Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoparticle Synthesis
2.2. UV-Vis Spectrum Analysis
2.3. Stability
2.4. TEM Analysis
2.5. EDX Analysis
2.6. Optimization of Silver Nanoparticles
2.6.1. Effect of pH
2.6.2. Effect of Concentration of Silver Nitrate
2.6.3. Effect of Concentrations of Aqueous Extract
2.6.4. Effect of Temperature
2.7. Antibacterial Activity
2.8. Minimum Inhibitory Concentration (MIC) Analysis of Mycosynthesized AgNPs
2.9. In Vitro Cytotoxicity
2.10. AgNP-Incorporated Nanofiber
2.11. In Vitro Wound Scratch Assay
3. Materials and Methods
3.1. Collection of Experimental Macrofungus
3.2. Preparation of Aqueous Extract from Macrofungus
3.3. Mycosynthesis and Screening of AgNPs
3.4. Optimization of Mycosynthesized AgNPs
3.4.1. Effect of pH
3.4.2. Effect of Temperature
3.4.3. Effect of Different Concentrations of Mushroom Extract
3.5. Characterization of Synthesized Silver Nanoparticles
3.5.1. UV-Vis Spectroscopy
3.5.2. TEM Analysis
3.5.3. EDX Analysis
3.6. Antibacterial Activity
Minimum Inhibitory Concentration (MIC) of AgNPs
3.7. In Vitro Cytotoxicity of Synthesized AgNPs
3.8. Synthesis of Ag-PGA Nanoparticles and Preparation of (Ag-PGA)-PVA Spinnable Solution
3.9. Synthesis of Ag-PGA Nanoparticles and Preparation of (Ag-PGA)-PVA Spinnable Solution
3.10. Electrospinning
3.11. In Vitro Wound Scratch Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abideen, S.; Vijayasankar, M. In-vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 using Seaweeds. J. Nanomed. Nanotechnol. 2015, 10, 2157–7439. [Google Scholar] [CrossRef]
- McNeil, S.E. Nanotechnology for the biologist. J. Leukoc. Biol. 2005, 78, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Emerich, D.F.; Thanos, C.G. Nanotechnology and medicine. Expert Opin. Biol. Ther. 2003, 3, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, O.A.; John, O.O. Biogenic Synthesis of Silver Nanoparticle from Mushroom Exopolysaccharides and its Potentials in Water Purification. Open Chem. J. 2018, 5, 64–75. [Google Scholar]
- Roco, M.C. Nanoparticles and nanotechnology research. J. Nanopart Res. 1999, 1, 1. [Google Scholar] [CrossRef]
- Giriraj, T.; Yadav, B.L.; Jyoti, C.; Manoj, J.; Chetana, S. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity. Biochem. Biophys. Rep. 2020, 24, 100848. [Google Scholar]
- Wesam, S.; Deborah, R.L.; Franz, G.Z.; Gebhart, S.; Ruth, P.; Walter, G.; Joachim, R.; Stefan, S. Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 2015, 305, 85–95. [Google Scholar]
- Anandalakshmi, J.; Venugobal, V.R. Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl. Nanosci. 2016, 6, 399–408. [Google Scholar] [CrossRef]
- Manzoor-ul-Haq; Vandana, R.; Dattu, S.; Ashish, K.S.; Shivaraj, N.; Jyothi, H. Dried Mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against Methicillin Resistant Staphylococcus aureus (MRSA) strains. Nanosci. Nanotechnol. Int. J. 2015, 5, 1–8. [Google Scholar]
- Mohamed, D.S.; Abd El-Baky, R.M.; Sandle, T.; Mandour, S.A.; Ahmed, E.F. Antimicrobial Activity of Silver-Treated Bacteria against other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics 2020, 9, 181. [Google Scholar] [CrossRef]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.C.; Mashitah, M.D. Instantaneous Biosynthesis of Silver Nanoparticles by Selected Macro Fungi. Aust. J. Basic Appl. Sci. 2012, 6, 86–88. [Google Scholar]
- Cynthia, J.S.G.; Dinakaran, S.; Raman, N.; Jegadeesh, R.; Carol, P. Bio inspired synthesis of monodispersed silver nano particles using Sapindus emarginatus pericarp extract—Study of antibacterial efficacy. J. Saudi Chem. Soc. 2017, 21, 172–179. [Google Scholar]
- Lara, H.H.; Ayala-Núñez, N.V.; Ixtepan Turrent, L.D.C.; Rodríguez Padilla, C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621. [Google Scholar] [CrossRef]
- Krishna, G.; Pranitha, V.; Singara, C.M.A. Biogenic synthesis of silver nanoparticles from white rot fungi: Their characterization and antibacterial studies. OpenNano 2017, 2, 64–78. [Google Scholar]
- Sneha, P.; Anita, R.J.S.; Changam, S.S. Green synthesis of Bio-Silver Nanoparticles by Parmelia perlata, Ganoderma lucidum and Phellinus igniarius & Their Fields of Application. Indian J. Res. Pharm. Biotechnol. 2015, 3, 100–110. [Google Scholar]
- El-Sonbaty, S.M. Fungus-mediated synthesis of silver nanoparticles and evaluation of antitumor activity. Cancer Nanotechnol. 2013, 4, 73–79. [Google Scholar] [CrossRef]
- Santhoshkumar, J.; Sowmya, B.; Venkatkumar, S.; Rajeshkumar, S. Toxicology evaluation and antidermatophytic activity of silver nanoparticles synthesized using leaf extract of Passiflora caerulea. S. Afr. J. Chem. Eng. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta. 2010, 411, 1841–1848. [Google Scholar] [CrossRef]
- Wei, L.; Lu, J.; Xu, H.; Patel, A.; Chen, Z.S.; Chen, G. Silver nanoparticles: Synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601. [Google Scholar] [CrossRef]
- Shabir, A.; Sidra, M.; Nadia, Z.; Asad, U.; Behramand, K.; Javed, A.; Muhammad, B.; Muhammad, O.; Muhammad, A.; Syed, M.S.; et al. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar]
- Michael, N.; Naumih, M.N.; Dickson, M.A.; Eric, M. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. Int. J. Anal. Chem. 2017, 2017, 8108504. [Google Scholar]
- Govindappa, M.; Hemashekhar, B.; Manojkumar, A.; Ravishankar, V.R.; Ramachandra, Y.L. Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract. Results Phys. 2018, 9, 400–408. [Google Scholar] [CrossRef]
- Kandav, G.; Sharma, T. Green synthesis: An ecofriendly approach for metallic nanoparticles synthesis. Part. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Mustapha, T.; Misni, N.; Ithnin, N.R.; Daskum, A.M.; Unyah, N.Z. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. Int. J. Environ. Res. Public. Health 2022, 19, 674. [Google Scholar] [CrossRef] [PubMed]
- Madani, M.; Hosny, S.; Alshangiti, D.M.; Nady, N.; Alkhursani, S.A.; Alkhaldi, H.; Al-Gahtany, S.A.; Ghobashy, M.M.; Gaber, G.A. Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. Nanotechnol. Rev. 2022, 11, 731–759. [Google Scholar] [CrossRef]
- Shah, M.; Fawcett, D.; Sharma, S.; Tripathy, S.K.; Poinern, G.E.J. Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials 2015, 8, 7278–7308. [Google Scholar] [CrossRef]
- Abd-Elsalam, K.A. Special Issue: Fungal Nanotechnology. J. Fungi 2021, 7, 583. [Google Scholar] [CrossRef]
- Madhusmita, B.; Jahnabi, G.; Joshi, S.R. Macro and Micro-fungi mediated synthesis of Silver nanoparticles and its applications. ABDU-J. Eng. Technol. 2017, 6, 00610605. [Google Scholar]
- Tong, Z.; Chu, G.; Wan, C.; Wang, Q.; Yang, J.; Meng, Z.; Du, L.; Yang, J.; Ma, H. Multiple Metabolites Derived from Mushrooms and Their Beneficial Effect on Alzheimer’s Diseases. Nutrients 2023, 15, 2758. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Sharma, A.; Tejwan, N.; Bhardwaj, S.; Bhardwaj, P.; Nepovimova, E.; Shami, A.; Kalia, A.; Kumar, A.; Abd-Elsalam, K.A.; et al. Pleurotus Macrofungi-Assisted Nanoparticle Synthesis and Its Potential Applications: A Review. J. Fungus 2020, 6, 351. [Google Scholar] [CrossRef] [PubMed]
- Jose, N.; Janardhanan, K.K. Antioxidant and antitumour activity of Pleurotus florida. Curr. Sci. 2000, 79, 941–943. [Google Scholar]
- Mousa, A.; Alghuthaymi, H.A.; Mahindra, R.; Ernest, S.; Kamel, A.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015, 29, 221–236. [Google Scholar]
- Daizy, P. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 374–381. [Google Scholar]
- Adebayo, E.A.; Azeez, M.A.; Alao, M.B.; Oke, M.A.; Aina, D.A. Mushroom nanobiotechnology: Concepts, developments and potentials. In Microbial Nanobiotechnology: Principles and Applications; Springer: Singapore, 2021; pp. 257–285. [Google Scholar]
- Arun, G.; Eyini, M.; Gunasekaran, P. Green synthesis of silver nanoparticles using the mushroom fungus Schizophyllum commune and its biomedical applications. Biotechnol. Bioprocess. Eng. 2014, 19, 1083–1090. [Google Scholar] [CrossRef]
- Constantin, M.; Răut, I.; Suica-Bunghez, R.; Firinca, C.; Radu, N.; Gurban, A.-M.; Preda, S.; Alexandrescu, E.; Doni, M.; Jecu, L. Ganoderma lucidum-Mediated Green Synthesis of Silver Nanoparticles with Antimicrobial Activity. Materials 2023, 16, 4261. [Google Scholar] [CrossRef] [PubMed]
- Guilger-Casagrande, M.; Lima, R. Synthesis of Silver Nanoparticles Mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Mishra, A.K.; Baig, A.A.; Mohanta, T.K.; Mohanta, Y.K.; Baek, K.-H. Narrative Review: Bioactive Potential of Various Mushrooms as the Treasure of Versatile Therapeutic Natural Product. J. Fungi 2021, 7, 728. [Google Scholar] [CrossRef]
- Rajeshwari, S.; Manian, S.; Saikumar, S. Phytochemical and Antioxidant Analysis of Phellinus adamantinus and P. hohnelli. In Natural Product Experiments in Drug Discovery; Springer Protocols Handbooks; Arunachalam, K., Yang, X., Puthanpura Sasidharan, S., Eds.; Humana: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Durán, N.; Marcato, P.D.; Alves, O.L.; De Souza, G.I.; Esposito, E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005, 3, 8. [Google Scholar] [CrossRef]
- Ahmed, S.; Saifullah, S.; Swami, M.; Swami, B.L.; Ikram, S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Debnath, G.; Das, P.; Saha, A.K. Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: Characterization, antimicrobial, and α-amylase inhibitory activity. Bionanoscience 2019, 9, 611–619. [Google Scholar] [CrossRef]
- Mosachristas, K.; Balashanmugam, P.; Sandilya, S.B.M.; Jagadeeswari, S.; Tamilselvi, A. Efficacy of mycosynthesised AgNPs from Earliella scabrosa as an in vitro antibacterial and wound healing agent. IET Nanobiotechnol 2018, 13, 339–344. [Google Scholar]
- Kaka, M.O.; Ajayeoba, T.A.; Oyebamiji, A.K.; Adeosun, I.J.; Olotu, T.M.; Ekwonwa, E.C.; Ogenma, U.T.; Gbadeyan, A.M.; Owolabi, S.O.; Oyawoye, O.M. Antimicrobial Activities of Extracellularly Synthesized Silver Nanoparticles from Aspergillus Flavus and Alternaria Alternata. Adv. Multidiscip. Res. 2020, 6, 59–72. [Google Scholar]
- Naimi-Shamel, N.; Pourali, P.; Dolatabadi, S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Médicale 2019, 29, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Balashanmugam, P.; Caral, D.R.; Manivasagan, V.; Rameshbabu, N.G.; Kalaichelvan, P.T. Extracellular biosynthesis of silver nanoparticles using Cassia fistula extract and in-vitro antimicrobial studies. J. Pharm. Res. 2017, 8, 187–191. [Google Scholar]
- Murugan, K.; Senthilkumar, B.; Senbagam, D.; Al-sohaibani, S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomed. 2014, 9, 2431–2438. [Google Scholar]
- Zhang, L.; Wei, Y.; Wang, H.; Wu, F.; Zhao, Y.; Liu, X.; Wu, H.; Wang, L.; Su, H. Green synthesis of silver nanoparticles using mushroom Flammulina velutipes extract and their antibacterial activity against aquatic pathogens. Food Bioproc. Technol. 2020, 13, 1908–1917. [Google Scholar] [CrossRef]
- Sudhakar, T.; Balashanmugam, P.; Jayapal, P.; Anisha, A.; Karthika, D.; Roshan, S.; Sakar, R. Antimicrobial activity of silver nanoparticles synthesized from Ficus benghalensis against human pathogens. J. Pharm Technol. 2017, 10, 1635–1640. [Google Scholar] [CrossRef]
- Balashanmugam, P.; Kalaichelvan, P.T. Biosynthesis characterization of silver nanoparticles using Cassia roxburghii DC. Aqueous extract, and coated on cotton cloth for effective antibacterial activity. Int. J. Nanomed. 2015, 10, 87–97. [Google Scholar] [CrossRef]
- Balashanmugam, P.; Balakumaran, M.D.; Murugan, R.; Dhanapal, K.; Kalaichelvan, P.T. Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol. Res. 2016, 192, 52–64. [Google Scholar] [CrossRef]
- Konwarh, R.; Karak, N.; Sawian, C.E.; Baruah, S.; Mandal, M. Effect of sonication and aging on the templating attribute of starch for green silver nanoparticles and their interactions at bio-interface. Carbohydr. Polym. 2011, 83, 1245–1252. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta 2012, 93, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol.: Int. Res. Process 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Balakumaran, M.D.; Ramacandran, R.; Balashanmugam, P.; Mukeshkumar, D.J.; Kalaichelvan, P.T. Mycosynthesis of silver and gold nanoparticles: Optimisation, characterization and antimicrobial activity against human pathogens. Microbiol. Res. 2016, 182, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Chen, W.; Chen, C.; Xiong, S.X.; Yu, A.B. Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach. Nanoscale Res. Lett. 2011, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Balashanmugam, P.; Santhosh, S.; Giyaullah, H.; Balakumaran, M.D.; Kalaichelvan, P.T. Mycosynthesis, characterization and antibacterial activity of silver nanoparticles from Microporus xanthopus: A macro mushroom. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2, 6262–6270. [Google Scholar]
- Shaheen, T.I.; Abd El Aty, A.A. In-situ green myco-synthesis of silver nanoparticles onto cotton fabrics for broad spectrum antimicrobial activity. Int. J. Biol. Macromol. 2018, 118, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Yugal, K.M.; Sameerkumar, S.; Umeshkumar, P.; Sujogyakumar, P.; Tapankumar, M.; Hanhong, B. Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom Ganoderma applanatum (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnol. 2016, 10, 184–189. [Google Scholar]
- Mohanta, Y.K.; Nayak, D.; Biswas, K.; Singdevsachan, S.K.; Abd_Allah, E.F.; Hashem, A.; Alqarawi, A.A.; Yadav, D.; Mohanta, T.K. Silver Nanoparticles Synthesized Using Wild Mushroom Show Potential Antimicrobial Activities against Food Borne Pathogens. Molecules 2018, 23, 655. [Google Scholar] [CrossRef]
- Karuppiah, C.P.; Raman, K.; Chelladurai, M.; Pambayan, U.M. Biochemical analysis of cultivated mushroom, Pleurotus florida and synthesis of silver nanoparticles for enhanced antimicrobial effects on clinically important human pathogens. Inorg. Chem. Commun. 2022, 142, 109673. [Google Scholar]
- Elbeshehy, E.K.F.; Ahmed, M.E.; George, A. Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol. 2015, 6, 453. [Google Scholar] [CrossRef]
- Anita, K.; Predrag, P.; Jovana, V.; Vladimir, P.; Leonardus, J.L.D.V.G. The Antimicrobial Activities of Silver Nanoparticles Synthesized from Medicinal Mushrooms. Int. J. Med. Mushrooms 2020, 22, 869–883. [Google Scholar]
- Resham, B.; Priyabrata, M. Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 2008, 60, 1289. [Google Scholar]
- Baskaran, R.; Thanusu, P.; Sujoy, K.D. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl. Mater. Interfaces 2016, 8, 4963–4976. [Google Scholar]
- Anbazhagan, S.; Azeez, S.; Morukattu, G.; Rajan, R.; Venkatesan, K.; Thangavelu, K.P. Synthesis, characterization and biological applications of mycosynthesized silver nanoparticles. 3 Biotech. 2017, 7, 333. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Srileka, V.; Charya, M.S.; Serea, E.S.A.; Shalan, A.E. Biogenic synthesis and cytotoxic effects of silver nanoparticles mediated by white rot fungi. Heliyon 2021, 7, e06470. [Google Scholar] [CrossRef] [PubMed]
- El-Aassar, M.R.; Omar, M.I.; Moustafa, M.G.F.; Nagham, G.E.B.; Mona, M.A. Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020, 238, 116175. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, M.; SchAziz, A.; Ubaidulla, U.; Hemalatha, P.; Saravanakumar, A.; Ravikumar, R.; Peng, M.M.; Choi, E.Y.; Jang, H.T. Sulfanilamide and silver nanoparticles-loaded polyvinyl alcohol-chitosan composite electrospun nanofibers: Synthesis and evaluation on synergism in wound healing. J. Ind. Eng. Chem. 2016, 39, 127–135. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.W. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem. 2014, 148, 162–169. [Google Scholar] [CrossRef]
- Wani, I.A.; Khatoon, S.; Ganguly, A.; Ahmed, J.; Ahmad, T. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids Surf. B Biointerfaces 2013, 101, 243–250. [Google Scholar] [CrossRef]
- He, M.; Chen, M.; Dou, Y.; Ding, J.; Yue, H.; Yin, G.; Chen, X.; Cui, Y. Electrospun Silver Nanoparticles-Embedded Feather Keratin/Poly(vinyl alcohol)/Poly(ethylene oxide) Antibacterial Composite Nanofibers. Polymers 2020, 12, 305. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, M.G.F.; Abdel-Mohsen, A.M.; Hossam, E.; Iftekhar, H.; Jameel, A.; Rasha, M.A.; Ali, M.; Ibrahim, A.; Ahmed, R.; El-Faham, A.; et al. Wound healing of different molecular weight of hyaluronan; in-vivo study. Int. J. Biol. Macromol. 2016, 89, 582–591. [Google Scholar]
- Adetutu, A.; Morgan, W.A.; Corcoran, O. Antibacterial, antioxidant and fibroblast growth stimulation activity of crude extracts of Bridelia ferruginea leaf, a wound-healing plant of Nigeria. J. Ethnopharmacol. 2011, 133, 116–119. [Google Scholar] [CrossRef]
- Ebeling, S.; Naumann, K.; Pollok, S.; Wardecki, T.; Vidal-y-Sy, S.; Nascimento, J.M.; Boerries, M. From a traditional medicinal plant to a rational drug: Understanding the clinically proven wound healing efficacy of birch bark extract. PLoS ONE 2014, 9, e86147. [Google Scholar] [CrossRef]
- Kevin, J.P.A.; Muralidharan, M.; Muniyandi, J.; Navanietha, K.R.; Gurunathan, S. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 2014, 20, 2325–2331. [Google Scholar]
- Ana, P.Z.D.M.; Matheus, V.D.O.B.M.; William, G.S.; Aline, D.R.A. Antibacterial activity, morphology, and physicochemical stability of biosynthesized silver nanoparticles using thyme (Thymus vulgaris) essential oil. Mater. Res. Express 2020, 7, 015087. [Google Scholar]
- Nisar, A.; Fozia, M.J.; Zia, U.H.; Ijaz, A.; Abdul, W.; Zia, U.I.; Riaz, U.; Ahmed, B.; Mohamed, M.A.; Fatma, M.E.D.; et al. Green Fabrication of Silver Nanoparticles using Euphorbia serpens Kunth Aqueous Extract, Their Characterization, and Investigation of Its In Vitro Antioxidative, Antimicrobial, Insecticidal, and Cytotoxic Activities. BioMed Res. Int. 2022, 2, 5562849. [Google Scholar]
- Marijana, K.; Branislav, R.; Marko, D. Mushrooms as possible antioxidant and antimicrobial agents. Iran J. Pharm. Res. 2012, 11, 1095–1102. [Google Scholar]
- Babli, D.; Ratan, D. Presence of fluoride in water diminishes fast, the SPR peak of silver nanocrystals showing large red shift with quick sedimentation—A fast sensing and fast removal case. Spectrochim. Acta A Mol. Biomol. Spectrosc. Spectrochim Acta A 2021, 249, 119306. [Google Scholar]
- Seetharam, C.; Dasarathan, D.; Krishnan, P.; Saravanan, P.; Cruz, N.; Manali, R.S. Comparative Evaluation of Antimicrobial Efficacy of Silver Nanoparticles and 2% Chlorhexidine Gluconate When Used Alone and in Combination Assessed Using Agar Diffusion Method: An In vitro Study. Contemp. Clin. Dent. 2018, 9, S204–S209. [Google Scholar]
- Huang, H.; Shan, K.; Liu, J.; Tao, X.; Periyasamy, S.; Durairaj, S.; Jiang, Z.; Jacob, J.A. Synthesis, optimization and characterization of silver nanoparticles using the catkin extract of Piper longum for bactericidal effect against food-borne pathogens via conventional and mathematical approaches. Bioorg. Chem. 2020, 103, 104230. [Google Scholar] [CrossRef] [PubMed]
- Muthulakshmi, L.; Rajini, N.; Varadarrajalu, A.; Suchart, S.; Kathiresan, T. Synthesis and Characterization of Cellulose/Silver Nanocomposites from Bioflocculant Reducing Agent. Int. J. Biol. Macromol. 2017, 103, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Wagh, S.; Wadhwani, S.G.; Kumbhar, A.; Bellare, J. Synthesis, optimization and characterization of silver nanoparticles from Acinetobacter calcoacericus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomed. 2013, 8, 4277–4290. [Google Scholar]
- Mossman, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Kusumawati, D.H.; Istiqomah, K.V.N.; Husnia, I.; Fathurin, N. Synthesis of Nanofiber Polyvinyl Alcohol (PVA) with Electrospinning Method. J. Phys. Conf. Ser. 2021, 2110, 012010. [Google Scholar] [CrossRef]
- Gandhimathi, C.; Smitha, C.; Somika, B. Biosynthesis of Silver Nanoparticles from Melia azedarach: Enhancement of Antibacterial, Wound Healing, Antidiabetic and Antioxidant Activities. Int. J. Nanomed. 2019, 14, 9823–9836. [Google Scholar]
Samples | Diameter of Antibacterial Inhibition (mm) | |
---|---|---|
E. coli | S. aureus | |
0% AgNPs | 0 | 0 |
1% Ag-PGA with 8% PVA | 8.1 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayakumar, G.; Kim, H.J.; Jo, J.W.; Rangarajulu, S.K. Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy. Int. J. Mol. Sci. 2024, 25, 861. https://doi.org/10.3390/ijms25020861
Vijayakumar G, Kim HJ, Jo JW, Rangarajulu SK. Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy. International Journal of Molecular Sciences. 2024; 25(2):861. https://doi.org/10.3390/ijms25020861
Chicago/Turabian StyleVijayakumar, Gayathri, Hyung Joo Kim, Jeong Wook Jo, and Senthil Kumaran Rangarajulu. 2024. "Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy" International Journal of Molecular Sciences 25, no. 2: 861. https://doi.org/10.3390/ijms25020861
APA StyleVijayakumar, G., Kim, H. J., Jo, J. W., & Rangarajulu, S. K. (2024). Macrofungal Mediated Biosynthesis of Silver Nanoparticles and Evaluation of Its Antibacterial and Wound-Healing Efficacy. International Journal of Molecular Sciences, 25(2), 861. https://doi.org/10.3390/ijms25020861