Reporter Alleles in hiPSCs: Visual Cues on Development and Disease
Abstract
:1. Introduction: From Induced Pluripotent Stem Cells (iPSCs) to Reporter Alleles
2. Strategies for Introducing Reporter Alleles in hiPSCs
2.1. Major Features of Gene-Editing Techniques
2.2. Gene-Editing Strategies in iPSCs
2.3. Strategies to Favor HDR-Based Edits and Gene Targeting
2.4. Experimental Workflow to Generate iPSC Reporter Lines
2.5. Presumable Physiological Impacts of Gene Editing Using iPSCs
3. Unveiling Developmental Processes and Disease Mechanisms with Reporter Alleles
3.1. hiPSCs and Reporter Alleles in Developmental Biology
3.2. hiPSCs, Gene Editing, and Reporter Alleles in Disease Modeling
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Kolios, G.; Moodley, Y. Introduction to stem cells and regenerative medicine. Respiration 2013, 85, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Saini, A.; Kalsan, M.; Kumar, N.; Chandra, R. Describing the stem cell potency: The various methods of functional assessment and in silico diagnostics. Front. Cell Dev. Biol. 2016, 4, 134. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Talluri, T.R.; Selokar, N.L.; Hyder, I.; Kues, W.A. Perspectives of pluripotent stem cells in livestock. World J. Stem Cells 2021, 13, 1–29. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Poetsch, M.S.; Strano, A.; Guan, K. Human Induced Pluripotent Stem Cells: From Cell Origin, Genomic Stability, and Epigenetic Memory to Translational Medicine. Stem Cells 2022, 40, 546–555. [Google Scholar] [CrossRef]
- Hokayem, J.E.; Cukier, H.N.; Dykxhoorn, D.M. Blood Derived Induced Pluripotent Stem Cells (iPSCs): Benefits, Challenges and the Road Ahead. J. Alzheimers Dis. Parkinsonism 2016, 6, 1000275. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 2016, 17, 183–193. [Google Scholar] [CrossRef]
- Cevallos, R.R.; Edwards, Y.J.K.; Parant, J.M.; Yoder, B.K.; Hu, K. Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fibroblast conversion to iPSCs. Sci. Rep. 2020, 10, 19710. [Google Scholar] [CrossRef]
- Swaidan, N.T.; Salloum-Asfar, S.; Palangi, F.; Errafii, K.; Soliman, N.H.; Aboughalia, A.T.; Wali, A.H.S.; Abdulla, S.A.; Emara, M.M. Identification of potential transcription factors that enhance human iPSC generation. Sci. Rep. 2020, 10, 21950. [Google Scholar] [CrossRef]
- Sohn, Y.D.; Han, J.W.; Yoon, Y.S. Generation of induced pluripotent stem cells from somatic cells. Prog. Mol. Biol. Transl. Sci. 2012, 111, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Trusler, O.; Huang, Z.; Goodwin, J.; Laslett, A.L. Cell surface markers for the identification and study of human naive pluripotent stem cells. Stem Cell Res. 2018, 26, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Courtot, A.M.; Magniez, A.; Oudrhiri, N.; Féraud, O.; Bacci, J.; Gobbo, E.; Proust, S.; Turhan, A.G.; Bennaceur-Griscelli, A. Morphological analysis of human induced pluripotent stem cells during induced differentiation and reverse programming. BioRes Open Access 2014, 3, 206–216. [Google Scholar] [CrossRef]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef]
- Liang, G.; Zhang, Y. Embryonic stem cell and induced pluripotent stem cell: An epigenetic perspective. Cell Res. 2013, 23, 49–69. [Google Scholar] [CrossRef]
- Singh, V.K.; Kalsan, M.; Kumar, N.; Saini, A.; Chandra, R. Induced pluripotent stem cells: Applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol. 2015, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhong, A.; Sidharta, M.; Kim, T.W.; Ramirez, B.; Persily, B.; Studer, L.; Zhou, T. A Robust and Inducible Precise Genome Editing via an All-in-One Prime Editor in Human Pluripotent Stem Cells. bioRxiv 2024. [Google Scholar] [CrossRef]
- Madrid, M.; Sumen, C.; Aivio, S.; Saklayen, N. Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges. Curr. Protoc. 2021, 1, e88. [Google Scholar] [CrossRef]
- Okano, H.; Morimoto, S. iPSC-based disease modeling and drug discovery in cardinal neurodegenerative disorders. Cell Stem Cell 2022, 29, 189–208. [Google Scholar] [CrossRef]
- Penney, J.; Ralvenius, W.T.; Tsai, L.H. Modeling Alzheimer’s disease with iPSC-derived brain cells. Mol. Psychiatry 2020, 25, 148–167. [Google Scholar] [CrossRef]
- Vazquez-Armendariz, A.I.; Tata, P.R. Recent advances in lung organoid development and applications in disease modeling. J. Clin. Investig. 2023, 133, e170500. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Lin, C.Y.; Chen, H.C.; Hsieh, P.C.H.; Chiu, Y.W.; Chang, J.M. Opportunities and Challenges of Human IPSC Technology in Kidney Disease Research. Biomedicines 2022, 10, 3232. [Google Scholar] [CrossRef] [PubMed]
- Hnatiuk, A.P.; Briganti, F.; Staudt, D.W.; Mercola, M. Human iPSC modeling of heart disease for drug development. Cell Chem. Biol. 2021, 28, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Doss, M.X.; Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells 2019, 8, 403. [Google Scholar] [CrossRef]
- Christensen, K.; Roudnicky, F.; Patsch, C.; Burcin, M. Requirements for using IPSC-based cell models for assay development in drug discovery. Adv. Biochem. Eng. Biotechnol. 2018, 163, 207–220. [Google Scholar] [CrossRef]
- Nelson, T.J.; Martinez-Fernandez, A.; Terzic, A. Induced pluripotent stem cells: Developmental biology to regenerative medicine. Nat. Rev. Cardiol. 2010, 7, 700–710. [Google Scholar] [CrossRef]
- Gilbert, S.F. Developmental biology, the stem cell of biological disciplines. PLoS Biol. 2017, 15, e2003691. [Google Scholar] [CrossRef]
