.; Kennedy, C.; Ruffini, E.; Cangir, A.K.; Rice, D.; Pass, H.; Asamura, H.; Waller, D.; Edwards, J.; et al. Initial analysis of the international association for the study of lung cancer mesothelioma database. J. Thorac. Oncol. 2012, 7, 1631–1639. [Google Scholar] [CrossRef]
- Nicholson, A.G.; Sauter, J.L.; Nowak, A.K.; Kindler, H.L.; Gill, R.R.; Remy-Jardin, M.; Armato, S.G., 3rd; Fernandez-Cuesta, L.; Bueno, R.; Alcala, N.; et al. EURACAN/IASLC Proposals for Updating the Histologic Classification of Pleural Mesothelioma: Towards a More Multidisciplinary Approach. J. Thorac. Oncol. 2020, 15, 29–49. [Google Scholar] [CrossRef]
- Schulte, J.J.; Chapel, D.B.; Attanoos, R.; Brcic, L.; Burn, J.; Butnor, K.J.; Chang, N.; Chen, H.; Dacic, S.; De Perrot, M.; et al. Comparison of Nuclear Grade, Necrosis, and Histologic Subtype Between Biopsy and Resection in Pleural Malignant Mesothelioma: An International Multi-Institutional Analysis. Am. J. Clin. Pathol. 2021, 156, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Carbone, M.; Adusumilli, P.S.; Alexander, H.R., Jr.; Baas, P.; Bardelli, F.; Bononi, A.; Bueno, R.; Felley-Bosco, E.; Galateau-Salle, F.; Jablons, D.; et al. Mesothelioma: Scientific clues for prevention, diagnosis, and therapy. CA Cancer J. Clin. 2019, 69, 402–429. [Google Scholar] [CrossRef]
- Vrugt, B.; Kirschner, M.B.; Meerang, M.; Oehl, K.; Wagner, U.; Soltermann, A.; Moch, H.; Opitz, I.; Wild, P.J. Deletions of CDKN2A and MTAP Detected by Copy-Number Variation Array Are Associated with Loss of p16 and MTAP Protein in Pleural Mesothelioma. Cancers 2023, 15, 4978. [Google Scholar] [CrossRef] [PubMed]
- Hmeljak, J.; Sanchez-Vega, F.; Hoadley, K.A.; Shih, J.; Stewart, C.; Heiman, D.; Tarpey, P.; Danilova, L.; Drill, E.; Gibb, E.A.; et al. Integrative Molecular Characterization of Malignant Pleural Mesothelioma. Cancer Discov. 2018, 8, 1548–1565. [Google Scholar] [CrossRef]
- Bueno, R.; Stawiski, E.W.; Goldstein, L.D.; Durinck, S.; De Rienzo, A.; Modrusan, Z.; Gnad, F.; Nguyen, T.T.; Jaiswal, B.S.; Chirieac, L.R.; et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 2016, 48, 407–416. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Rusthoven, J.J.; Symanowski, J.; Denham, C.; Kaukel, E.; Ruffie, P.; Gatzemeier, U.; Boyer, M.; Emri, S.; Manegold, C.; et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 2003, 21, 2636–2644. [Google Scholar] [CrossRef]
- Dudek, A.Z.; Wang, X.; Gu, L.; Duong, S.; Stinchcombe, T.E.; Kratzke, R.; Borghaei, H.; Vokes, E.E.; Kindler, H.L. Randomized Study of Maintenance Pemetrexed Versus Observation for Treatment of Malignant Pleural Mesothelioma: CALGB 30901. Clin. Lung Cancer 2020, 21, 553–561.e1. [Google Scholar] [CrossRef]
- Zalcman, G.; Mazieres, J.; Margery, J.; Greillier, L.; Audigier-Valette, C.; Moro-Sibilot, D.; Molinier, O.; Corre, R.; Monnet, I.; Gounant, V.; et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A randomised, controlled, open-label, phase 3 trial. Lancet 2016, 387, 1405–1414. [Google Scholar] [CrossRef]
- Ceresoli, G.L.; Zucali, P.A.; Mencoboni, M.; Botta, M.; Grossi, F.; Cortinovis, D.; Zilembo, N.; Ripa, C.; Tiseo, M.; Favaretto, A.G.; et al. Phase II study of pemetrexed and carboplatin plus bevacizumab as first-line therapy in malignant pleural mesothelioma. Br. J. Cancer 2013, 109, 552–558. [Google Scholar] [CrossRef]
- Tsao, A.S.; Miao, J.; Wistuba, I.I.; Vogelzang, N.J.; Heymach, J.V.; Fossella, F.V.; Lu, C.; Velasco, M.R.; Box-Noriega, B.; Hueftle, J.G.; et al. Phase II Trial of Cediranib in Combination with Cisplatin and Pemetrexed in Chemotherapy-Naive Patients with Unresectable Malignant Pleural Mesothelioma (SWOG S0905). J. Clin. Oncol. 2019, 37, 2537–2547. [Google Scholar] [CrossRef]
- Grosso, F.; Steele, N.; Novello, S.; Nowak, A.K.; Popat, S.; Greillier, L.; John, T.; Leighl, N.B.; Reck, M.; Taylor, P.; et al. Nintedanib Plus Pemetrexed/Cisplatin in Patients with Malignant Pleural Mesothelioma: Phase II Results From the Randomized, Placebo-Controlled LUME-Meso Trial. J. Clin. Oncol. 2017, 35, 3591–3600. [Google Scholar] [CrossRef]
