Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies
Abstract
:1. Introduction
2. Materials and Methods
3. Overview of the Different Targeted Therapies
4. Receptor Tyrosine Kinases
4.1. Imatinib
4.1.1. Preclinical Mechanistic Studies on Imatinib Therapy in MCC
4.1.2. Clinical Trials and Case Studies Reporting the Efficacy of Imatinib Therapy in MCC
4.2. Pazopanib
4.3. Cabozantinib
5. Somatostatin Analogs
6. Antiviral Agents
7. PI3K/mTOR/AKT Pathway Agents
7.1. Preclinical Studies Focusing on the PI3K/mTOR/AKT Pathway
7.2. Clinical Studies Focusing on the PI3K/mTOR/AKT Pathway
8. Epigenetic Modification
9. Proapoptotic Agents
9.1. Bcl-2 Inhibitors
9.2. Survivin
9.3. Rescuing p53 Function
10. Antibody–Drug Conjugates
11. Other Small-Molecule Inhibitors and Potential Drug Targets
12. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, M.P.; Hardee, M.E.; Cornelius, L.A.; Hutchins, L.F.; Becker, J.C.; Gao, L. Merkel Cell Carcinoma: Epidemiology, Target, and Therapy. Curr. Derm. Rep. 2014, 3, 46–53. Available online: http://link.springer.com/10.1007/s13671-014-0068-z (accessed on 27 February 2024). [CrossRef] [PubMed]
- Paulson, K.G.; Park, S.Y.; Vandeven, N.A.; Lachance, K.; Thomas, H.; Chapuis, A.G.; Harms, K.L.; Thompson, J.A.; Bhatia, S.; Stang, A.; et al. Merkel cell carcinoma: Current US incidence and projected increases based on changing demographics. J. Am. Acad. Dermatol. 2018, 78, 457–463.e2. [Google Scholar] [CrossRef] [PubMed]
- Mistry, K.; Levell, N.J.; Craig, P.; Steven, N.M.; Venables, Z.C. Merkel cell carcinoma. Ski. Health Dis. 2021, 1, e55. Available online: https://onlinelibrary.wiley.com/doi/10.1002/ski2.55 (accessed on 26 February 2024). [CrossRef]
- Weilandt, J.; Peitsch, W.K. Modern diagnostics and treatment of Merkel cell carcinoma. J. Dtsch. Derma. Gesell. 2023, 21, 1524–1546. Available online: https://onlinelibrary.wiley.com/doi/10.1111/ddg.15214 (accessed on 26 February 2024). [CrossRef]
- Celikdemir, B.; Houben, R.; Kervarrec, T.; Samimi, M.; Schrama, D. Current and preclinical treatment options for Merkel cell carcinoma. Expert Opin. Biol. Ther. 2023, 23, 1015–1034. Available online: https://www.tandfonline.com/doi/full/10.1080/14712598.2023.2257603 (accessed on 26 February 2024). [CrossRef]
- Colunga, A.; Pulliam, T.; Nghiem, P. Merkel Cell Carcinoma in the Age of Immunotherapy: Facts and Hopes. Clin. Cancer Res. 2018, 24, 2035–2043. [Google Scholar] [CrossRef] [PubMed]
- Zaggana, E.; Konstantinou, M.P.; Krasagakis, G.H.; De Bree, E.; Kalpakis, K.; Mavroudis, D.; Krasagakis, K. Merkel Cell Carcinoma—Update on Diagnosis, Management and Future Perspectives. Cancers 2022, 15, 103. Available online: https://www.mdpi.com/2072-6694/15/1/103 (accessed on 26 February 2024). [CrossRef]
- Goodman, R.; Johnson, D.B. Antibody-Drug Conjugates for Melanoma and Other Skin Malignancies. Curr. Treat. Options Oncol. 2022, 23, 1428–1442. Available online: https://link.springer.com/10.1007/s11864-022-01018-3 (accessed on 26 February 2024). [CrossRef]
- Brazel, D.; Kumar, P.; Doan, H.; Pan, T.; Shen, W.; Gao, L.; Moyers, J.T. Genomic Alterations and Tumor Mutation Burden in Merkel Cell Carcinoma. JAMA Netw. Open 2023, 6, e2249674. Available online: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2800081 (accessed on 26 February 2024). [CrossRef]
- Liu, W.; Krump, N.A.; Herlyn, M.; You, J. Combining DNA Damage Induction with BCL-2 Inhibition to Enhance Merkel Cell Carcinoma Cytotoxicity. Biology 2020, 9, 35. [Google Scholar] [CrossRef]
- Cohen, L.; Tsai, K.Y. Molecular and immune targets for Merkel cell carcinoma therapy and prevention. Mol. Carcinog. 2019, 58, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Sundqvist, B.; Kilpinen, S.; Böhling, T.; Koljonen, V.; Sihto, H. Activation of Oncogenic and Immune-Response Pathways Is Linked to Disease-Specific Survival in Merkel Cell Carcinoma. Cancers 2022, 14, 3591. Available online: https://www.mdpi.com/2072-6694/14/15/3591 (accessed on 3 March 2024). [CrossRef] [PubMed]