- de Morree, A.; Rando, T.A. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat. Rev. Mol. Cell Biol. 2023, 24, 334–354. [Google Scholar] [CrossRef]
- Zhu, Z.; Huangfu, D. Human pluripotent stem cells: An emerging model in developmental biology. Development 2013, 140, 705–717. [Google Scholar] [CrossRef]
- Serrano, L.; Vazquez, B.N.; Tischfield, J. Chromatin structure, pluripotency and differentiation. Exp. Biol. Med. 2013, 238, 259–270. [Google Scholar] [CrossRef]
- Peter, I.S.; Davidson, E.H. Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology. Curr. Top. Dev. Biol. 2016, 117, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Bickmore, W.A.; Zaret, K.S. Altered states: How gene expression is changed during differentiation. Curr. Opin. Genet. Dev. 2010, 20, 467–469. [Google Scholar] [CrossRef]
- Ding, J.; Sharon, N.; Bar-Joseph, Z. Temporal modelling using single-cell transcriptomics. Nat. Rev. Genet. 2022, 23, 355–368. [Google Scholar] [CrossRef]
- Hansberg, W. A critical analysis on the conception of “Pre-existent gene expression programs” for cell differentiation and development. Differentiation 2022, 125, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, S.; Wang, T. How the mechanical microenvironment of stem cell growth affects their differentiation: A review. Stem Cell Res. Ther. 2022, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Godoy, P.; Schmidt-Heck, W.; Hellwig, B.; Nell, P.; Feuerborn, D.; Rahnenführer, J.; Kattler, K.; Walter, J.; Blüthgen, N.; Hengstler, J.G. Assessment of stem cell differentiation based on genome-wide expression profiles. Philos. Trans. R. Soc. B 2018, 373, 1750. [Google Scholar] [CrossRef]
- Armingol, E.; Officer, A.; Harismendy, O.; Lewis, N.E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 2021, 22, 71–88. [Google Scholar] [CrossRef]
- Goldman, J.A.; Poss, K.D. Gene regulatory programmes of tissue regeneration. Nat. Rev. Genet. 2020, 21, 511–525. [Google Scholar] [CrossRef]
- Meir, Y.J.J.; Li, G. Somatic reprogramming—Above and beyond pluripotency. Cells 2021, 10, 1288. [Google Scholar] [CrossRef]
- Lewis, J.C.; Feltus, A.; Ensor, C.M.; Ramanathan, S.; Daunert, S. Applications of reporter genes. Anal. Chem. 1998, 70, 579A–585A. [Google Scholar] [CrossRef]
- Serganova, I.; Blasberg, R.G. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J. Nucl. Med. 2019, 60, 1665–1681. [Google Scholar] [CrossRef] [PubMed]
- Youn, H.; Chung, J.K. Reporter gene imaging. Am. J. Roentgenol. 2013, 201, 2. [Google Scholar] [CrossRef]
- Jurgielewicz, P.; Harmsen, S.; Wei, E.; Bachmann, M.H.; Ting, R.; Aras, O. New imaging probes to track cell fate: Reporter genes in stem cell research. Cell Mol. Life Sci. 2017, 74, 4455–4469. [Google Scholar] [CrossRef]
- Wilson, T.; Hastings, J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998, 14, 197–230. [Google Scholar] [CrossRef] [PubMed]
- Moauro, A.; Kruger, R.E.; O’hagan, D.; Ralston, A. Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming. Cell. Reprogramming 2022, 24, 353–362. [Google Scholar] [CrossRef]
- Solari, C.; Echegaray, C.V.; Cosentino, M.S.; Petrone, M.V.; Waisman, A.; Luzzani, C.; Francia, M.; Villodre, E.; Lenz, G.; Miriuka, S.; et al. Manganese superoxide dismutase gene expression is induced by Nanog and Oct4, essential pluripotent stem cells’ transcription factors. PLoS ONE 2015, 10, e0144336. [Google Scholar] [CrossRef] [PubMed]
- Fus-Kujawa, A.; Prus, P.; Bajdak-Rusinek, K.; Teper, P.; Gawron, K.; Kowalczuk, A.; Sieron, A.L. An Overview of Methods and Tools for Transfection of Eukaryotic Cells in vitro. Front. Bioeng. Biotechnol. 2021, 9, 701031. [Google Scholar] [CrossRef] [PubMed]
- Bak, R.O.; Gomez-Ospina, N.; Porteus, M.H. Gene Editing on Center Stage. Trends Genet. 2018, 34, 600–611. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Zhuang, S.; Wang, L.; Zhu, Y.; Chen, Y.; Sun, W.; Wu, Z.; Zhou, Z.; Chen, J.; et al. Gene editing and its applications in biomedicine. Sci. China Life Sci. 2022, 65, 660–700. [Google Scholar] [CrossRef]
- Joo, H.K.; Chung, J.K. Molecular-genetic imaging based on reporter gene expression. J. Nucl. Med. 2008, 49 (Suppl. S6), 164S–179S. [Google Scholar] [CrossRef]
- Li, S.; Chen, L.X.; Peng, X.H.; Wang, C.; Qin, B.Y.; Tan, D.; Han, C.X.; Yang, H.; Ren, X.N.; Liu, F.; et al. Overview of the reporter genes and reporter mouse models. Anim. Models Exp. Med. 2018, 1, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Shams, F.; Bayat, H.; Mohammadian, O.; Mahboudi, S.; Vahidnezhad, H.; Soosanabadi, M.; Rahimpour, A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts 2022, 12, 371–391. [Google Scholar] [CrossRef]
- Lanigan, T.M.; Kopera, H.C.; Saunders, T.L. Principles of genetic engineering. Genes. 2020, 11, 291. [Google Scholar] [CrossRef]
- Li, X.; Heyer, W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res. 2008, 18, 99–113. [Google Scholar] [CrossRef]
- Mikkelsen, N.S.; Bak, R.O. Enrichment strategies to enhance genome editing. J. Biomed. Sci. 2023, 30, 1. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, H.; Martins, S.; Kontarakis, Z.; Krutmann, J.; Rossi, A. Fast but not furious: A streamlined selection method for genome-edited cells. Life Sci. Alliance 2021, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Grav, L.M.; Lee, J.S.; Gerling, S.; Kallehauge, T.B.; Hansen, A.H.; Kol, S.; Lee, G.M.; Pedersen, L.E.; Kildegaard, H.F. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol. J. 2015, 10, 1446–1456. [Google Scholar] [CrossRef] [PubMed]