- Scagliotti, G.V.; Gaafar, R.; Nowak, A.K.; Nakano, T.; van Meerbeeck, J.; Popat, S.; Vogelzang, N.J.; Grosso, F.; Aboelhassan, R.; Jakopovic, M.; et al. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med. 2019, 7, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Szlosarek, P.W.; Creelan, B.C.; Sarkodie, T.; Nolan, L.; Taylor, P.; Olevsky, O.; Grosso, F.; Cortinovis, D.; Chitnis, M.; Roy, A.; et al. Pegargiminase Plus First-Line Chemotherapy in Patients with Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. JAMA Oncol. 2024, 10, 475–483. [Google Scholar] [CrossRef]
- Szlosarek, P.W.; Steele, J.P.; Nolan, L.; Gilligan, D.; Taylor, P.; Spicer, J.; Lind, M.; Mitra, S.; Shamash, J.; Phillips, M.M.; et al. Arginine Deprivation with Pegylated Arginine Deiminase in Patients with Argininosuccinate Synthetase 1-Deficient Malignant Pleural Mesothelioma: A Randomized Clinical Trial. JAMA Oncol. 2017, 3, 58–66. [Google Scholar] [CrossRef]
- Beddowes, E.; Spicer, J.; Chan, P.Y.; Khadeir, R.; Corbacho, J.G.; Repana, D.; Steele, J.P.; Schmid, P.; Szyszko, T.; Cook, G.; et al. Phase 1 Dose-Escalation Study of Pegylated Arginine Deiminase, Cisplatin, and Pemetrexed in Patients with Argininosuccinate Synthetase 1-Deficient Thoracic Cancers. J. Clin. Oncol. 2017, 35, 1778–1785. [Google Scholar] [CrossRef]
- Szlosarek, P.W.; Phillips, M.M.; Pavlyk, I.; Steele, J.; Shamash, J.; Spicer, J.; Kumar, S.; Pacey, S.; Feng, X.; Johnston, A.; et al. Expansion Phase 1 Study of Pegargiminase Plus Pemetrexed and Cisplatin in Patients with Argininosuccinate Synthetase 1-Deficient Mesothelioma: Safety, Efficacy, and Resistance Mechanisms. JTO Clin. Res. Rep. 2020, 1, 100093. [Google Scholar] [CrossRef]
- Gounant, V.; Brosseau, S.; Zalcman, G. Immunotherapy, the promise for present and future of malignant pleural mesothelioma (MPM) treatment. Ther. Adv. Med. Oncol. 2021, 13, 17588359211061956. [Google Scholar] [CrossRef]
- Thapa, B.; Salcedo, A.; Lin, X.; Walkiewicz, M.; Murone, C.; Ameratunga, M.; Asadi, K.; Deb, S.; Barnett, S.A.; Knight, S.; et al. The Immune Microenvironment, Genome-wide Copy Number Aberrations, and Survival in Mesothelioma. J. Thorac. Oncol. 2017, 12, 850–859. [Google Scholar] [CrossRef]
- Pasello, G.; Zago, G.; Lunardi, F.; Urso, L.; Kern, I.; Vlacic, G.; Grosso, F.; Mencoboni, M.; Ceresoli, G.L.; Schiavon, M.; et al. Malignant pleural mesothelioma immune microenvironment and checkpoint expression: Correlation with clinical-pathological features and intratumor heterogeneity over time. Ann. Oncol. 2018, 29, 1258–1265. [Google Scholar] [CrossRef]
- Maio, M.; Scherpereel, A.; Calabro, L.; Aerts, J.; Perez, S.C.; Bearz, A.; Nackaerts, K.; Fennell, D.A.; Kowalski, D.; Tsao, A.S.; et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): A multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 2017, 18, 1261–1273. [Google Scholar] [CrossRef]
- Popat, S.; Curioni-Fontecedro, A.; Dafni, U.; Shah, R.; O’Brien, M.; Pope, A.; Fisher, P.; Spicer, J.; Roy, A.; Gilligan, D.; et al. A multicentre randomised phase III trial comparing pembrolizumab versus single-agent chemotherapy for advanced pre-treated malignant pleural mesothelioma: The European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso trial. Ann. Oncol. 2020, 31, 1734–1745. [Google Scholar] [CrossRef]
- Calabro, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Amato, G.; Giannarelli, D.; Di Giacomo, A.M.; Danielli, R.; Altomonte, M.; Mutti, L.; et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: An open-label, single-arm, phase 2 trial. Lancet Oncol. 2013, 14, 1104–1111. [Google Scholar] [CrossRef]
- Calabro, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Fazio, C.; Annesi, D.; Lenoci, M.; Amato, G.; Danielli, R.; Altomonte, M.; et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: An open-label, single-arm, phase 2 study. Lancet Respir. Med. 2015, 3, 301–309. [Google Scholar] [CrossRef]
- Alley, E.W.; Lopez, J.; Santoro, A.; Morosky, A.; Saraf, S.; Piperdi, B.; van Brummelen, E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): Preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017, 18, 623–630. [Google Scholar] [CrossRef]
- Kindler, H.; Karrison, T.; Tan, Y.-H.C.; Rose, B.; Ahmad, M.; Straus, C.; Sargis, R.; Seiwert, T. OA13. 02 phase II trial of pembrolizumab in patients with Malignant Mesothelioma (MM): Interim analysis. J. Thorac. Oncol. 2017, 12, S293–S294. [Google Scholar] [CrossRef]