- Iwasaki, T.; Matsushita, M.; Nonaka, D.; Kuwamoto, S.; Kato, M.; Murakami, I.; Nagata, K.; Nakajima, H.; Sano, S.; Hayashi, K. Comparison of Akt/mTOR/4E-BP1 pathway signal activation and mutations of PIK3CA in Merkel cell polyomavirus–positive and Merkel cell polyomavirus–negative carcinomas. Hum. Pathol. 2015, 46, 210–216. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0046817714004304 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Samlowski, W.E.; Moon, J.; Tuthill, R.J.; Heinrich, M.C.; Balzer-Haas, N.S.; Merl, S.A.; DeConti, R.C.; Thompson, J.A.; Witter, M.T.; Flaherty, L.E.; et al. A Phase II Trial of Imatinib Mesylate in Merkel Cell Carcinoma (Neuroendocrine Carcinoma of the Skin): A Southwest Oncology Group Study (S0331). Am. J. Clin. Oncol. 2010, 33, 495–499. Available online: https://journals.lww.com/00000421-201010000-00013 (accessed on 27 February 2024). [CrossRef]
- Tothill, R.; Estall, V.; Rischin, D. Merkel Cell Carcinoma: Emerging Biology, Current Approaches, and Future Directions. Am. Soc. Clin. Oncol. Educ. Book 2015, 35, e519–e526. Available online: https://ascopubs.org/doi/10.14694/EdBook_AM.2015.35.e519 (accessed on 27 February 2024). [CrossRef]
- Zago, E.; Galluzzo, A.; Pradella, S.; Antonuzzo, L.; Maggi, M.; Petrone, L.; Sparano, C. Cabozantinib for different endocrine tumours: Killing two birds with one stone. A systematic review of the literature. Endocrine 2023, 83, 26–40. Available online: https://link.springer.com/10.1007/s12020-023-03526-0 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Feng, Y.; Song, X.; Jia, R. Case Report: Favorable Response to the Tyrosine Kinase Inhibitor Apatinib in Recurrent Merkel Cell Carcinoma. Front. Oncol. 2021, 11, 625360. [Google Scholar] [CrossRef]
- Della Vittoria Scarpati, G.; Perri, F.; Pisconti, S.; Costa, G.; Ricciardiello, F.; Del Prete, S.; Napolitano, A.; Carraturo, M.; Mazzone, S.; Addeo, R. Concomitant cetuximab and radiation therapy: A possible promising strategy for locally advanced inoperable non-melanoma skin carcinomas. Mol. Clin. Oncol. 2016, 4, 467–471. [Google Scholar] [CrossRef]
- Grimberg, A. Somatostatin and Cancer. Cancer Biol. Ther. 2004, 3, 731–733. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4164217/ (accessed on 18 February 2024). [CrossRef]
- Shah, M.H.; Lorigan, P.; O’Brien, M.E.R.; Fossella, F.V.; Moore, K.N.; Bhatia, S.; Kirby, M.; Woll, P.J. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Investig. New Drugs 2016, 34, 290–299. [Google Scholar] [CrossRef]
- Esnault, C.; Schrama, D.; Houben, R.; Guyétant, S.; Desgranges, A.; Martin, C.; Berthon, P.; Viaud-Massuard, M.; Touzé, A.; Kervarrec, T.; et al. Antibody–Drug Conjugates as an Emerging Therapy in Oncodermatology. Cancers 2022, 14, 778. Available online: https://www.mdpi.com/2072-6694/14/3/778 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Esnault, C.; Leblond, V.; Martin, C.; Desgranges, A.; Baltus, C.B.; Aubrey, N.; Lakhrif, Z.; Lajoie, L.; Lantier, L.; Clémenceau, B.; et al. Adcitmer®, a new CD56-targeting monomethyl auristatin E-conjugated antibody, is a potential therapeutic approach in Merkel cell carcinoma. Br. J. Dermatol. 2022, 186, 295–306. [Google Scholar] [CrossRef]
- Song, L.; Bretz, A.C.; Gravemeyer, J.; Spassova, I.; Muminova, S.; Gambichler, T.; Sriram, A.; Ferrone, S.; Becker, J.C. The HDAC Inhibitor Domatinostat Promotes Cell-Cycle Arrest, Induces Apoptosis, and Increases Immunogenicity of Merkel Cell Carcinoma Cells. J. Investig. Dermatol. 2021, 141, 903–912.e4. [Google Scholar] [CrossRef]
- Mauri, F.; Blanpain, C. Targeting the epigenetic addiction of Merkel cell carcinoma. EMBO Mol. Med. 2020, 12, e13347. [Google Scholar] [CrossRef] [PubMed]
- Ugurel, S.; Spassova, I.; Wohlfarth, J.; Drusio, C.; Cherouny, A.; Melior, A.; Sucker, A.; Zimmer, L.; Ritter, C.; Schadendorf, D.; et al. MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: A case series. Cancer Immunol. Immunother. 2019, 68, 983–990. [Google Scholar] [CrossRef]
- Gartin, A.K.; Frost, T.C.; Cushman, C.H.; Leeper, B.A.; Gokhale, P.C.; DeCaprio, J.A. Merkel Cell Carcinoma Sensitivity to EZH2 Inhibition Is Mediated by SIX1 Derepression. J. Investig. Dermatol. 2022, 142, 2783–2792.e15. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022202X22002068 (accessed on 26 February 2024). [CrossRef]
- Park, D.E.; Cheng, J.; Berrios, C.; Montero, J.; Cortés-Cros, M.; Ferretti, S.; Arora, R.; Tillgren, M.L.; Gokhale, P.C.; DeCaprio, J.A. Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response. Proc. Natl. Acad. Sci. USA 2019, 116, 1027–1032. [Google Scholar] [CrossRef]