- Porteus, M. Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol. Genet. Eng. Rev. 2007, 24, 195–212. [Google Scholar] [CrossRef]
- Doroftei, B.; Ilie, O.; Puiu, M.; Ciobîcă, A.; Ilea, C. Mini-review regarding the applicability of genome editing techniques developed for studying infertility. Diagnostics 2021, 11, 246. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F. ZFN, TALEN, and CRISPR/Cas-Based Methods for Genome Engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Porteus, M.H.; Carroll, D. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 2005, 23, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.M.; Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Investig. 2014, 124, 4154–4161. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, X.; Lin, X.; Chen, H. Zinc Finger Proteins in the War on Gastric Cancer: Molecular Mechanism and Clinical Potential. Cells 2023, 12, 1314. [Google Scholar] [CrossRef]
- Li, H.; Zou, J.; Yu, X.H.; Ou, X.; Tang, C.K. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J. Cell. Physiol. 2021, 236, 4216–4230. [Google Scholar] [CrossRef]
- Hartwig, A. Zinc Finger Proteins as Potential Targets for Toxic Metal Ions: Differential Effects on Structure and Function. Antioxid. Redox Signal. 2001, 3, 625–634. [Google Scholar] [CrossRef]
- Becker, S.; Boch, J. TALE and TALEN genome editing technologies. Gene Genome Edit. 2021, 2, 100007. [Google Scholar] [CrossRef]
- Hu, Y.; Patra, P.; Pisanty, O.; Shafir, A.; Belew, Z.M.; Binenbaum, J.; Ben Yaakov, S.; Shi, B.; Charrier, L.; Hyams, G.; et al. Multi-Knock—A multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nat. Plants 2023, 9, 572–587. [Google Scholar] [CrossRef]
- Höijer, I.; Emmanouilidou, A.; Östlund, R.; van Schendel, R.; Bozorgpana, S.; Tijsterman, M.; Feuk, L.; Gyllensten, U.; den Hoed, M.; Ameur, A. CRISPR-Cas9 induces large structural variants at on-target and off-target sites in vivo that segregate across generations. Nat. Commun. 2022, 13, 28244. [Google Scholar] [CrossRef]
- Guo, C.; Ma, X.; Gao, F.; Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 2023, 11, 1143157. [Google Scholar] [CrossRef]
- Huang, X.; Yang, D.; Zhang, J.; Xu, J.; Chen, Y.E. Recent Advances in Improving Gene-Editing Specificity through CRISPR–Cas9 Nuclease Engineering. Cells 2022, 11, 2186. [Google Scholar] [CrossRef] [PubMed]
- Leal, A.F.; Herreno-Pachón, A.M.; Benincore-Flórez, E.; Karunathilaka, A.; Tomatsu, S. Current Strategies for Increasing Knock-In Efficiency in CRISPR/Cas9-Based Approaches. Int. J. Mol. Sci. 2024, 25, 2456. [Google Scholar] [CrossRef]
- Kanafi, M.M.; Tavallaei, M. Overview of Advances in CRISPR/DeadCas9 Technology and Its Applications in Human Diseases. Gene 2022, 830, 146518. [Google Scholar] [CrossRef] [PubMed]
- Yip, B.H. Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 2020, 10, 839. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 2023, 11, 1039315. [Google Scholar] [CrossRef]
- Anzalone, A.; Randolph, P.; Davis, J.; Sousa, A.; Koblan, L.; Levy, J.; Liu, D. Search-and-Replace Genome Editing Without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Moon, S.; Ko, J.; Kim, Y.; Kim, D. Unbiased investigation of specificities of prime editing systems in human cells. Nucleic Acids Res. 2020, 48, 10576–10589. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Ravi, N.S.; Prasad, K.C.; Panigrahi, L.; Koikkara, S.; Rajendiran, V.; Mohankumar, K.M. Efficient and Error-Free Correction of Sickle Mutation in Human Erythroid Cells Using Prime Editor-2. Front. Genome Edit. 2022, 4, 1085111. [Google Scholar] [CrossRef]
- Chen, P.; Hussmann, J.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.; Liu, D. Enhanced Prime Editing Systems by Manipulating Cellular Determinants of Editing Outcomes. Cell 2021, 184, 5635–5652. [Google Scholar] [CrossRef]
- Schene, I.; Joore, I.; Baijens, J.; Stevelink, R.; Kok, G.; Shehata, S.; Fuchs, S. Mutation-Specific Reporter for Optimization and Enrichment of Prime Editing. Nat. Commun. 2022, 13, 1. [Google Scholar] [CrossRef]
- Pei, Y.; Sierra, G.; Sivapatham, R.; Swistowski, A.; Rao, M.S.; Zeng, X. A platform for rapid generation of single and multiplexed reporters in human iPSC lines. Sci. Rep. 2015, 5, 9205. [Google Scholar] [CrossRef] [PubMed]
- Cerbini, T.; Funahashi, R.; Luo, Y.; Liu, C.; Park, K.; Rao, M.; Malik, N.; Zou, J. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE 2015, 10, e0116032. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, A.; Ackermann, M.; Mussolino, C.; Cathomen, T.; Lachmann, N.; Moritz, T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci. Rep. 2017, 7, 14566. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Nain, V. TALENs—An indispensable tool in the era of CRISPR: A mini review. J. Genet. Eng. Biotechnol. 2021, 19, 125. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Zhou, K.; Li, T.; VanDusen, N.J.; Hua, Y. Precise genome-editing in human diseases: Mechanisms, strategies and applications. Signal Transduct. Target. Ther. 2024, 9, 47. [Google Scholar] [CrossRef]
- Cox, D.; Platt, R.; Zhang, F. Therapeutic genome editing: Prospects and challenges. Nat. Med. 2015, 21, 121–131. [Google Scholar] [CrossRef]
- Bhushan, K.; Pratap, D.; Sharma, P. Transcription activator-like effector nucleases (TALENs): An efficient tool for plant genome editing. Eng. Life Sci. 2016, 16, 330–337. [Google Scholar] [CrossRef]
- Nakade, S.; Tsubota, T.; Sakane, Y.; Kume, S.; Sakamoto, N.; Obara, M.; Daimon, T.; Sezutsu, H.; Yamamoto, T.; Sakuma, T.; et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 2014, 5, 5560. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, A.; Hisano, Y.; Ota, S.; Taimatsu, K. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Int. J. Mol. Sci. 2016, 17, 727. [Google Scholar] [CrossRef]
- Siles, L.; Gaudó, P.; Pomares, E. High-efficiency CRISPR/Cas9-mediated correction of a homozygous mutation in achromatopsia-patient-derived iPSCs. Int. J. Mol. Sci. 2023, 24, 3655. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput. Struct. Biotechnol. J. 2020, 18, 2401–2415. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef] [PubMed]
- Pierson Smela, M.D.; Kramme, C.C.; Fortuna, P.R.J.; Adams, J.L.; Su, R.; Dong, E.; Kobayashi, M.; Brixi, G.; Kavirayuni, V.S.; Tysinger, E.; et al. Directed differentiation of human iPSCs to functional ovarian granulosa-like cells via transcription factor overexpression. ELife 2023, 12, e83291. [Google Scholar] [CrossRef] [PubMed]
- Vojnits, K.; Nakanishi, M.; Porras, D.; Kim, Y.; Feng, Z.; Golubeva, D.; Bhatia, M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022, 27, 2434. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, C.; Carola, G.; Fernández-Carasa, I.; Valtorta, M.; Jiménez-Delgado, S.; Díaz, M.; Soriano-Fradera, J.; Cappelletti, G.; García-Sancho, J.; Raya, Á.; et al. CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Sci. Rep. 2019, 9, 6811. [Google Scholar] [CrossRef]
- Nur Patria, Y.; Stenta, T.; Lilianty, J.; Rowley, L.; Stanley, E.G.; Elefanty, A.G.; Bateman, J.F.; Lamandé, S.R. CRISPR/Cas9 gene editing of a SOX9 reporter human iPSC line to produce two TRPV4 patient heterozygous missense mutant iPSC lines, MCRIi001-A-3 (TRPV4 p.F273L) and MCRIi001-A-4 (TRPV4 p.P799L). Stem Cell Res. 2020, 48, 101942. [Google Scholar] [CrossRef]
- Liu, J.T.; Corbett, J.L.; Heslop, J.A.; Duncan, S.A. Enhanced genome editing in human iPSCs with CRISPR-Cas9 by co-targeting ATP1a1. PeerJ 2020, 8, e9060. [Google Scholar] [CrossRef]
- Dixit, S.; Kumar, A.; Srinivasan, K.; Vincent, P.M.D.R.; Ramu Krishnan, N. Advancing genome editing with artificial intelligence: Opportunities, challenges, and future directions. Front. Bioeng. Biotechnol. 2023, 11, 1335901. [Google Scholar] [CrossRef]
- Zhong, A.; Wu, Y.; Sidharta, M.; Beaury, M.; Zhao, X.; Studer, L.; Zhou, T. Transient Inhibition of p53 Enhances Prime Editing and Cytosine Base-Editing Efficiencies in Human Pluripotent Stem Cells. Nat. Commun. 2022, 13, 1. [Google Scholar] [CrossRef]
- Habib, O.; Habib, G.; Hwang, G.; Bae, S. Comprehensive Analysis of Prime Editing Outcomes in Human Embryonic Stem Cells. Nucleic Acids Res. 2022, 50, 1187–1197. [Google Scholar] [CrossRef]
- Liu, M.; Rehman, S.; Tang, X.; Gu, K.; Fan, Q.; Chen, D.; Ma, W. Methodologies for Improving HDR Efficiency. Front. Genet. 2019, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dai, X.; Wang, W.; Yang, Z.; Zhao, J.; Zhang, J.; Wen, W.; Zhang, F.; Oberg, K.C.; Zhang, L.; et al. Dynamics and Competition of CRISPR–Cas9 Ribonucleoproteins and AAV Donor-Mediated NHEJ, MMEJ and HDR Editing. Nucleic Acids Res. 2021, 49, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Ihry, R.J.; Worringer, K.A.; Salick, M.R.; Frias, E.; Ho, D.; Theriault, K.; Kommineni, S.; Chen, J.; Sondey, M.; Ye, C.; et al. P53 Inhibits CRISPR–Cas9 Engineering in Human Pluripotent Stem Cells. Nat. Med. 2018, 24, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.; Ikeda, K.; Cromer, M.; Uchida, N.; Nishimura, T.; Romano, R.; Porteus, M. Highly Efficient and Marker-Free Genome Editing of Human Pluripotent Stem Cells by CRISPR-Cas9 RNP and AAV6 Donor-Mediated Homologous Recombination. Cell Stem Cell 2019, 24, 821–828. [Google Scholar] [CrossRef]
- Cao, Y.; Li, L.; Ren, X.; Mao, B.; Yang, Y.; Mi, H.; Zhao, X. CRISPR/Cas9 Correction of a Dominant Cis-Double-Variant in COL1A1 Isolated from a Patient with Osteogenesis Imperfecta Increases the Osteogenic Capacity of Induced Pluripotent Stem Cells. J. Bone Miner. Res. 2020, 38, 719–732. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Xing, Y.; Zhao, Y.; Liu, Y. Development of Delivery Strategies for CRISPR-Cas9 Genome Editing. Bmemat 2023, 1, 3. [Google Scholar] [CrossRef]
- Li, D.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet. 2021, 12, 673286. [Google Scholar] [CrossRef]
- Rosenblum, D.; Gutkin, A.; Kedmi, R.; Ramishetti, S.; Veiga, N.; Jacobi, A.; Schubert, M.S.; Friedmann-Morvinski, D.; Cohen, Z.R.; Behlke, M.A.; et al. CRISPR-Cas9 Genome Editing Using Targeted Lipid Nanoparticles for Cancer Therapy. Sci. Adv. 2020, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gao, M.; Yang, Y.; Li, W.; Bao, J.; Li, Y. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Pharmaceutics 2023, 15, 984. [Google Scholar] [CrossRef]
- Ruan, J.; Hirai, H.; Yang, D.; Ma, L.; Hou, X.; Jiang, H.; Xu, J. Efficient Gene Editing at Major CFTR Mutation Loci. Mol. Ther. Nucleic Acids 2019, 16, 73–81. [Google Scholar] [CrossRef]
- Xu, X.; Gao, D.; Wang, P.; Chen, J.; Ruan, J.; Xu, J.; Xia, X. Efficient Homology-Directed Gene Editing by CRISPR/Cas9 in Human Stem and Primary Cells Using Tube Electroporation. Sci. Rep. 2018, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Smirnikhina, S.A.; Kondrateva, E.V.; Adilgereeva, E.P.; Anuchina, A.A.; Zaynitdinova, M.I.; Slesarenko, Y.S.; Ershova, A.S.; Ustinov, K.D.; Yasinovsky, M.I.; Amelina, E.L.; et al. P.F508del Editing in Cells from Cystic Fibrosis Patients. PLoS ONE 2020, 15, e0242094. [Google Scholar] [CrossRef] [PubMed]
- Du, X. Lentiviral Transduction-Based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr. Genom. 2023, 24, 155–170. [Google Scholar] [CrossRef]
- Rathbone, T.; Ates, I.; Fernando, L.; Addlestone, E.; Lee, C.; Richards, V.; Cottle, R. Electroporation-Mediated Delivery of Cas9 Ribonucleoproteins Results in High Levels of Gene Editing in Primary Hepatocytes. CRISPR J. 2022, 5, 397–409. [Google Scholar] [CrossRef]
- Sung, J.J.; Park, C.Y.; Leem, J.W.; Cho, M.S.; Kim, D.W. Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs. Exp. Mol. Med. 2019, 51, 1–9. [Google Scholar] [CrossRef]
- Jia, J.; Bai, F.; Jin, Y.; Santostefano, K.E.; Ha, U.-H.; Wu, D.; Wu, W.; Terada, N.; Jin, S. Efficient Gene Editing in Pluripotent Stem Cells by Bacterial Injection of Transcription Activator-Like Effector Nuclease Proteins. Stem Cells Transl. Med. 2015, 4, 913–926. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Huang, H.; Chen, B.; Chen, X.; Hu, J.; Chang, T.; Lin, R.J.; Yee, J.K. Precise gene modification mediated by TALEN and single-stranded oligodeoxynucleotides in human cells. PLoS ONE 2014, 9, e93575. [Google Scholar] [CrossRef]
- Cerbini, T.; Luo, Y.; Rao, M.S.; Zou, J. Transfection, selection, and colony-picking of human induced pluripotent stem cells TALEN-targeted with a GFP gene into the AAVS1 safe Harbor. J. Vis. Exp. 2015, 96, e52504. [Google Scholar] [CrossRef]
- Fernandopulle, M.S.; Prestil, R.; Grunseich, C.; Wang, C.; Gan, L.; Ward, M.E. Transcription Factor–Mediated Differentiation of Human iPSCs into Neurons. Curr. Protoc. Cell Biol. 2018, 79, e51. [Google Scholar] [CrossRef]
- Shankar, S.; Sreekumar, A.; Prasad, D.; Das, A.V.; Pillai, M.R. Genome editing of oncogenes with ZFNs and TALENs: Caveats in nuclease design. Cancer Cell Int. 2018, 18, 169. [Google Scholar] [CrossRef]
- Zhong, A.; Li, M.; Zhou, T. Protocol for the Generation of Human Pluripotent Reporter Cell Lines Using CRISPR/Cas9. STAR Protoc. 2020, 1, 100052. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, S.; Surampudi, V.; Rao, R. Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency. Stem Cells Int. 2012, 2012, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Osada, N.; Kikuchi, J.; Umehara, T.; Sato, S.; Urabe, M.; Abe, T.; Furukawa, Y. Lysine-Specific Demethylase 1 Inhibitors Prevent Teratoma Development from Human Induced Pluripotent Stem Cells. Oncotarget 2018, 9, 6450–6462. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhou, Z.; Ji, W.; Lin, S.; Wang, M. METTL1-Mediated m7G Methylation Maintains Pluripotency in Human Stem Cells and Limits Mesoderm Differentiation and Vascular Development. Stem Cell Res. Ther. 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Lu, S.; Klimanskaya, I.; Gomes, I.; Kim, D.; Chung, Y.; Lanza, R. Hemangioblastic Derivatives from Human Induced Pluripotent Stem Cells Exhibit Limited Expansion and Early Senescence. Int. J. Cell Cloning 2010, 28, 704–712. [Google Scholar] [CrossRef]
- Parr, C.; Katayama, S.; Miki, K.; Kuang, Y.; Yoshida, Y.; Morizane, A.; Saito, H. MicroRNA-302 Switch to Identify and Eliminate Undifferentiated Human Pluripotent Stem Cells. Sci. Rep. 2016, 6, 1. [Google Scholar] [CrossRef]
- Narsinh, K.; Sun, N.; Sánchez-Freire, V.; Lee, A.; Almeida, P.; Hu, S.; Wu, J. Single Cell Transcriptional Profiling Reveals Heterogeneity of Human Induced Pluripotent Stem Cells. J. Clin. Investig. 2011, 121, 1217–1221. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Westenskow, P.; Todorova, D.; Hu, Z.; Lin, T.; Xu, Y. Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells. Cell Stem Cell 2015, 17, 353–359. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Kang, X.; Lin, B.; Qian, Y.; Song, B.; Fan, Y. One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection. Mol. Ther. Nucleic Acids 2017, 6, 57–67. [Google Scholar] [CrossRef]
- Hamad, R. Cas12a Ultra Enables Efficient Genome Editing in Human Multipotent and Pluripotent Stem Cells. 2023. Available online: https://www.researchsquare.com/article/rs-3403204/v1 (accessed on 22 September 2024).
- Zahumenska, R.; Nosáľ, V.; Smolár, M.; Okajčeková, T.; Škovierová, H.; Strnádel, J.; Halašová, E. Induced pluripotency: A powerful tool for in vitro modeling. Int. J. Mol. Sci. 2020, 21, 8910. [Google Scholar] [CrossRef]
- Qiao, Y.; Agboola, O.; Hu, X.; Wu, Y.; Lei, L. Tumorigenic and immunogenic properties of induced pluripotent stem cells: A promising cancer vaccine. Stem Cell Rev. Rep. 2020, 16, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Scarfone, R.; Pena, S.; Russell, K.; Betts, D.; Koch, T. The use of induced pluripotent stem cells in domestic animals: A narrative review. BMC Vet. Res. 2020, 16, 477. [Google Scholar] [CrossRef] [PubMed]
- Erharter, A.; Rizzi, S.; Mertens, J.; Edenhofer, F. Take the shortcut—Direct conversion of somatic cells into induced neural stem cells and their biomedical applications. FEBS Lett. 2019, 593, 3353–3369. [Google Scholar] [CrossRef]
- Imamura, M.; Hikabe, O.; Lin, Z. Generation of germ cells in vitro in the era of induced pluripotent stem cells. Mol. Reprod. Dev. 2013, 81, 2–19. [Google Scholar] [CrossRef]
- Buganim, Y.; Faddah, D.A.; Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 2013, 14, 427–439. [Google Scholar] [CrossRef]
- Ouchi, R.; Koike, H. Modeling human liver organ development and diseases with pluripotent stem cell-derived organoids. Front. Cell Dev. Biol. 2023, 11, 1133534. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, M.; Zhang, J.; Chen, Y.; Zuo, Y.; Xie, Z.; Chen, Y. Application of induced pluripotent stem cell-derived models for investigating microrna regulation in developmental processes. Front. Genet. 2022, 13, 899831. [Google Scholar] [CrossRef]
- Zywitza, V.; Rusha, E.; Shaposhnikov, D.; Ruiz-Orera, J.; Telugu, N.; Rishko, V.; Drukker, M. Naïve-like pluripotency to pave the way for saving the northern white rhinoceros from extinction. Sci. Rep. 2022, 12, 3100. [Google Scholar] [CrossRef] [PubMed]
- Kotton, D.; Nilsson, M. Editorial: Progenitors and stem cells in thyroid development, disease, and regeneration. Front. Endocrinol. 2022, 13, 848559. [Google Scholar] [CrossRef]
- Ashmore-Harris, C.; Blackford, S.J.; Grimsdell, B.; Kurtys, E.; Glatz, M.C.; Rashid, T.S.; Fruhwirth, G.O. Reporter gene-engineering of human induced pluripotent stem cells during differentiation renders in vivo traceable hepatocyte-like cells accessible. Stem Cell Res. 2019, 41, 101599. [Google Scholar] [CrossRef]
- Blöchinger, A.K.; Siehler, J.; Wißmiller, K.; Shahryari, A.; Burtscher, I.; Lickert, H. Generation of an INSULIN-H2B-Cherry reporter human iPSC line. Stem Cell Res. 2020, 45, 101797. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wu, S.; Pan, J.; Zhang, K.; Li, X.; Xu, Y.; Jin, C.; He, X.; Shi, J.; Ma, L.; et al. CRISPR/Cas9-edited triple-fusion reporter gene imaging of dynamics and function of transplanted human urinary-induced pluripotent stem cell-derived cardiomyocytes. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Galdos, F.X.; Lee, C.; Lee, S.; Paige, S.; Goodyer, W.; Xu, S.; Samad, T.; Escobar, G.V.; Darsha, A.; Beck, A.; et al. Combined lineage tracing and scRNA-seq reveals unexpected first heart field predominance of human iPSC differentiation. Elife 2023, 12, e80075. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Hwang, S.; Seol, H.; Kim, A.H.; Lee, H.M.; Sung, J.J.; Jeong, S.M.; Choi, Y.M.; Jun, J.K.; Kim, D.W.; et al. Generation of Brachyury-mCherry knock-in reporter human pluripotent stem cell line (SNUe003-A-2) using CRISPR/Cas9 nuclease. Stem Cell Res. 2021, 53, 102321. [Google Scholar] [CrossRef] [PubMed]
- Coxir, S.A.; Costa, G.M.J.; Santos, C.F.D.; Alvarenga, R.L.L.S.; Lacerda, S.M.D.S.N. From in vivo to in vitro: Exploring the key molecular and cellular aspects of human female gametogenesis. Hum. Cell 2023, 36, 1283–1311. [Google Scholar] [CrossRef]
- Yamashiro, C.; Sasaki, K.; Yabuta, Y.; Kojima, Y.; Nakamura, T.; Okamoto, I.; Yokobayashi, S.; Murase, Y.; Ishikura, Y.; Shirane, K.; et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science 2018, 362, 356–360. [Google Scholar] [CrossRef]
- Kojima, Y.; Yamashiro, C.; Murase, Y.; Yabuta, Y.; Okamoto, I.; Iwatani, C.; Tsuchiya, H.; Nakaya, M.; Tsukiyama, T.; Nakamura, T.; et al. GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program. Life Sci. Alliance 2021, 4, e202000974. [Google Scholar] [CrossRef]
- Sasaki, K.; Yokobayashi, S.; Nakamura, T.; Okamoto, I.; Yabuta, Y.; Kurimoto, K.; Ohta, H.; Moritoki, Y.; Iwatani, C.; Tsuchiya, H.; et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell 2015, 17, 178–194. [Google Scholar] [CrossRef]
- Kuang, Y.; Muñoz, A.; Nalula, G.; Santostefano, K.; Sanghez, V.; Sánchez, G.; Medina, M. Evaluation of commonly used ectoderm markers in iPSC trilineage differentiation. Stem Cell Res. 2019, 37, 101434. [Google Scholar] [CrossRef]
- Xu, X.; Du, Y.; Ma, L.; Zhang, S.; Shi, L.; Chen, Z.; Zhang, X. Mapping germ-layer specification preventing genes in hPSCs via genome-scale CRISPR screening. iScience 2021, 24, 101926. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, H.Y.; Kwon, A.; Park, H.; Park, M.; Kim, Y.; Koo, S.K. Generation of a Nestin-EGFP reporter human induced pluripotent stem cell line, KSCBi005-A-1, using CRISPR/Cas9 nuclease. Stem Cell Res. 2019, 40, 101554. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Kamiya, D.; Kawaraichi, N.; Toyokawa, H.; Akaboshi, T.; Ikeya, M.; Toyooka, Y. Generation of a human SOX10 knock-in reporter iPSC line for visualization of neural crest cell differentiation. Stem Cell Res. 2022, 60, 102696. [Google Scholar] [CrossRef] [PubMed]
- Inomata, Y. Lgr6-expressing functional nail stem-like cells differentiated from human-induced pluripotent stem cells. PLoS ONE 2024, 19, e0303260. [Google Scholar] [CrossRef]
- Müller, M.; Czarnecka, J.; Brzeziński, M.; Prus, J.; Kulak, B.; Hołubowski, A.; Dyszkiewicz-Konwińska, M. Current stem cell technologies used in medicine. Med. J. Cell Biol. 2020, 8, 124–138. [Google Scholar] [CrossRef]
- Doherty, L.; Wan, M.; Peterson, A.; Youngstrom, D.W.; King, J.S.; Kalajzic, I.; Hankenson, K.D.; Sanjay, A. Wnt-associated adult stem cell marker Lgr6 is required for osteogenesis and fracture healing. Bone 2023, 169, 116681. [Google Scholar] [CrossRef]
- Khedgikar, V.; Charles, J.F.; Lehoczky, J.A. Mouse LGR6 Regulates Osteogenesis in Vitro and In Vivo Through Differential Ligand Use. Bone 2022, 155, 116267. [Google Scholar] [CrossRef]
- Doherty, L.; Sanjay, A. LGRs in skeletal tissues: An emerging role for WNT-associated adult stem cell markers in bone. JBMR Plus 2020, 4, 10380. [Google Scholar] [CrossRef] [PubMed]
- Cerneckis, J.; Cai, H.; Shi, Y. Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications. Sig Transduct. Target. Ther. 2024, 9, 112. [Google Scholar] [CrossRef]
- Park, J.; Park, M.; Lee, S.; Kim, D.; Kim, K.; Jang, H.; Cha, H. Gene editing with ‘pencil’ rather than ‘scissors’ in human pluripotent stem cells. Stem Cell Res. Ther. 2023, 14, 1. [Google Scholar] [CrossRef]
- Mianné, J.; Nasri, A.; Van, C.; Bourguignon, C.; Fieldès, M.; Ahmed, E.; Vos, J. Crispr/cas9-mediated gene knockout and interallelic gene conversion in human induced pluripotent stem cells using non-integrative bacteriophage-chimeric retro-virus-like particles. BMC Biol. 2022, 20, 1. [Google Scholar] [CrossRef]
- Sguazzi, G.; Muto, V.; Tartaglia, M.; Bertini, E.; Compagnucci, C. Induced pluripotent stem cells (iPSCs) and gene therapy: A new era for the treatment of neurological diseases. Int. J. Mol. Sci. 2021, 22, 13674. [Google Scholar] [CrossRef]
- Kaserman, J.; Hurley, K.; Dodge, M.; Villacorta-Martin, C.; Vedaie, M.; Jean, J.; Wilson, A. A highly phenotyped open access repository of alpha-1 antitrypsin deficiency pluripotent stem cells. Stem Cell Rep. 2020, 15, 242–255. [Google Scholar] [CrossRef] [PubMed]
- D’Antonio, M.; Benaglio, P.; Jakubosky, D.; Greenwald, W.; Matsui, H.; Donovan, M.; Frazer, K. Insights into the mutational burden of human induced pluripotent stem cells from an integrative multi-omics approach. Cell Rep. 2018, 24, 883–894. [Google Scholar] [CrossRef]
- Li, D. CRISPR/Cas9-mediated gene correction in osteopetrosis patient-derived iPSCs. Front Biosci-Landmark 2023, 28, 131. [Google Scholar] [CrossRef] [PubMed]
- Alkanli, S.; Alkanlı, N.; Ay, A.; Albeniz, I. CRISPR/Cas9 mediated therapeutic approach in Huntington’s disease. Mol. Neurobiol. 2022, 60, 1486–1498. [Google Scholar] [CrossRef] [PubMed]
- Birling, M.C.; Yoshiki, A.; Adams, D.J.; Ayabe, S.; Beaudet, A.L.; Bottomley, J.; Bradley, A.; Brown, S.D.; Bürger, A.; Bushell, W.; et al. A resource of targeted mutant mouse lines for 5,061 genes. Nat. Genet. 2021, 53, 416–419. [Google Scholar] [CrossRef] [PubMed]
- Hockemeyer, D.; Soldner, F.; Beard, C.; Gao, Q.; Mitalipova, M.; DeKelver, R.C.; Katibah, G.E.; Amora, R.; Boydston, E.A.; Zeitler, B.; et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol. 2009, 27, 851–857. [Google Scholar] [CrossRef]
- Zou, J.; Maeder, M.L.; Mali, P.; Pruett-Miller, S.M.; Thibodeau-Beganny, S.; Chou, B.K.; Chen, G.; Ye, Z.; Park, I.H.; Daley, G.Q.; et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 2009, 5, 97–110. [Google Scholar] [CrossRef]
- Sánchez-Danés, A.; Consiglio, A.; Richaud, Y.; Rodríguez-Pizà, I.; Dehay, B.; Edel, M.; Bove, J.; Memo, M.; Vila, M.; Raya, A.; et al. Efficient Generation of A9 Midbrain Dopaminergic Neurons by Lentiviral Delivery of LMX1A in Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Hum. Gene Ther. 2012, 23, 56–69. [Google Scholar] [CrossRef]
- Bizy, A.; Guerrero-Serna, G.; Hu, B.; Ponce-Balbuena, D.; Willis, B.; Zarzoso, M.; Ramirez, R.J.; Sener, M.F.; Mundada, L.V.; Klos, M.; et al. Myosin Light Chain 2-Based Selection of Human iPSC-Derived Early Ventricular Cardiac Myocytes. Stem Cell Res. 2013, 11, 1335–1347. [Google Scholar] [CrossRef]
- Chirikian, O.; Goodyer, W.; Dzilic, E.; Serpooshan, V.; Buikema, J.; McKeithan, W.; Wu, H.; Li, G.; Lee, S.; Merk, M.; et al. CRISPR/Cas9-Based Targeting of Fluorescent Reporters to Human iPSCs to Isolate Atrial and Ventricular-Specific Cardiomyocytes. Sci. Rep. 2021, 11, 81860. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, P.; Deng, W. Olig Gene Targeting in Human Pluripotent Stem Cells for Motor Neuron and Oligodendrocyte Differentiation. Nat. Protoc. 2011, 6, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Namchaiw, P.; Han, W.; Mayrhofer, F.; Chechneva, O.; Biswas, S.; Deng, W. Temporal and Partial Inhibition of GLI1 in Neural Stem Cells (NSCs) Results in the Early Maturation of NSC Derived Oligodendrocytes in Vitro. Stem Cell Res. Ther. 2019, 10, 1374. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, H.; Ananiev, G.; Musser, M.; Ness, K.; Maglaque, D.; Zhao, X. Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (FMR1) Gene Reactivation in Human Neural Cells. Int. J. Cell Cloning 2016, 35, 158–169. [Google Scholar] [CrossRef]
- Malysheva, S.; Wunderlich, S.; Haase, A.; Göhring, G.; Merkert, S. Generation of a Human CDX2 Knock-In Reporter iPSC Line (MHHi007-A-1) to Model Human Trophoblast Differentiation. Stem Cell Res. 2018, 30, 117–121. [Google Scholar] [CrossRef]
- Marrone, L.; Poser, I.; Casci, I.; Japtok, J.; Reinhardt, P.; Janosch, A.; Andree, C.; Lee, H.O.; Moebius, C.; Koerner, E.; et al. Isogenic FUS-EGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology That Is Rescued by Drugs Inducing Autophagy. Stem Cell Rep. 2018, 10, 375–389. [Google Scholar] [CrossRef]
- Gupta, S.; Wesolowska-Andersen, A.; Ringgaard, A.; Jaiswal, H.; Song, L.; Hastoy, B.; Honoré, C. NKX6.1 Induced Pluripotent Stem Cell Reporter Lines for Isolation and Analysis of Functionally Relevant Neuronal and Pancreas Populations. Stem Cell Res. 2018, 29, 220–231. [Google Scholar] [CrossRef]
- Kwong, G.; Márquez, H.; Yang, C.; Wong, J.Y.; Kotton, D.N. Generation of a Purified iPSC-Derived Smooth Muscle-Like Population for Cell Sheet Engineering. Stem Cell Rep. 2019, 13, 499–514. [Google Scholar] [CrossRef]
- Adkar, S.S.; Wu, C.-L.; Willard, V.P.; Dicks, A.; Ettyreddy, A.; Steward, N.; Bhutani, N.; Gersbach, C.A.; Guilak, F. Step-Wise Chondrogenesis of Human Induced Pluripotent Stem Cells and Purification Via a Reporter Allele Generated by CRISPR-Cas9 Genome Editing. Stem Cells 2018, 37, 65–76. [Google Scholar] [CrossRef]
- Dicks, A.; Wu, C.-L.; Steward, N.; Adkar, S.S.; Gersbach, C.A.; Guilak, F. Prospective Isolation of Chondroprogenitors from Human iPSCs Based on Cell Surface Markers Identified Using a CRISPR-Cas9-Generated Reporter. Stem Cell Res. Ther. 2020, 11, 1597. [Google Scholar] [CrossRef]
- Moya, N.; Shahryari, A.; Burtscher, I.; Beckenbauer, J.; Bakhti, M.; Lickert, H. Generation of a Homozygous ARX Nuclear CFP (ARX) Reporter Human iPSC Line (HMGUI001-A-4). Stem Cell Res. 2020, 46, 101874. [Google Scholar] [CrossRef] [PubMed]
- Tanoury, Z.; Rao, J.; Tassy, O.; Gobert, B.; Gapon, S.; Garnier, J.; Pourquié, O. Differentiation of the Human PAX7-Positive Myogenic Precursors/Satellite Cell Lineage In Vitro. Development 2020, 147, dev187344. [Google Scholar] [CrossRef] [PubMed]
- Koui, Y.; Himeno, M.; Mori, Y.; Nakano, Y.; Saijou, E.; Tanimizu, N.; Kamiya, Y.; Anzai, H.; Maeda, N.; Wang, L.; et al. Development of Human iPSC-Derived Quiescent Hepatic Stellate Cell-Like Cells for Drug Discovery and In Vitro Disease Modeling. Stem Cell Rep. 2021, 16, 3050–3063. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wei, R.; Yu, J.; Fu, J.; Liu, Y.; Yang, B.; Yu, B.; Lin, Y.; Ran, X.; Lai, W.H.; et al. Generation of a Human iPSC Line GIBHI002-A-2 with a Dual-Reporter for NKX2-5 Using TALENs. Stem Cell Res. 2021, 50, 102120. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Nehra, S.; Singhal, N. Generation of AAVS1-EGFP Reporter Cell Lines from an Isogenic Pair of Trisomy 21 and Euploid Human iPSCs. Stem Cell Res. 2022, 64, 102890. [Google Scholar] [CrossRef]
- Xu, T.; Duan, J.; Li, Y.; Wang, G.; Li, S.; Li, Y.; Lu, W.; Yan, X.; Ren, Y.; Guo, F.; et al. Generation of a TPH2-EGFP Reporter Cell Line for Purification and Monitoring of Human Serotonin Neurons In Vitro and In Vivo. Stem Cell Rep. 2022, 17, 2365–2379. [Google Scholar] [CrossRef]
- Houweling, P. Generation of a Human ACTA1-TDTomato Reporter iPSC Line Using CRISPR/Cas9 Editing. Stem Cell Res. 2024, 75, 103313. [Google Scholar] [CrossRef]
- Cota, P.; Caliskan, Ö.S.; Bastidas-Ponce, A.; Jing, C.; Jaki, J.; Saber, L.; Czarnecki, O.; Taskin, D.; Blöchinger, A.K.; Kurth, T.; et al. Insulin Regulates Human Pancreatic Endocrine Cell Differentiation In Vitro. Mol. Metab. 2024, 79, 101853. [Google Scholar] [CrossRef]
- Li, W.; Jiao, H.; Walczak, B. Emerging Opportunities for Induced Pluripotent Stem Cells in Orthopaedics. J. Orthop. Transl. 2019, 17, 73–81. [Google Scholar] [CrossRef]
- Barrett, R.; Ornelas, L.; Yeager, N.; Mandefro, B.; Sahabian, A.; Lenaeus, L.; Sareen, D. Reliable generation of induced pluripotent stem cells from human lymphoblastoid cell lines. Stem Cells Transl. Med. 2014, 3, 1429–1434. [Google Scholar] [CrossRef]
- Ji, H.; Gao, S.; Yang, X.; Cai, J.; Zhao, W.; Sun, H.; Geng, Y.J. Clinical Application of Induced Pluripotent Stem Cells in Cardiovascular Medicine. Cardiology 2015, 131, 236–244. [Google Scholar] [CrossRef]
Purpose | Reporter Allele | Platform Used | Reference |
---|---|---|---|
Temporal and partial inhibition of glioma-associated oncogene 1 exerts oligodendrocyte induction. | OLIG2-GFP | Homologous recombination | [173,174] |
Detecting the reactivation of silenced FMR1 in cells of patients with fragile X syndrome. | FMR1-Nluc | CRISPR/Cas9 | [175] |
Track the specification of trophectoderm in early embryogenesis. | CDX2-Venus | TALENs | [176] |
Modeling amyotrophic lateral sclerosis and frontotemporal dementia by tracking stress granule dynamics in P525L mutated cells. | FUS-GFP | CRISPR/Cas9 | [177] |
Function of β pancreatic cells and developing motor neurons. | NKX6.1-GFP | CRISPR/Cas9 | [178] |
Purification of smooth muscle cells for the study of muscle physiology and mechanics. | ACTA2-GFP | CRISPR/Cas9 | [179] |
Cartilage tissue engineering for regenerative therapies for joint injuries and diseases. | COL2A1-GFP | CRISPR/Cas9 | [180,181] |
Function of α pancreatic cells. | ARX-CFP | CRISPR/Cas9 | [182] |
Development of myogenic precursors of satellite cells. | PAX-7-Venus | CRISPR/Cas9 | [183] |
Modelling human chondrodysplasias caused by mutations in TRPV4. | SOX9-tdTomato | CRISPR/Cas9 | [96] |
Study of liver fibrosis progression using hepatic stellate cells derived from hiPSCs. | ACTA2-RFP | CRISPR/Cas9 | [184] |
Track the cardiac differentiation process. | NKX2-5-GFP | TALENs | [185] |
Modelling myriad disorders in patients with Down syndrome. | AAVS1-GFP | ZFNs | [186] |
Purification of serotonin-productive neurons for the study of neuropsychiatric diseases. | TPH2-GFP | CRISPR/Cas9 | [187] |
Study and therapeutic application for skeletal muscle function. | ACTA1-tdTomato | CRISPR/Cas9 | [188] |
Target insulin influence on the differentiation process of endocrine pancreatic cells. | INS-Cherry | CRISPR/Cas9 | [189] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cotta, G.C.; Teixeira dos Santos, R.C.; Costa, G.M.J.; Lacerda, S.M.d.S.N. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. Int. J. Mol. Sci. 2024, 25, 11009. https://doi.org/10.3390/ijms252011009
Cotta GC, Teixeira dos Santos RC, Costa GMJ, Lacerda SMdSN. Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. International Journal of Molecular Sciences. 2024; 25(20):11009. https://doi.org/10.3390/ijms252011009
Chicago/Turabian StyleCotta, Gustavo Caldeira, Rachel Castro Teixeira dos Santos, Guilherme Mattos Jardim Costa, and Samyra Maria dos Santos Nassif Lacerda. 2024. "Reporter Alleles in hiPSCs: Visual Cues on Development and Disease" International Journal of Molecular Sciences 25, no. 20: 11009. https://doi.org/10.3390/ijms252011009
APA StyleCotta, G. C., Teixeira dos Santos, R. C., Costa, G. M. J., & Lacerda, S. M. d. S. N. (2024). Reporter Alleles in hiPSCs: Visual Cues on Development and Disease. International Journal of Molecular Sciences, 25(20), 11009. https://doi.org/10.3390/ijms252011009