- Desai, A.; Karrison, T.; Rose, B.; Pemberton, E.; Hill, B.; Straus, C.M.; Tan, Y.-H.C.; Seiwert, T.Y.; Kindler, H.L. Phase II trial of pembrolizumab (P) in patients (pts) with previously-treated mesothelioma (MM). J. Clin. Oncol. 2018, 36, 8565. [Google Scholar] [CrossRef]
- Yap, T.A.; Nakagawa, K.; Fujimoto, N.; Kuribayashi, K.; Guren, T.K.; Calabro, L.; Shapira-Frommer, R.; Gao, B.; Kao, S.; Matos, I.; et al. Efficacy and safety of pembrolizumab in patients with advanced mesothelioma in the open-label, single-arm, phase 2 KEYNOTE-158 study. Lancet Respir. Med. 2021, 9, 613–621. [Google Scholar] [CrossRef]
- Quispel-Janssen, J.; Zago, G.; Schouten, R.; Buikhuisen, W.; Monkhorst, K.; Thunissen, E.; Baas, P. OA13. 01 A phase II study of nivolumab in malignant pleural mesothelioma (NivoMes): With Translational Research (TR) biopsies. J. Thorac. Oncol. 2017, 12, S292–S293. [Google Scholar] [CrossRef]
- Okada, M.; Kijima, T.; Aoe, K.; Kato, T.; Fujimoto, N.; Nakagawa, K.; Takeda, Y.; Hida, T.; Kanai, K.; Imamura, F.; et al. Clinical Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-label, Single-arm, Japanese Phase II study in Malignant Pleural Mesothelioma (MERIT). Clin. Cancer Res. 2019, 25, 5485–5492. [Google Scholar] [CrossRef]
- Fujimoto, N.; Okada, M.; Kijima, T.; Aoe, K.; Kato, T.; Nakagawa, K.; Takeda, Y.; Hida, T.; Kanai, K.; Hirano, J.; et al. Clinical Efficacy and Safety of Nivolumab in Japanese Patients with Malignant Pleural Mesothelioma: 3-Year Results of the MERIT Study. JTO Clin. Res. Rep. 2021, 2, 100135. [Google Scholar] [CrossRef]
- Fennell, D.A.; Ewings, S.; Ottensmeier, C.; Califano, R.; Hanna, G.G.; Hill, K.; Danson, S.; Steele, N.; Nye, M.; Johnson, L.; et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): A multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 1530–1540. [Google Scholar] [CrossRef]
- Fennell, D.; Ottensmeier, C.; Califano, R.; Hanna, G.; Ewings, S.; Hill, K.; Wilding, S.; Danson, S.; Nye, M.; Steele, N.; et al. PS01.11 Nivolumab Versus Placebo in Relapsed Malignant Mesothelioma: The CONFIRM Phase 3 Trial. J. Thorac. Oncol. 2021, 16, S62. [Google Scholar] [CrossRef]
- Hassan, R.; Thomas, A.; Nemunaitis, J.J.; Patel, M.R.; Bennouna, J.; Chen, F.L.; Delord, J.P.; Dowlati, A.; Kochuparambil, S.T.; Taylor, M.H.; et al. Efficacy and Safety of Avelumab Treatment in Patients with Advanced Unresectable Mesothelioma: Phase 1b Results From the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019, 5, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Scherpereel, A.; Mazieres, J.; Greillier, L.; Lantuejoul, S.; Do, P.; Bylicki, O.; Monnet, I.; Corre, R.; Audigier-Valette, C.; Locatelli-Sanchez, M.; et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): A multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 2019, 20, 239–253. [Google Scholar] [CrossRef]
- Disselhorst, M.J.; Quispel-Janssen, J.; Lalezari, F.; Monkhorst, K.; de Vries, J.F.; van der Noort, V.; Harms, E.; Burgers, S.; Baas, P. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): Results of a prospective, single-arm, phase 2 trial. Lancet Respir. Med. 2019, 7, 260–270. [Google Scholar] [CrossRef]
- Calabro, L.; Morra, A.; Giannarelli, G.; Amato, G.; Bertocci, A.; D’Incecco, R.; Danielli, L.; Brilli, F.; Giannini, M.; Altomonte, A.M.; et al. MA 19.02 Tremelimumab plus Durvalumab in First- or Second-Line Mesothelioma Patients: Final Analysis of the NIBIT-MESO-1 Study. J. Thorac. Oncol. 2017, 12, S1883. [Google Scholar] [CrossRef]
- Baas, P.; Scherpereel, A.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; Mansfield, A.S.; Popat, S.; Jahan, T.; Antonia, S.; et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): A multicentre, randomised, open-label, phase 3 trial. Lancet 2021, 397, 375–386. [Google Scholar] [CrossRef]
- Peters, S.; Scherpereel, A.; Cornelissen, R.; Oulkhouir, Y.; Greillier, L.; Kaplan, M.A.; Talbot, T.; Monnet, I.; Hiret, S.; Baas, P.; et al. First-line nivolumab plus ipilimumab versus chemotherapy in patients with unresectable malignant pleural mesothelioma: 3-year outcomes from CheckMate 743. Ann. Oncol. 2022, 33, 488–499. [Google Scholar] [CrossRef]
- Scherpereel, A.; Antonia, S.; Bautista, Y.; Grossi, F.; Kowalski, D.; Zalcman, G.; Nowak, A.K.; Fujimoto, N.; Peters, S.; Tsao, A.S.; et al. First-line nivolumab plus ipilimumab versus chemotherapy for the treatment of unresectable malignant pleural mesothelioma: Patient-reported outcomes in CheckMate 743. Lung Cancer 2022, 167, 8–16. [Google Scholar] [CrossRef]
- Nowak, A.K.; Lesterhuis, W.J.; Kok, P.S.; Brown, C.; Hughes, B.G.; Karikios, D.J.; John, T.; Kao, S.C.; Leslie, C.; Cook, A.M.; et al. Durvalumab with first-line chemotherapy in previously untreated malignant pleural mesothelioma (DREAM): A multicentre, single-arm, phase 2 trial with a safety run-in. Lancet Oncol. 2020, 21, 1213–1223. [Google Scholar] [CrossRef]
- Forde, P.M.; Anagnostou, V.; Sun, Z.; Dahlberg, S.E.; Kindler, H.L.; Niknafs, N.; Purcell, T.; Santana-Davila, R.; Dudek, A.Z.; Borghaei, H.; et al. Durvalumab with platinum-pemetrexed for unresectable pleural mesothelioma: Survival, genomic and immunologic analyses from the phase 2 PrE0505 trial. Nat. Med. 2021, 27, 1910–1920. [Google Scholar] [CrossRef] [PubMed]
- Kok, P.S.; Forde, P.M.; Hughes, B.; Sun, Z.; Brown, C.; Ramalingam, S.; Cook, A.; Lesterhuis, W.J.; Yip, S.; O’Byrne, K.; et al. Protocol of DREAM3R: DuRvalumab with chEmotherapy as first-line treAtment in advanced pleural Mesothelioma-a phase 3 randomised trial. BMJ Open 2022, 12, e057663. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.; Kozuki, T.; Aoe, K.; Wada, S.; Harada, D.; Yoshida, M.; Sakurai, J.; Hotta, K.; Fujimoto, N. JME-001 phase II trial of first-line combination chemotherapy with cisplatin, pemetrexed, and nivolumab for unresectable malignant pleural mesothelioma. J. Immunother. Cancer 2021, 9, e003288. [Google Scholar] [CrossRef]
- Chu, Q.S.; Piccirillo, M.C.; Greillier, L.; Grosso, F.; Lo Russo, G.; Florescu, M.; Mencoboni, M.; Bradbury, P.A.; Morabito, A.; Cecere, F.L.; et al. IND227 phase III (P3) study of cisplatin/pemetrexed (CP) with or without pembrolizumab (pembro) in patients (pts) with malignant pleural mesothelioma (PM): A CCTG, NCIN, and IFCT trial. J. Clin. Oncol. 2023, 41 (Suppl. S17), LBA8505. [Google Scholar] [CrossRef]
- Popat, S.; Felip, E.; Dafni, U.; Pope, A.; Cedres Perez, S.; Shah, R.N.H.; De Marinis, F.; Smith, L.C.; Caro, R.B.; Fruh, M.; et al. BEAT-meso: A randomized phase III study of bevacizumab (B) and standard chemotherapy (C) with or without atezolizumab (A), as first-line treatment (TX) for advanced pleural mesothelioma (PM)—Results from the ETOP 13-18 trial. J. Clin. Oncol. 2024, 42 (Suppl. S17), LBA8002. [Google Scholar] [CrossRef]
- Mansfield, A.S.; Vivien Yin, J.; Bradbury, P.; Kwiatkowski, D.J.; Patel, S.; Bazhenova, L.A.; Forde, P.; Lou, Y.; Dizona, P.; Villaruz, L.C.; et al. Randomized trial of anetumab ravtansine and pembrolizumab compared to pembrolizumab for mesothelioma. Lung Cancer 2024, 195, 107928. [Google Scholar] [CrossRef]
- Muller, S.; Victoria Lai, W.; Adusumilli, P.S.; Desmeules, P.; Frosina, D.; Jungbluth, A.; Ni, A.; Eguchi, T.; Travis, W.D.; Ladanyi, M.; et al. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod. Pathol. 2020, 33, 303–311. [Google Scholar] [CrossRef]
- Zauderer, M.G.; Brody, J.; Marron, T.; Pacey, S.; Martell, R.E.; Wang, H.; Spicer, J. First-in-Class Small Molecule CA-170 Targeting VISTA: A Report on Efficacy Outcomes from a Cohort of 12 Malignant Pleural Mesothelioma (MPM) Patients in Study CA-170-101. In Proceedings of the Society for Immunotherapy of Cancer Conference, National Harbor, MD, USA, 6–10 November 2019. SITC. [Google Scholar]
- Luke, J.J.; Patel, M.R.; Blumenschein, G.R.; Hamilton, E.; Chmielowski, B.; Ulahannan, S.V.; Connolly, R.M.; Santa-Maria, C.A.; Wang, J.; Bahadur, S.W.; et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: A phase 1 trial. Nat. Med. 2023, 29, 2814–2824. [Google Scholar] [CrossRef]
- Marcq, E.; Siozopoulou, V.; De Waele, J.; van Audenaerde, J.; Zwaenepoel, K.; Santermans, E.; Hens, N.; Pauwels, P.; van Meerbeeck, J.P.; Smits, E.L. Prognostic and predictive aspects of the tumor immune microenvironment and immune checkpoints in malignant pleural mesothelioma. Oncoimmunology 2017, 6, e1261241. [Google Scholar] [CrossRef]
- Salaroglio, I.C.; Kopecka, J.; Napoli, F.; Pradotto, M.; Maletta, F.; Costardi, L.; Gagliasso, M.; Milosevic, V.; Ananthanarayanan, P.; Bironzo, P.; et al. Potential Diagnostic and Prognostic Role of Microenvironment in Malignant Pleural Mesothelioma. J. Thorac. Oncol. 2019, 14, 1458–1471. [Google Scholar] [CrossRef]
- Lin, C.C.; Garralda, E.; Schoffski, P.; Hong, D.S.; Siu, L.L.; Martin, M.; Maur, M.; Hui, R.; Soo, R.A.; Chiu, J.; et al. A phase 2, multicenter, open-label study of anti-LAG-3 ieramilimab in combination with anti-PD-1 spartalizumab in patients with advanced solid malignancies. Oncoimmunology 2024, 13, 2290787. [Google Scholar] [CrossRef] [PubMed]
- Hegmans, J.P.; Veltman, J.D.; Lambers, M.E.; de Vries, I.J.; Figdor, C.G.; Hendriks, R.W.; Hoogsteden, H.C.; Lambrecht, B.N.; Aerts, J.G. Consolidative dendritic cell-based immunotherapy elicits cytotoxicity against malignant mesothelioma. Am. J. Respir. Crit. Care Med. 2010, 181, 1383–1390. [Google Scholar] [CrossRef]
- Henning, A.N.; Roychoudhuri, R.; Restifo, N.P. Epigenetic control of CD8(+) T cell differentiation. Nat. Rev. Immunol. 2018, 18, 340–356. [Google Scholar] [CrossRef]
- Calabro, L.; Bronte, G.; Grosso, F.; Cerbone, L.; Delmonte, A.; Nicolini, F.; Mazza, M.; Di Giacomo, A.M.; Covre, A.; Lofiego, M.F.; et al. Immunotherapy of mesothelioma: The evolving change of a long-standing therapeutic dream. Front. Immunol. 2023, 14, 1333661. [Google Scholar] [CrossRef] [PubMed]
- Sigalotti, L.; Coral, S.; Altomonte, M.; Natali, L.; Gaudino, G.; Cacciotti, P.; Libener, R.; Colizzi, F.; Vianale, G.; Martini, F.; et al. Cancer testis antigens expression in mesothelioma: Role of DNA methylation and bioimmunotherapeutic implications. Br. J. Cancer 2002, 86, 979–982. [Google Scholar] [CrossRef]
- Fazio, C.; Covre, A.; Cutaia, O.; Lofiego, M.F.; Tunici, P.; Chiarucci, C.; Cannito, S.; Giacobini, G.; Lowder, J.N.; Ferraldeschi, R.; et al. Immunomodulatory Properties of DNA Hypomethylating Agents: Selecting the Optimal Epigenetic Partner for Cancer Immunotherapy. Front. Pharmacol. 2018, 9, 1443. [Google Scholar] [CrossRef] [PubMed]
- Coral, S.; Parisi, G.; Nicolay, H.J.; Colizzi, F.; Danielli, R.; Fratta, E.; Covre, A.; Taverna, P.; Sigalotti, L.; Maio, M. Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunol. Immunother. 2013, 62, 605–614. [Google Scholar] [CrossRef]
- Dunn, J.; Rao, S. Epigenetics and immunotherapy: The current state of play. Mol. Immunol. 2017, 87, 227–239. [Google Scholar] [CrossRef]
- Covre, A.; Coral, S.; Nicolay, H.; Parisi, G.; Fazio, C.; Colizzi, F.; Fratta, E.; Di Giacomo, A.M.; Sigalotti, L.; Natali, P.G.; et al. Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncoimmunology 2015, 4, e1019978. [Google Scholar] [CrossRef]
- Lofiego, M.F.; Cannito, S.; Fazio, C.; Piazzini, F.; Cutaia, O.; Solmonese, L.; Marzani, F.; Chiarucci, C.; Di Giacomo, A.M.; Calabro, L.; et al. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy. Epigenomes 2021, 5, 27. [Google Scholar] [CrossRef]
- Bensaid, D.; Blondy, T.; Deshayes, S.; Dehame, V.; Bertrand, P.; Gregoire, M.; Errami, M.; Blanquart, C. Assessment of new HDAC inhibitors for immunotherapy of malignant pleural mesothelioma. Clin. Epigenetics 2018, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Krug, L.M.; Kindler, H.L.; Calvert, H.; Manegold, C.; Tsao, A.S.; Fennell, D.; Ohman, R.; Plummer, R.; Eberhardt, W.E.; Fukuoka, K.; et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): A phase 3, double-blind, randomised, placebo-controlled trial. Lancet Oncol. 2015, 16, 447–456. [Google Scholar] [CrossRef]
- Beatty, G.L.; Haas, A.R.; Maus, M.V.; Torigian, D.A.; Soulen, M.C.; Plesa, G.; Chew, A.; Zhao, Y.; Levine, B.L.; Albelda, S.M.; et al. Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies. Cancer Immunol. Res. 2014, 2, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Adusumilli, P.S.; Zauderer, M.G.; Riviere, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef] [PubMed]
- Curioni, A.; Britschgi, C.; Hiltbrunner, S.; Bankel, L.; Gulati, P.; Weder, W.; Opitz, I.; Lauk, O.; Caviezel, C.; Knuth, A.; et al. 1226P—A phase I clinical trial of malignant pleural mesothelioma treated with locally delivered autologous anti-FAP-targeted CAR T-cells. Ann. Oncol. 2019, 30, v501. [Google Scholar] [CrossRef]
- Punekar, S.R.; Hecht, J.R.; Smith, C.J.; Simeone, D.M.; Dorigo, O.; Boyd, L.R.; Kirtane, K.; Ward, J.; Locke, F.L.; Morelli, M.P.; et al. EVEREST-2: A seamless phase 1/2 study of A2B694, a mesothelin (MSLN) logic-gated Tmod CAR T-cell therapy, in patients with solid tumors that show MSLN expression and human leukocyte antigen (HLA)-A*02 loss of heterozygosity (LOH). J. Clin. Oncol. 2024, 42, TPS2699. [Google Scholar] [CrossRef]
- Hassan, R.; Butler, M.; O’Cearbhaill, R.E.; Oh, D.Y.; Johnson, M.; Zikaras, K.; Smalley, M.; Ross, M.; Tanyi, J.L.; Ghafoor, A.; et al. Mesothelin-targeting T cell receptor fusion construct cell therapy in refractory solid tumors: Phase 1/2 trial interim results. Nat. Med. 2023, 29, 2099–2109. [Google Scholar] [CrossRef]
- Baldin, A.V.; Savvateeva, L.V.; Bazhin, A.V.; Zamyatnin, A.A., Jr. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers 2020, 12, 590. [Google Scholar] [CrossRef]
- Aerts, J.; de Goeje, P.L.; Cornelissen, R.; Kaijen-Lambers, M.E.H.; Bezemer, K.; van der Leest, C.H.; Mahaweni, N.M.; Kunert, A.; Eskens, F.; Waasdorp, C.; et al. Autologous Dendritic Cells Pulsed with Allogeneic Tumor Cell Lysate in Mesothelioma: From Mouse to Human. Clin. Cancer Res. 2018, 24, 766–776. [Google Scholar] [CrossRef]
- Cornelissen, R.; Hegmans, J.P.; Maat, A.P.; Kaijen-Lambers, M.E.; Bezemer, K.; Hendriks, R.W.; Hoogsteden, H.C.; Aerts, J.G. Extended Tumor Control after Dendritic Cell Vaccination with Low-Dose Cyclophosphamide as Adjuvant Treatment in Patients with Malignant Pleural Mesothelioma. Am. J. Respir. Crit. Care Med. 2016, 193, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.G.; Belderbos, R.; Baas, P.; Scherpereel, A.; Bezemer, K.; Enninga, I.; Meijer, R.; Willemsen, M.; Berardi, R.; Fennell, D.; et al. Dendritic cells loaded with allogeneic tumour cell lysate plus best supportive care versus best supportive care alone in patients with pleural mesothelioma as maintenance therapy after chemotherapy (DENIM): A multicentre, open-label, randomised, phase 2/3 study. Lancet Oncol. 2024, 25, 865–878. [Google Scholar] [CrossRef]
- Ridolfi, L.; Delmonte, A.; De Rosa, F.; Azzali, I.; Gentili, G.; Petrini, M.; Pancisi, E.; Granato, A.M.; Bulgarelli, J.; Doglioni, C.; et al. 51P Phase IB (Ph1b), MESOVAX clinical trial of pembrolizumab (P) and dendritic cell vaccine (DCvax) in advanced pleural and peritoneal mesothelioma (M): Preliminary results. Immuno-Oncol. Technol. 2023, 20, 100524. [Google Scholar] [CrossRef]
- Ceresoli, G.L.; Aerts, J.G.; Dziadziuszko, R.; Ramlau, R.; Cedres, S.; van Meerbeeck, J.P.; Mencoboni, M.; Planchard, D.; Chella, A.; Crino, L.; et al. Tumour Treating Fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): A multicentre, single-arm phase 2 trial. Lancet Oncol. 2019, 20, 1702–1709. [Google Scholar] [CrossRef]
- Danson, S.J.; Conner, J.; Edwards, J.G.; Blyth, K.G.; Fisher, P.M.; Muthana, M.; Salawu, A.; Taylor, F.; Hodgkinson, E.; Joyce, P.; et al. Oncolytic herpesvirus therapy for mesothelioma—A phase I/IIa trial of intrapleural administration of HSV1716. Lung Cancer 2020, 150, 145–151. [Google Scholar] [CrossRef]
- Bibby, A.C.; Zahan-Evans, N.; Keenan, E.; Comins, C.; Harvey, J.E.; Day, H.; Rahman, N.M.; Fallon, J.E.; Gooberman-Hill, R.; Maskell, N.A. A trial of intra-pleural bacterial immunotherapy in malignant pleural mesothelioma (TILT)—A randomised feasibility study using the trial within a cohort (TwiC) methodology. Pilot. Feasibility Stud. 2022, 8, 196. [Google Scholar] [CrossRef]
- Fennell, D.A.; Dulloo, S.; Lord, S.; Thistlethwaite, F.; Blyth, K.G.; Szlosarek, P.W.; Maskell, N.; Popat, S.; Aujayeb, A.; Aktas, B.Y.; et al. First-in-human phase I clinical trial of RSO-021, a first-in class covalent inhibitor of mitochondrial peroxiredoxin 3 (PRX3), in patients with malignant pleural effusion due to mesothelioma and other advanced solid tumors (MITOPE). J. Clin. Oncol. 2024, 42 (Suppl. S16), 3019. [Google Scholar] [CrossRef]
- Ponce, S.; Cedres, S.; Ricordel, C.; Isambert, N.; Viteri, S.; Herrera-Juarez, M.; Martinez-Marti, A.; Navarro, A.; Lederlin, M.; Serres, X.; et al. ONCOS-102 plus pemetrexed and platinum chemotherapy in malignant pleural mesothelioma: A randomized phase 2 study investigating clinical outcomes and the tumor microenvironment. J. Immunother. Cancer 2023, 11, e007552. [Google Scholar] [CrossRef]
- Haakensen, V.D.; Ojlert, A.K.; Thunold, S.; Farooqi, S.; Nowak, A.K.; Chin, W.L.; Grundberg, O.; Szejniuk, W.M.; Cedres, S.; Sorensen, J.B.; et al. UV1 telomerase vaccine with ipilimumab and nivolumab as second line treatment for pleural mesothelioma—A phase II randomised trial. Eur. J. Cancer 2024, 202, 113973. [Google Scholar] [CrossRef]
- Cao, C.Q.; Yan, T.D.; Bannon, P.G.; McCaughan, B.C. A systematic review of extrapleural pneumonectomy for malignant pleural mesothelioma. J. Thorac. Oncol. 2010, 5, 1692–1703. [Google Scholar] [CrossRef]
- Cao, C.; Tian, D.H.; Pataky, K.A.; Yan, T.D. Systematic review of pleurectomy in the treatment of malignant pleural mesothelioma. Lung Cancer 2013, 81, 319–327. [Google Scholar] [CrossRef]
- Cao, C.; Tian, D.; Park, J.; Allan, J.; Pataky, K.A.; Yan, T.D. A systematic review and meta-analysis of surgical treatments for malignant pleural mesothelioma. Lung Cancer 2014, 83, 240–245. [Google Scholar] [CrossRef]
- Rice, D.; Rusch, V.; Pass, H.; Asamura, H.; Nakano, T.; Edwards, J.; Giroux, D.J.; Hasegawa, S.; Kernstine, K.H.; Waller, D.; et al. Recommendations for uniform definitions of surgical techniques for malignant pleural mesothelioma: A consensus report of the international association for the study of lung cancer international staging committee and the international mesothelioma interest group. J. Thorac. Oncol. 2011, 6, 1304–1312. [Google Scholar] [CrossRef]
- Lim, E.; Waller, D.; Lau, K.; Steele, J.; Pope, A.; Ali, C.; Bilancia, R.; Keni, M.; Popat, S.; O’Brien, M.; et al. Extended pleurectomy decortication and chemotherapy versus chemotherapy alone for pleural mesothelioma (MARS 2): A phase 3 randomised controlled trial. Lancet Respir. Med. 2024, 12, 457–466. [Google Scholar] [CrossRef]
- Treasure, T.; Lang-Lazdunski, L.; Waller, D.; Bliss, J.M.; Tan, C.; Entwisle, J.; Snee, M.; O’Brien, M.; Thomas, G.; Senan, S.; et al. Extra-pleural pneumonectomy versus no extra-pleural pneumonectomy for patients with malignant pleural mesothelioma: Clinical outcomes of the Mesothelioma and Radical Surgery (MARS) randomised feasibility study. Lancet Oncol. 2011, 12, 763–772. [Google Scholar] [CrossRef]
- Weder, W.; Opitz, I. Multimodality therapy for malignant pleural mesothelioma. Ann. Cardiothorac. Surg. 2012, 1, 502–507. [Google Scholar] [CrossRef]
- Gray, S.G.; Mutti, L. Immunotherapy for mesothelioma: A critical review of current clinical trials and future perspectives. Transl. Lung Cancer Res. 2020, 9 (Suppl. S1), S100–S119. [Google Scholar] [CrossRef]
- Lee, H.S.; Jang, H.J.; Ramineni, M.; Wang, D.Y.; Ramos, D.; Choi, J.M.; Splawn, T.; Espinoza, M.; Almarez, M.; Hosey, L.; et al. A Phase II Window of Opportunity Study of Neoadjuvant PD-L1 versus PD-L1 plus CTLA-4 Blockade for Patients with Malignant Pleural Mesothelioma. Clin. Cancer Res. 2023, 29, 548–559. [Google Scholar] [CrossRef]
- Pagano, M.; Alloisio, M.; Cappuzzo, F.; Facciolo, F.; Bironzo, P.; Pastorino, U.; Rea, F.; Santoro, A.; Zanelli, F.; Alberti, G.; et al. Phase III study with atezolizumab versus placebo in patients with malignant pleural mesothelioma after pleurectomy/decortication (AtezoMeso study). J. Clin. Oncol. 2022, 40 (Suppl. S16), TPS8591. [Google Scholar] [CrossRef]
- Perrino, M.; De Vincenzo, F.; Cordua, N.; Borea, F.; Aliprandi, M.; Santoro, A.; Zucali, P.A. Immunotherapy with immune checkpoint inhibitors and predictive biomarkers in malignant mesothelioma: Work still in progress. Front. Immunol. 2023, 14, 1121557. [Google Scholar] [CrossRef]
- Krug, L.M.; Dao, T.; Brown, A.B.; Maslak, P.; Travis, W.; Bekele, S.; Korontsvit, T.; Zakhaleva, V.; Wolchok, J.; Yuan, J.; et al. WT1 peptide vaccinations induce CD4 and CD8 T cell immune responses in patients with mesothelioma and non-small cell lung cancer. Cancer Immunol. Immunother. 2010, 59, 1467–1479. [Google Scholar] [CrossRef]
- Van den Bossche, J.; De Laere, M.; Deschepper, K.; Germonpre, P.; Valcke, Y.; Lamont, J.; Stein, B.; Van Camp, K.; Germonpre, C.; Nijs, G.; et al. Integration of the PD-L1 inhibitor atezolizumab and WT1/DC vaccination into standard-of-care first-line treatment for patients with epithelioid malignant pleural mesothelioma—Protocol of the Immuno-MESODEC study. PLoS ONE 2024, 19, e0307204. [Google Scholar] [CrossRef]
- A Phase 1/2 Multiple Expansion Cohort Trial of MRTX1719 in Patients with Advanced Solid Tumors with MTAP Homozygous Deletion. ClinicalTrials.gov Identifier: NCT05245500. Updated 18 June 2024. Available online: https://clinicaltrials.gov/ct2/show/NCT05245500 (accessed on 29 July 2024).
- Waters, L.; Aranda, R.; Moya, K.; Bowcut, V.; Trinh, D.; Hebbert, A.; He, L.; Hover, L.D.; Fernandex-Banet, J.; Hallin, J.; et al. Abstract 2779: Identification of mechanism-based combination targets effective with the MTA-cooperative PRMT5 inhibitor MRTX1719 for the treatment of MTAP deleted cancers. Cancer Res 2023, 83 (Suppl. S7), 2779. [Google Scholar] [CrossRef]
- Zhai, X.; Mao, L.; Wu, M.; Liu, J.; Yu, S. Challenges of Anti-Mesothelin CAR-T-Cell Therapy. Cancers 2023, 15, 1357. [Google Scholar] [CrossRef] [PubMed]
Study Name | Study Design | Number of Patients | Treatment | ORR (Study/Placebo) | PFS (Study/Placebo) | OS (Study/Placebo) |
---|---|---|---|---|---|---|
DETERMINE | Phase 2b Randomized | 571 ** | Tremelimumab vs. Placebo (2:1) | 4.5/1.1% * | 2.8/2.7 m | 7.7/7.3 m |
PROMISE-meso | Phase III Randomized | 144 | Pembrolizumab vs. chemotherapy | 22/6% * | 2.5/3.4 m | 10.7/12.4 m |
MESOT-TREM-2008 | Phase 2 Single-Arm | 29 ** | Tremelimumab | 6.9% | 6.2 m | 10.7 m |
MESOT-TREM-2012 | Phase 2 Single-Arm | 29 ** | Intensified Tremelimumab | 3.4% 13.8% IR ORR | 6.2 m IR PFS | 11.3 |
KEYNOTE-028 | Phase 1b Single-Arm | 25 | Pembrolizumab | 20% | 5.4 m | 18 m |
NCT02399371 | Phase II, Single-Arm | 65 ** | Pembrolizumab | 19% | 4.5 m | 11.5 m |
KEYNOTE-158 | Phase 2 Single-Arm | 118 | Pembrolizumab | 8% | 2.1 m | 10 m |
NivoMes | Phase II Single-Arm | 34 | Nivolumab | 24% | 2.6 | 11.8 m |
MERIT | Phase II Single-Arm | 34 | Nivolumab | 29% | 6.1 m | 17.3 m |
CONFIRM | Phase 3 Randomized | 332 ** | Nivolumab vs. placebo | 11/19% * | 3/1.8 m * | 10.2/6.9 m * |
JAVELIN | Phase 1b | 53 ** | Avelumab | 9% | 4.1 m | 10.7 m |
MAPS2 | Phase 2 Randomized | 125 | Nivolumab vs. Nivolumab + Ipilimumab | 19/28% | 4/5.6 m | 11.9/15.9 m |
INITIATE | Phase 2 Single-Arm | 38 | Ipilimumab + nivolumab | 29% | 6.2 m | NR |
Study Name | Study Design | Number of Patients | Treatment | ORR (Study/Placebo) | PFS (Study/Placebo) | OS (Study/Placebo) |
---|---|---|---|---|---|---|
NIBIT-Meso-1 * | Phase 2 Single-Arm | 40 ** | Tremelimumab + Durvalumab | 28% | 5.7 m | 16.6 m |
CheckMate743 | Phase 3 Randomized | 713 | Nivolumab + Ipilimumab vs. Chemotherapy | 40/43% | 6.8/7.2 m | 18.1/14.1 m * |
DREAM | Phase 2 Single-Arm | 55 | Durvalumab + Chemotherapy | 48% | 6.9 m | 18.4 m |
PrE0505 | Phase 2 Single-Arm | 55 | Durvalumab + Chemotherapy | 56.4% | 6.7 m | 20.4 m |
IND227 | Phase III Randomized | 440 | Pembrolizumab + Chemotherapy vs. Chemotherapy | 67%/47% * | 7.13/7.16 m * | 17.3/16.1 m * |
BEAT-meso | Phase III Randomized | 400 | Atezolizumab + Chemotherapy + Bevacizumab vs. Chemotherapy + Bevacizumab | 55/49% | 9.2/7.6 m * | 20.5/18.1 m |
Study Name | Identifier and Status | Phase | Number of Subjects | Histology | Neoadjuvant Intervention | Primary Objectives |
---|---|---|---|---|---|---|
Neoadjuvant Immune Checkpoint Blockade in Resectable Malignant Pleural Mesothelioma | NCT03918252 (Active, not recruiting) | I/II | 30 | Biphasic/ epithelioid | ARM A: Nivo Q2W× 3 * ARM B: Nivo Q2W× 3 + Ipilimumab × 1 dose * | Feasibility Safety |
Testing the Addition of Immunotherapy Before Surgery for Patients with Sarcomatoid Mesothelioma | NCT05647265 (Recruiting) | II | 26 | Sarcomatoid or sarcomatoid- predominant biphasic | Nivolumab + Ipilimumab | Surgical rates PFS at 12 months |
Induction Chemo+ Immunotherapy in Resectable Epithelioid and Biphasic Pleural Mesothelioma (CHIMERA Study) | NCT06155279 (Not yet recruiting) Italy only | II | 40 | All histologies | Pemetrexed-platinum-based chemotherapy + pembrolizumab every 3 weeks × 2 cycles | pCR |
Neoadjuvant Durvalumab and Tremelimumab With and Without Chemotherapy for Mesothelioma | NCT05932199 (Recruiting) | I | 52 | All histologies | Cohort A: Durvalumab + tremelimumab × 3 cycles Cohort B: Platinum-pemetrexed + durvalumab + tremelimumab × 3 cycles | RFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiec, L.; Bruno, D.S. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. Int. J. Mol. Sci. 2024, 25, 10861. https://doi.org/10.3390/ijms251910861
Chiec L, Bruno DS. Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. International Journal of Molecular Sciences. 2024; 25(19):10861. https://doi.org/10.3390/ijms251910861
Chicago/Turabian StyleChiec, Lauren, and Debora S. Bruno. 2024. "Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies" International Journal of Molecular Sciences 25, no. 19: 10861. https://doi.org/10.3390/ijms251910861
APA StyleChiec, L., & Bruno, D. S. (2024). Immunotherapy for Treatment of Pleural Mesothelioma: Current and Emerging Therapeutic Strategies. International Journal of Molecular Sciences, 25(19), 10861. https://doi.org/10.3390/ijms251910861