- Sperling, A.S.; Guerra, V.A.; Kennedy, J.A.; Yan, Y.; Hsu, J.I.; Wang, F.; Nguyen, A.T.; Miller, P.G.; McConkey, M.E.; Quevedo Barrios, V.A.; et al. Lenalidomide promotes the development of TP53-mutated therapy-related myeloid neoplasms. Blood 2022, 140, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Shiver, M.H.; Varker, K.A.; Collamore, M.; Zwiebel, J.A.; Coit, D.; Kelsen, D.; Chung, K.Y. G3139 (Genasense) in patients with advanced merkel cell carcinoma. Am. J. Clin. Oncol. 2009, 32, 174–179. [Google Scholar] [CrossRef]
- Dresang, L.R.; Guastafierro, A.; Arora, R.; Normolle, D.; Chang, Y.; Moore, P.S. Response of Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Xenografts to a Survivin Inhibitor. PLoS ONE 2013, 8, e80543. [Google Scholar] [CrossRef]
- Choi, J.E.; Verhaegen, M.E.; Yazdani, S.; Malik, R.; Harms, P.W.; Mangelberger, D.; Tien, J.; Cao, X.; Wang, Y.; Cieślik, M.; et al. Characterizing the Therapeutic Potential of a Potent BET Degrader in Merkel Cell Carcinoma. Neoplasia 2019, 21, 322–330. [Google Scholar] [CrossRef]
- Shao, Q.; Kannan, A.; Lin, Z.; Stack, B.C.; Suen, J.Y.; Gao, L. BET Protein Inhibitor JQ1 Attenuates Myc-Amplified MCC Tumor Growth In Vivo. Cancer Res. 2014, 74, 7090–7102. Available online: https://aacrjournals.org/cancerres/article/74/23/7090/599362/BET-Protein-Inhibitor-JQ1-Attenuates-Myc-Amplified (accessed on 27 February 2024). [CrossRef] [PubMed]
- Fang, B.; Kannan, A.; Zhao, S.; Nguyen, Q.H.; Ejadi, S.; Yamamoto, M.; Camilo Barreto, J.; Zhao, H.; Gao, L. Inhibition of PI3K by copanlisib exerts potent antitumor effects on Merkel cell carcinoma cell lines and mouse xenografts. Sci. Rep. 2020, 10, 8867. [Google Scholar] [CrossRef] [PubMed]
- Chteinberg, E.; Rennspiess, D.; Sambo, R.; Tauchmann, S.; Kelleners-Smeets, N.W.J.; Winnepenninckx, V.; Speel, E.; Kurz, A.K.; Zenke, M.; Zur Hausen, A. Phosphatidylinositol 3-kinase p110δ expression in Merkel cell carcinoma. Oncotarget 2018, 9, 29565–29573. [Google Scholar] [CrossRef] [PubMed]
- Kannan, A.; Lin, Z.; Shao, Q.; Zhao, S.; Fang, B.; Moreno, M.A.; Vural, E.; Stack, B.C.; Suen, J.Y.; Kannan, K.; et al. Dual mTOR inhibitor MLN0128 suppresses Merkel cell carcinoma (MCC) xenograft tumor growth. Oncotarget 2016, 7, 6576–6592. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Cardnell, R.; Su, S.; Diao, L.; Eterovic, A.K.; Prieto, V.; Morrisson, W.H.; Wang, J.; Kies, M.S.; Glisson, B.S.; et al. PARP1 as a potential therapeutic target in Merkel cell carcinoma. Head Neck 2018, 40, 1676–1684. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6105373/ (accessed on 13 August 2024). [CrossRef]
- Kleffel, S.; Lee, N.; Lezcano, C.; Wilson, B.J.; Sobolewski, K.; Saab, K.R.; Mueller, H.; Zhan, Q.; Posch, C.; Elco, C.P.; et al. ABCB5-Targeted Chemoresistance Reversal Inhibits Merkel Cell Carcinoma Growth. J. Investig. Dermatol. 2016, 136, 838–846. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.D.; Paulson, K.; Voillet, V.; Berndt, A.; Church, C.; Lachance, K.; Park, S.Y.; Yamamoto, N.K.; Cromwell, E.A.; et al. Enhancing immunogenic responses through CDK4/6 and HIF2α inhibition in Merkel cell carcinoma. Heliyon 2024, 10, e23521. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2405844023107298 (accessed on 26 February 2024). [CrossRef]
- Das, B.K.; Kannan, A.; Nguyen, Q.; Gogoi, J.; Zhao, H.; Gao, L. Selective Inhibition of Aurora Kinase A by AK-01/LY3295668 Attenuates MCC Tumor Growth by Inducing MCC Cell Cycle Arrest and Apoptosis. Cancers 2021, 13, 3708. Available online: https://www.mdpi.com/2072-6694/13/15/3708 (accessed on 27 February 2024). [CrossRef]
- Houben, R.; Hesbacher, S.; Sarma, B.; Schulte, C.; Sarosi, E.; Popp, S.; Adam, C.; Kervarrec, T.; Schrama, D. Inhibition of T-antigen expression promoting glycogen synthase kinase 3 impairs merkel cell carcinoma cell growth. Cancer Lett. 2022, 524, 259–267. Available online: https://linkinghub.elsevier.com/retrieve/pii/S030438352100536X (accessed on 26 February 2024). [CrossRef]
- Gupta, R.; Simonette, R.A.; Doan, H.Q.; Rady, P.L.; Tyring, S.K. Targeting the expression of T antigens with selinexor (KPT-330) shows promise for Merkel cell polyomavirus-positive Merkel cell carcinoma treatment. Br. J. Dermatol. 2021, 184, 1185–1187. [Google Scholar] [CrossRef]
- Liu, W.; Yang, R.; Payne, A.S.; Schowalter, R.M.; Spurgeon, M.E.; Lambert, P.F.; Xu, X.; Buck, C.B.; You, J. Identifying the Target Cells and Mechanisms of Merkel Cell Polyomavirus Infection. Cell Host Microbe 2016, 19, 775–787. Available online: https://www.cell.com/cell-host-microbe/abstract/S1931-3128(16)30160-3 (accessed on 8 April 2024). [CrossRef] [PubMed]
- Wang, C.; Kong, L.; Kim, S.; Lee, S.; Oh, S.; Jo, S.; Jang, I.; Kim, T. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. Int. J. Mol. Sci. 2022, 23, 10412. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, T.; Hayashi, K.; Matsushita, M.; Nonaka, D.; Kohashi, K.; Kuwamoto, S.; Umekita, Y.; Oda, Y. Merkel cell polyomavirus–negative Merkel cell carcinoma is associated with JAK-STAT and MEK-ERK pathway activation. Cancer Sci. 2022, 113, 251–260. [Google Scholar] [CrossRef]
- Kartha, R.V.; Sundram, U.N. Silent mutations in KIT and PDGFRA and coexpression of receptors with SCF and PDGFA in Merkel cell carcinoma: Implications for tyrosine kinase-based tumorigenesis. Mod. Pathol. 2008, 21, 96–104. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0893395222034652 (accessed on 27 February 2024). [CrossRef]
- Maroto, P.; Porta, C.; Capdevila, J.; Apolo, A.B.; Viteri, S.; Rodriguez-Antona, C.; Martin, L.; Castellano, D. Cabozantinib for the treatment of solid tumors: A systematic review. Ther. Adv. Med. Oncol. 2022, 14, 17588359221107112. Available online: http://journals.sagepub.com/doi/10.1177/17588359221107112 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Imatinib: A Breakthrough of Targeted Therapy in Cancer. Chemother. Res. Pract. 2014, 2014, 357027. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055302/ (accessed on 12 August 2024). [CrossRef]
- Loader, D.E.; Feldmann, R.; Baumgartner, M.; Breier, F.; Schrama, D.; Becker, J.C.; Steiner, A. Clinical remission of Merkel cell carcinoma after treatment with imatinib. J. Am. Acad. Dermatol. 2013, 69, e181–e183. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0190962213004076 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Feinmesser, M.; Halpern, M.; Kaganovsky, E.; Brenner, B.; Fenig, E.; Hodak, E.; Sulkes, J.; Okon, E. C-KIT Expression in Primary and Metastatic Merkel Cell Carcinoma. Am. J. Dermatopathol. 2004, 26, 458–462. Available online: http://journals.lww.com/00000372-200412000-00003 (accessed on 27 February 2024). [CrossRef]
- Krasagakis, K.; Fragiadaki, I.; Metaxari, M.; Krüger-Krasagakis, S.; Tzanakakis, G.N.; Stathopoulos, E.N.; Eberle, J.; Tavernarakis, N.; Tosca, A.D. KIT receptor activation by autocrine and paracrine stem cell factor stimulates growth of merkel cell carcinoma in vitro. J. Cell. Physiol. 2011, 226, 1099–1109. Available online: https://onlinelibrary.wiley.com/doi/10.1002/jcp.22431 (accessed on 27 February 2024). [CrossRef]
- Swick, B.L.; Srikantha, R.; Messingham, K.N. Specific analysis of KIT and PDGFR-alpha expression and mutational status in Merkel cell carcinoma. J. Cutan. Pathol. 2013, 40, 623–630. Available online: https://onlinelibrary.wiley.com/doi/10.1111/cup.12160 (accessed on 27 February 2024). [CrossRef]
- Desch, L.; Kunstfeld, R. Merkel Cell Carcinoma: Chemotherapy and Emerging New Therapeutic Options. J. Ski. Cancer 2013, 2013, 327150. Available online: http://www.hindawi.com/journals/jsc/2013/327150/ (accessed on 27 February 2024). [CrossRef] [PubMed]
- Swick, B.L.; Ravdel, L.; Fitzpatrick, J.E.; Robinson, W.A. Merkel cell carcinoma: Evaluation of KIT (CD117) expression and failure to demonstrate activating mutations in the C-KIT proto-oncogene—Implications for treatment with imatinib mesylate. J. Cutan. Pathol. 2007, 34, 324–329. Available online: https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0560.2006.00613.x (accessed on 27 February 2024). [CrossRef] [PubMed]
- Brunner, M.; Thurnher, D.; Pammer, J.; Geleff, S.; Heiduschka, G.; Reinisch, C.M.; Petzelbauer, P.; Erovic, B.M. Expression of VEGF-A/C, VEGF-R2, PDGF-α/Β, c-kit, EGFR, Her-2/Neu, Mcl-1 and Bmi-1 in Merkel cell carcinoma. Mod. Pathol. 2008, 21, 876–884. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0893395222022864 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Yang, Q.; Hornick, J.L.; Granter, S.R.; Wang, L.C. Merkel Cell Carcinoma: Lack of KIT Positivity and Implications for the Use of Imatinib Mesylate. Appl. Immunohistochem. Mol. Morphol. 2009, 17, 276–281. Available online: https://journals.lww.com/00129039-200907000-00002 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Peuvrel, L.; Quereux, G.; Brocard, A.; Renaut, J.J.; Dréno, B. Treatment of a multicentric Merkel cell carcinoma using imatinib. Eur. J. Dermatol. 2011, 21, 1009–1010. Available online: http://www.john-libbey-eurotext.fr/medline.md?doi=10.1684/ejd.2011.1527 (accessed on 27 February 2024). [CrossRef]
- Schutz, F.A.B.; Choueiri, T.K.; Sternberg, C.N. Pazopanib: Clinical development of a potent anti-angiogenic drug. Crit. Rev. Oncol. Hematol. 2011, 77, 163–171. Available online: https://www.sciencedirect.com/science/article/pii/S1040842810000570 (accessed on 18 September 2024). [CrossRef]
- Hamberg, P.; Verweij, J.; Sleijfer, S. (Pre-)Clinical Pharmacology and Activity of Pazopanib, a Novel Multikinase Angiogenesis Inhibitor—PMC. Oncologist 2010, 15, 539–547. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3227994/ (accessed on 18 September 2024). [CrossRef]
- Davids, M.; Charlton, A.; Ng, S.; Chong, M.; Laubscher, K.; Dar, M.; Hodge, J.; Soong, R.; Goh, B.C. Response to a Novel Multitargeted Tyrosine Kinase Inhibitor Pazopanib in Metastatic Merkel Cell Carcinoma. J. Clin. Oncol. 2009, 27, e97–e100. Available online: https://ascopubs.org/doi/10.1200/JCO.2009.21.8149 (accessed on 27 February 2024). [CrossRef]
- Tarabadkar, E.S.; Thomas, H.; Blom, A.; Parvathaneni, U.; Olencki, T.; Nghiem, P.; Bhatia, S. Clinical Benefit from Tyrosine Kinase Inhibitors in Metastatic Merkel Cell Carcinoma: A Case Series of 5 Patients. Am. J. Case Rep. 2018, 19, 505–511. [Google Scholar] [CrossRef]
- Nathan, P.D.; Gaunt, P.; Wheatley, K.; Bowden, S.J.; Savage, J.; Faust, G.; Nobes, J.; Goodman, A.; Ritchie, D.; Kumar, S.; et al. UKMCC-01: A phase II study of pazopanib (PAZ) in metastatic Merkel cell carcinoma. J. Clin. Oncol. 2016, 34, 9542. Available online: https://ascopubs.org/doi/10.1200/JCO.2016.34.15_suppl.9542 (accessed on 3 April 2024). [CrossRef]
- Knepper, T.C.; Panchaud, R.A.; Muradova, E.; Cohen, L.; DeCaprio, J.A.; Khushalani, N.I.; Tsai, K.Y.; Brohl, A.S. An analysis of the use of targeted therapies in patients with advanced Merkel cell carcinoma and an evaluation of genomic correlates of response. Cancer Med. 2021, 10, 5889–5896. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/cam4.4138 (accessed on 3 March 2024). [CrossRef] [PubMed]
- Rabinowits, G.; Lezcano, C.; Catalano, P.J.; McHugh, P.; Becker, H.; Reilly, M.M.; Huang, J.; Tyagi, A.; Thakuria, M.; Bresler, S.C.; et al. Cabozantinib in Patients with Advanced Merkel Cell Carcinoma. Oncologist 2018, 23, 814–821. Available online: https://academic.oup.com/oncolo/article/23/7/814/6439632 (accessed on 27 March 2024). [CrossRef]
- Jiang, W.; Xu, J.; Wang, R.; Wang, T.; Shu, Y.; Liu, L. Merkel cell carcinoma of the thigh: Case report and review of the literature. OncoTargets Ther. 2019, 12, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Guida, M.; D’Alò, A.; Mangia, A.; Di Pinto, F.; Sonnessa, M.; Albano, A.; Sciacovelli, A.; Asabella, A.N.; Fucci, L. Somatostatin Receptors in Merkel-Cell Carcinoma: A Therapeutic Opportunity Using Somatostatin Analog Alone or in Association With Checkpoint Inhibitors Immunotherapy. A Case Report. Front. Oncol. 2020, 10, 1073. [Google Scholar] [CrossRef]
- Meier, G.; Waldherr, C.; Herrmann, R.; Maecke, H.; Mueller-Brand, J.; Pless, M. Successful Targeted Radiotherapy with 90Y-DOTATOC in a Patient with Merkel Cell Carcinoma. Oncology 2004, 66, 160–163. Available online: https://www.karger.com/Article/FullText/77443 (accessed on 27 February 2024). [CrossRef]
- Akaike, T.; Qazi, J.; Anderson, A.; Behnia, F.S.; Shinohara, M.M.; Akaike, G.; Hippe, D.S.; Thomas, H.; Takagishi, S.R.; Lachance, K.; et al. High somatostatin receptor expression and efficacy of somatostatin analogues in patients with metastatic Merkel cell carcinoma. Br. J. Dermatol. 2021, 184, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Brummer, G.C.; Bowen, A.R.; Bowen, G.M. Merkel Cell Carcinoma: Current Issues Regarding Diagnosis, Management, and Emerging Treatment Strategies. Am. J. Clin. Dermatol. 2016, 17, 49–62. Available online: http://link.springer.com/10.1007/s40257-015-0163-3 (accessed on 27 February 2024). [CrossRef]
- Cirillo, F.; Filippini, L.; Lima, G.F.; Caresana, G.; Alquati, P. Merkel cell tumor. Report of case and treatment with octreotide. Minerva. Chir. 1997, 52, 1359–1365. [Google Scholar]
- Samimi, M.; Becker, J. There is still a place for tumour-targeted therapies in Merkel cell carcinoma in the era of immune checkpoint inhibitors. Br. J. Dermatol. 2021, 184, 195–197. [Google Scholar] [CrossRef]
- Fakiha, M.; Letertre, P.; Vuillez, J.P.; Lebeau, J. Remission of Merkel cell tumor after somatostatin analog treatment. J. Cancer Res. Ther. 2010, 6, 382–384. Available online: https://journals.lww.com/cancerjournal/fulltext/2010/06030/remission_of_merkel_cell_tumor_after_somatostatin.40.aspx (accessed on 27 March 2024). [CrossRef]
- Buder, K.; Lapa, C.; Kreissl, M.C.; Schirbel, A.; Herrmann, K.; Schnack, A.; Bröcker, E.; Goebeler, M.; Buck, A.K.; Becker, J.C. Somatostatin receptor expression in Merkel cell carcinoma as target for molecular imaging. BMC Cancer 2014, 14, 268. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Maecke, H.; Börner, R.; Weckesser, E.; Schöffski, P.; Oei, L.; Schumacher, J.; Henze, M.; Heppeler, A.; Meyer, J.; et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: Preliminary data. Eur. J. Nucl. Med. 2001, 28, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Askari, E.; Moghadam, S.Z.; Wild, D.; Delpassand, E.; Baldari, S.; Nilica, B.; Hartrampf, P.E.; Kong, G.; Grana, C.M.; Walter, M.A.; et al. Peptide Receptor Radionuclide Therapy in Merkel Cell Carcinoma: A Comprehensive Review. J. Nucl. Med. Technol. 2023, 51, 22–25. Available online: https://tech.snmjournals.org/content/51/1/22 (accessed on 3 March 2024). [CrossRef] [PubMed]
- Cassler, N.M.; Merrill, D.; Bichakjian, C.K.; Brownell, I. Merkel Cell Carcinoma Therapeutic Update. Curr. Treat Options Oncol. 2016, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; You, J. Merkel Cell Polyomavirus and Human Merkel Cell Carcinoma. Recent Results Cancer Res. 2021, 217, 303–323. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.F.; Liu, W.; You, J. Characterization of molecular mechanisms driving Merkel cell polyomavirus oncogene transcription and tumorigenic potential. PLoS Pathog. 2023, 19, e1011598. [Google Scholar] [CrossRef] [PubMed]
- Nardi, V.; Song, Y.; Santamaria-Barria, J.A.; Cosper, A.K.; Lam, Q.; Faber, A.C.; Boland, G.M.; Yeap, B.Y.; Bergethon, K.; Scialabba, V.L.; et al. Activation of PI3K Signaling in Merkel Cell Carcinoma. Clin. Cancer Res. 2012, 18, 1227–1236. Available online: https://aacrjournals.org/clincancerres/article/18/5/1227/77713/Activation-of-PI3K-Signaling-in-Merkel-Cell (accessed on 27 February 2024). [CrossRef]
- Turshudzhyan, A.; Hadfield, M.; Grant-Kels, J. Updates on the diagnosis, current and future therapeutic options in Merkel-cell carcinoma. Melanoma Res. 2021, 31, 421–425. Available online: https://journals.lww.com/10.1097/CMR.0000000000000766 (accessed on 27 February 2024). [CrossRef]
- Lin, Z.; McDermott, A.; Shao, L.; Kannan, A.; Morgan, M.; Stack, B.C.; Moreno, M.; Davis, D.A.; Cornelius, L.A.; Gao, L. Chronic mTOR activation promotes cell survival in Merkel cell carcinoma. Cancer Lett. 2014, 344, 272–281. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0304383513008070 (accessed on 27 February 2024). [CrossRef]
- Wu, J.H.; Limmer, A.L.; Narayanan, D.; Doan, H.Q.; Simonette, R.A.; Rady, P.L.; Tyring, S.K. The novel AKT inhibitor afuresertib suppresses human Merkel cell carcinoma MKL-1 cell growth. Clin. Exp. Dermatol. 2021, 46, 1551–1554. [Google Scholar] [CrossRef]
- Koubek, E.J.; Weissenrieder, J.S.; Ortiz, L.E.; Nwogu, N.; Pham, A.M.; Weissenkampen, J.D.; Reed, J.L.; Neighbors, J.D.; Hohl, R.J.; Kwun, H.J. Therapeutic Potential of 5′-Methylschweinfurthin G in Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma. Viruses 2022, 14, 1848. Available online: https://www.mdpi.com/1999-4915/14/9/1848 (accessed on 3 March 2024). [CrossRef] [PubMed]
- Temblador, A.; Topalis, D.; Andrei, G.; Snoeck, R. Synergistic targeting of the PI3K/mTOR and MAPK/ERK pathways in Merkel cell carcinoma. Tumour Virus Res. 2022, 14, 200244. Available online: https://linkinghub.elsevier.com/retrieve/pii/S2666679022000106 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Femia, D.; Prinzi, N.; Anichini, A.; Mortarini, R.; Nichetti, F.; Corti, F.; Torchio, M.; Peverelli, G.; Pagani, F.; Maurichi, A.; et al. Treatment of Advanced Merkel Cell Carcinoma: Current Therapeutic Options and Novel Immunotherapy Approaches. Targ. Oncol. 2018, 13, 567–582. Available online: http://link.springer.com/10.1007/s11523-018-0585-y (accessed on 27 March 2024). [CrossRef]
- Shiver, M.B.; Mahmoud, F.; Gao, L. Response to Idelalisib in a Patient with Stage IV Merkel-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1580–1582. Available online: http://www.nejm.org/doi/10.1056/NEJMc1507446 (accessed on 27 February 2024). [CrossRef]
- Tello, T.L.; Coggshall, K.; Yom, S.S.; Yu, S.S. Merkel cell carcinoma: An update and review: Current and future therapy. J. Am. Acad. Dermatol. 2018, 78, 445–454. [Google Scholar] [CrossRef]
- Mazziotta, C.; Lanzillotti, C.; Gafà, R.; Touzé, A.; Durand, M.; Martini, F.; Rotondo, J.C. The Role of Histone Post-Translational Modifications in Merkel Cell Carcinoma. Front. Oncol. 2022, 12, 832047. Available online: https://www.frontiersin.org/articles/10.3389/fonc.2022.832047/full (accessed on 26 February 2024). [CrossRef]
- Leiendecker, L.; Jung, P.S.; Krecioch, I.; Neumann, T.; Schleiffer, A.; Mechtler, K.; Wiesner, T.; Obenauf, A.C. LSD1 inhibition induces differentiation and cell death in Merkel cell carcinoma. EMBO Mol. Med. 2020, 12, e12525. [Google Scholar] [CrossRef] [PubMed]
- Park, D.E.; Cheng, J.; McGrath, J.P.; Lim, M.Y.; Cushman, C.; Swanson, S.K.; Tillgren, M.L.; Paulo, J.A.; Gokhale, P.C.; Florens, L.; et al. Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nat. Cell Biol. 2020, 22, 603–615. Available online: https://www.nature.com/articles/s41556-020-0503-2 (accessed on 27 February 2024). [CrossRef]
- Ritter, C.; Fan, K.; Paulson, K.G.; Nghiem, P.; Schrama, D.; Becker, J.C. Reversal of epigenetic silencing of MHC class I chain-related protein A and B improves immune recognition of Merkel cell carcinoma. Sci. Rep. 2016, 6, 21678. [Google Scholar] [CrossRef]
- Acikalin, A.; Bagir, E.; Paydas, S. Prognostic and predictive value of EZH2 expression and the tumor immune microenvironment in Merkel cell carcinoma. Pol. J. Pathol. 2021, 72, 140–147. [Google Scholar] [CrossRef]
- Durand, M.; Drouin, A.; Mouchard, A.; Durand, L.; Esnault, C.; Berthon, P.; Tallet, A.; Corre, Y.L.; Hainaut-Wierzbicka, E.; Blom, A.; et al. Distinct Regulation of EZH2 and its Repressive H3K27me3 Mark in Polyomavirus-Positive and -Negative Merkel Cell Carcinoma. J. Investig. Dermatol. 2023, 143, 1937–1946.e7. Available online: https://www.jidonline.org/article/S0022-202X(23)01973-5/abstract (accessed on 2 March 2024). [CrossRef] [PubMed]
- Verhaegen, M.E.; Mangelberger, D.; Weick, J.W.; Vozheiko, T.D.; Harms, P.W.; Nash, K.T.; Quintana, E.; Baciu, P.; Johnson, T.M.; Bichakjian, C.K.; et al. Merkel Cell Carcinoma Dependence on Bcl-2 Family Members for Survival. J. Investig. Dermatol. 2014, 134, 2241–2250. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022202X1536927X (accessed on 27 February 2024). [CrossRef] [PubMed]
- Laikova, K.V.; Oberemok, V.V.; Krasnodubets, A.M.; Gal’chinsky, N.V.; Useinov, R.Z.; Novikov, I.A.; Temirova, Z.Z.; Gorlov, M.V.; Shved, N.A.; Kumeiko, V.V.; et al. Advances in the Understanding of Skin Cancer: Ultraviolet Radiation, Mutations, and Antisense Oligonucleotides as Anticancer Drugs. Molecules 2019, 24, 1516. [Google Scholar] [CrossRef] [PubMed]
- Fan, K.; Srinivas, N.; Kubat, L.; Gravemeyer, J.; Sucker, A.; Schadendorf, D.; Gambichler, T.; Becker, J.C. B-cell lymphoma-extra large is a promising drug target in Merkel cell carcinoma. Br. J. Dermatol. 2023, 189, 103–113. [Google Scholar] [CrossRef]
- Aldabagh, B.; Joo, J.; Yu, S. Merkel cell carcinoma: Current status of targeted and future potential for immunotherapies. Sem. Cutan. Med. Surg. 2014, 33, 76–82. [Google Scholar] [CrossRef]
- Arora, R.; Shuda, M.; Guastafierro, A.; Feng, H.; Toptan, T.; Tolstov, Y.; Normolle, D.; Vollmer, L.L.; Vogt, A.; Dömling, A.; et al. Survivin Is a Therapeutic Target in Merkel Cell Carcinoma. Sci. Transl. Med. 2012, 4, 133ra56. Available online: https://www.science.org/doi/10.1126/scitranslmed.3003713 (accessed on 27 February 2024). [CrossRef]
- Donepudi, S.; DeConti, R.C.; Samlowski, W.E. Recent Advances in the Understanding of the Genetics, Etiology, and Treatment of Merkel Cell Carcinoma. Semin. Oncol. 2012, 39, 163–172. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0093775412000048 (accessed on 27 February 2024). [CrossRef]
- Houben, R.; Dreher, C.; Angermeyer, S.; Borst, A.; Utikal, J.; Haferkamp, S.; Peitsch, W.K.; Schrama, D.; Hesbacher, S. Mechanisms of p53 Restriction in Merkel Cell Carcinoma Cells Are Independent of the Merkel Cell Polyoma Virus T Antigens. J. Investig. Dermatol. 2013, 133, 2453–2460. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15359935 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Arya, A.K.; El-Fert, A.; Devling, T.; Eccles, R.M.; Aslam, M.A.; Rubbi, C.P.; Vlatković, N.; Fenwick, J.; Lloyd, B.H.; Sibson, D.R.; et al. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br. J. Cancer 2010, 103, 186–195. Available online: https://www.nature.com/articles/6605739 (accessed on 18 February 2024). [CrossRef]
- Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Sig. Transduct. Target. Ther. 2022, 7, 93. Available online: https://www.nature.com/articles/s41392-022-00947-7 (accessed on 15 April 2024). [CrossRef]
- Metrangolo, V.; Engelholm, L.H. Antibody–Drug Conjugates: The Dynamic Evolution from Conventional to Next-Generation Constructs. Cancers 2024, 16, 447. Available online: https://www.mdpi.com/2072-6694/16/2/447 (accessed on 15 April 2024). [CrossRef] [PubMed]
- Czapiewski, P.; Biernat, W. Merkel cell carcinoma—Recent advances in the biology, diagnostics and treatment. Int. J. Biochem. Cell Biol. 2014, 53, 536–546. Available online: https://linkinghub.elsevier.com/retrieve/pii/S1357272514001381 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Rabinowits, G. Systemic Therapy for Merkel Cell Carcinoma: What’s on the Horizon? Cancers 2014, 6, 1180–1194. Available online: https://www.mdpi.com/2072-6694/6/2/1180 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Miller, N.J.; Bhatia, S.; Parvathaneni, U.; Iyer, J.G.; Nghiem, P. Emerging and Mechanism-Based Therapies for Recurrent or Metastatic Merkel Cell Carcinoma. Curr. Treat. Options in Oncol. 2013, 14, 249–263. Available online: http://link.springer.com/10.1007/s11864-013-0225-9 (accessed on 27 February 2024). [CrossRef] [PubMed]
- Gaubert, A.; Kervarrec, T.; Montaudié, H.; Burel-Vandenbos, F.; Cardot-Leccia, N.; Di Mauro, I.; Fabas, T.; Tallet, A.; Kubiniek, V.; Pedeutour, F.; et al. BRCA1/2 Pathogenic Variants Are Not Common in Merkel Cell Carcinoma: Comprehensive Molecular Study of 30 Cases and Meta-Analysis of the Literature. J. Investig. Dermatol. 2023, 143, 1178–1186. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0022202X23000684 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Jaatinen, J.; Veija, T.; Salmikangas, M.; Böhling, T.; Sihto, H.; Koljonen, V. ALK is frequently phosphorylated in Merkel cell carcinoma and associates with longer survival. PLoS ONE 2021, 16, e0252099. [Google Scholar] [CrossRef]
- Cao, S.; Nambudiri, V.E. Anaplastic Lymphoma Kinase in Cutaneous Malignancies. Cancers 2017, 9, 123. [Google Scholar] [CrossRef]
- Kadletz, L.; Bigenzahn, J.; Thurnher, D.; Stanisz, I.; Erovic, B.M.; Schneider, S.; Schmid, R.; Seemann, R.; Birner, P.; Heiduschka, G. Evaluation of Polo-like kinase 1 as a potential therapeutic target in Merkel cell carcinoma. Head Neck 2016, 38, E1918–E1925. Available online: https://onlinelibrary.wiley.com/doi/10.1002/hed.24349 (accessed on 27 February 2024). [CrossRef]
- Arora, R.; Vats, A.; Chimankar, V. MCV Truncated Large T antigen interacts with BRD4 in tumors. Matters 2019, 2019. [Google Scholar] [CrossRef]
- Nwogu, N.; Boyne, J.R.; Dobson, S.J.; Poterlowicz, K.; Blair, G.E.; Macdonald, A.; Mankouri, J.; Whitehouse, A. Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathog. 2018, 14, e1007276. [Google Scholar] [CrossRef]
- Pryor, J.G.; Simon, R.A.; Bourne, P.A.; Spaulding, B.O.; Scott, G.A.; Xu, H. Merkel cell carcinoma expresses K homology domain–containing protein overexpressed in cancer similar to other high-grade neuroendocrine carcinomas. Hum. Pathol. 2009, 40, 238–243. Available online: https://linkinghub.elsevier.com/retrieve/pii/S004681770800333X (accessed on 27 February 2024). [CrossRef] [PubMed]
- Lien, M.H.; Baldwin, B.T.; Thareja, S.K.; Fenske, N.A. Merkel cell carcinoma: Clinical characteristics, markers, staging and treatment. J. Drugs Dermatol. 2010, 9, 779–784. [Google Scholar] [PubMed]
- Rasheed, K.; Abdulsalam, I.; Fismen, S.; Grimstad, Ø.; Sveinbjørnsson, B.; Moens, U. CCL17/TARC and CCR4 expression in Merkel cell carcinoma. Oncotarget 2018, 9, 31432–31447. [Google Scholar] [CrossRef] [PubMed]
- Wehkamp, U.; Stern, S.; Krüger, S.; