Pharmacokinetic and Pharmacodynamic Analysis of the Oxacephem Antibiotic Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales from Dogs
Abstract
:1. Introduction
2. Results
2.1. Linearity of Calibration Curves, Limit of Detection, and Limit of Quantification of High-Performance Liquid Chromatograph-Tandem Mass Spectrometry (LC–MS/MS)
2.2. PK Parameters of FMX in Dogs
2.3. Nonclinical PK-PD Cutoff Value of FMX in Dogs
2.4. CFR of FMX for ESBL-E Infections in Dogs
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drug Administration and Serum Sampling
4.3. Determination of Serum Concentrations of FMX in Dogs
4.4. Validation of the LC-MS/MS Method
4.5. Calculation of PK Parameters
4.6. Monte Carlo Simulation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef] [PubMed]
- Maeyama, Y.; Taniguchi, Y.; Hayashi, W.; Ohsaki, Y.; Osaka, S.; Koide, S.; Tamai, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Prevalence of ESBL/AmpC genes and specific clones among the third-generation cephalosporin-resistant Enterobacteriaceae from canine and feline clinical specimens in Japan. Vet. Microbiol. 2018, 216, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shi, Q.; Zheng, B.; Ji, J.; Ying, C.; Yu, X.; Wang, H.; Xiao, Y. Simulating moxalactam dosage for extended-spectrum β-lactamase-producing Enterobacteriaceae using blood antimicrobial surveillance network data. Infect. Drug Resist. 2019, 12, 1199–1208. [Google Scholar] [CrossRef] [PubMed]
- Karaiskos, I.; Giamarellou, H. Carbapenem-sparing strategies for ESBL producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef]
- Köck, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infect. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- KuKanich, K.; Burklund, A.; McGaughey, R.; Muturi, N.; Thomason, S.; Chengappa, M.M.; Garrison, I.; Stacey, B.; Zhang, S.; Gull, T. One Health approach for reporting veterinary carbapenem-resistant Enterobacterales and other bacteria of public health concern. Emerg. Infect. Dis. 2023, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Roscetto, E.; Varriale, C.; Galdiero, U.; Esposito, C.; Catania, M.R. Extended-spectrum β-lactamase-producing and carbapenem-resistant Enterobacterales in companion animals and animal-assisted intervention dogs. Int. J. Environ. Res. Public Health 2021, 18, 12952. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Carreras, I. Activities of β-lactam antibiotics against Escherichia coli strains producing extended spectrum β-lactamases. Antimicrob. Agents Chemother. 1990, 34, 858–862. [Google Scholar] [CrossRef]
- Lee, C.H.; Su, L.H.; Tang, Y.F.; Liu, J.W. Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: A retrospective study and laboratory analysis of the isolates. J. Antimicrob. Chemother. 2006, 58, 1074–1077. [Google Scholar] [CrossRef]
- Horie, A.; Nariai, A.; Katou, F.; Abe, Y.; Saito, Y.; Koike, D.; Hirade, T.; Ito, T.; Wakuri, M.; Fukuma, A. Increased community-acquired upper urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli in children and the effficacy of flomoxef and cefmetazole. Clin. Exp. Nephrol. 2019, 23, 1306–1314. [Google Scholar] [CrossRef]
- Darlow, C.A.; Hope, W. Flomoxef for neonates: Extending options for treatment of neonatal sepsis caused by ESBL-producing Enterobacterales. J. Antimicrob. Chemother. 2022, 77, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Harada, K.; Tsuyuki, Y.; Kimura, Y.; Miyamoto, T.; Hatoya, S.; Hikasa, Y. In vitro efficacy of 16 antimicrobial drugs against a large collection of β-lactamase-producing isolates of extraintestinal pathogenic Escherichia coli from dogs and cats. J. Med. Microbiol. 2017, 66, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, M.; Kanao, Y.; Narita, H.; Jitsuiki, M.; Iyori, K.; Tsunoi, M.; Tsuyuki, Y.; Torii, K.; Harada, K. In vitro efficacy of cephamycins against multiple extended-spectrum β-lactamase-producing Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter cloacae isolates from dogs and cats. J. Vet. Med. Sci. 2023, 85, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Matsuo Tatsumi, Y.; Wajima, T.; Nakamura, R.; Tsuji, M. Evaluation of antibacterial activities of flomoxef against ESBL producing Enterobacteriaceae analyzed by Monte Carlo simulation. Jpn. J. Antibiot. 2013, 66, 71–86. [Google Scholar] [PubMed]
- Yamada, T.; Minami, K.; Oda, K.; Suzuki, K.; Nishihara, M.; Uchiyama, K.; Ukimura, A. Probability of target attainment of oral antimicrobials for Escherichia coli and Klebsiella pneumoniae based on Monte Carlo simulations. Diagn. Microbiol. Infect. Dis. 2022, 103, 115662. [Google Scholar] [CrossRef] [PubMed]
- Trang, M.; Dudley, M.N.; Bhavnani, S.M. Use of Monte Carlo simulation and considerations for PK-PD targets to support antibacterial dose selection. Curr. Opin. Pharmacol. 2017, 36, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Clinical and laboratory Standards Institute. Development of In Vitro Susceptibility Test Methods, Breakpoints, and Quality Control Parameters, 6th ed.; CLSI guideline M23; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Hamada, Y.; Kasai, H.; Suzuki-Ito, M.; Matsumura, Y.; Doi, Y.; Hayakawa, K. Pharmacokinetic/pharmacodynamic analysis and dose optimization of cefmetazole and flomoxef against extended-spectrum β-lactamase-producing Enterobacterales in patients with invasive urinary tract infection considering renal function. Antibiotics 2022, 11, 456. [Google Scholar] [CrossRef]
- Hirano, T.; Ohge, H.; Ikawa, K.; Uegami, S.; Watadani, Y.; Shigemoto, N.; Yoshimura, K.; Kitagawa, H.; Kaiki, Y.; Morikawa, N.; et al. Pharmacokinetics of flomoxef in plasma, peritoneal fluid, peritoneum, and subcutaneous adipose tissue of patients undergoing lower gastrointestinal surgery: Dosing considerations based on site-specific pharmacodynamic target attainment. J. Infect. Chemother. 2023, 29, 186–192. [Google Scholar] [CrossRef]
- Neu, H.C.; Chin, N.X. In vitro activity and β-lactamase stability of a new difluoro oxacephem, 6315-S. Antimicrob. Agents Chemother. 1986, 30, 638–644. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Zogg, A.L.; Simmen, S.; Zurfluh, K.; Stephan, R.; Schmitt, S.N.; Nüesch-Inderbinen, M. High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates from cats and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci. 2018, 5, 62. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzono, T.; Isowa, K.; Ogawa, H.; Kashima, H.; Aoyama, N.; Ohbara, D.; Ishimura, K.; Hatano, M.; Harada, Y. Intravenous chronic toxicity study of 6315-S (flomoxef) in beagles. Chemotherapy 1987, 35 (Suppl. S1), 292–314. [Google Scholar]
- Yasunaga, K.; Okamoto, Y.; Maehara, K.; Mase, K.; Iida, Y.; Yoshioka, S.; Yamada, H.; Yoshida, T.; Oguma, T.; Kimura, Y.; et al. Clinical study on 6315-S (flomoxef). Chemotherapy 1987, 35 (Suppl. S1), 494–517. [Google Scholar]
- Kimura, Y.; Nakashimizu, H.; Nakano, M.; Otsubo, R.; Matsubara, H.; Yoshida, T. Pharmacokinetic characterization of 6315-S (flomoxef) in experimental animals. Chemotherapy 1987, 35 (Suppl. S1), 161–175. [Google Scholar]
- Hamada, T.; Ueta, E.; Kodama, H.; Osaki, T. The excretion of cephem antibiotics into saliva is inversely associated with their plasma protein-binding activities. J. Oral. Pathol. Med. 2002, 31, 109–116. [Google Scholar] [CrossRef]
- Estradé, O.; Vozmediano, V.; Carral, N.; Isla, A.; González, M.; Poole, R.; Suarez, E. Key factors in effective patient-tailored dosing of fluoroquinolones in urological infections: Interindividual pharmacokinetic and pharmacodynamic variability. Antibiotics 2022, 11, 641. [Google Scholar] [CrossRef]
- Andrassy, K.; Koderisch, J.; Gorges, K.; Sonntag, H.; Hirauchi, K. Pharmacokinetics and hemostasis following administration of a new, injectable oxacephem (6315-S, flomoxef) in volunteers and in patients with renal insufficiency. Infection 1991, 19 (Suppl. S5), S296–S302. [Google Scholar] [CrossRef]
- Tam, V.H.; Kabbara, S.; Yeh, R.F.; Leary, R.H. Impact of sample size on the performance of multiple-model pharmacokinetic simulations. Antimicrob. Agents Chemother. 2006, 50, 3950–3952. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, H.; Wang, Y.; Wang, H.; Hu, J.; Zhang, G. Pharmacodynamic parameters of pharmacokinetic/pharmacodynamic (PK/PD) integration models. Front. Vet. Sci. 2022, 9, 860472. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Jaki, T.; Wolfsegger, M.J. Estimation of pharmacokinetic parameters with the R package PK. Pharmaceut. Statist. 2010, 10, 284–288. [Google Scholar] [CrossRef]
- Tashiro, S.; Hayashi, M.; Takemura, W.; Igarashi, Y.; Liu, X.; Mizukami, Y.; Kojima, N.; Enoki, Y.; Taguchi, K.; Yokoyama, Y.; et al. Pharmacokinetics/pharmacodynamics evaluation of flomoxef against extended-spectrum beta-lactamase-producing Escherichia coli in vitro and in vivo in a murine thigh infection model. Pharm. Res. 2021, 38, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Papich, M.G. Pharmacokinetic-pharmacodynamic (PK-PD) modeling and the rational selection of dosage regimens for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef]
- Wang, G.; Yu, W.; Cui, Y.; Shi, Q.; Huang, C.; Xiao, Y. Optimal empiric treatment for KPC-2-producing Klebsiella pneumoniae infections in critically ill patients with normal or decreased renal function using Monte Carlo simulation. BMC Infect. Dis. 2021, 21, 307. [Google Scholar] [CrossRef]
Parameters (Unit) 1 | Mean Values (Standard Deviation) |
---|---|
AUC (mg·h/L) | 134.61 (11.3) 2 |
MRT (h) | 1.10 (0.20) |
T1/2 (h) | 0.76 (0.14) |
CL (L/h) | 2.97 (0.33) |
Vd (L) | 3.27 (0.61) |
Regimens | CFR (%) | |||
---|---|---|---|---|
Escherichia coli | Klebsiella pneumoniae | Proteus mirabilis | Enterobacter cloacae | |
q12h | 83.63 | 87.12 | 87.85 | 23.12 |
q8h | 91.32 | 92.40 | 96.22 | 50.17 |
q6h | 93.26 | 94.13 | 98.57 | 65.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusumoto, M.; Jitsuiki, M.; Motegi, T.; Harada, K. Pharmacokinetic and Pharmacodynamic Analysis of the Oxacephem Antibiotic Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales from Dogs. Int. J. Mol. Sci. 2024, 25, 1105. https://doi.org/10.3390/ijms25021105
Kusumoto M, Jitsuiki M, Motegi T, Harada K. Pharmacokinetic and Pharmacodynamic Analysis of the Oxacephem Antibiotic Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales from Dogs. International Journal of Molecular Sciences. 2024; 25(2):1105. https://doi.org/10.3390/ijms25021105
Chicago/Turabian StyleKusumoto, Mizuki, Makoto Jitsuiki, Tomoki Motegi, and Kazuki Harada. 2024. "Pharmacokinetic and Pharmacodynamic Analysis of the Oxacephem Antibiotic Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales from Dogs" International Journal of Molecular Sciences 25, no. 2: 1105. https://doi.org/10.3390/ijms25021105
APA StyleKusumoto, M., Jitsuiki, M., Motegi, T., & Harada, K. (2024). Pharmacokinetic and Pharmacodynamic Analysis of the Oxacephem Antibiotic Flomoxef against Extended-Spectrum β-Lactamase-Producing Enterobacterales from Dogs. International Journal of Molecular Sciences, 25(2), 1105. https://doi.org/10.3390/ijms25021105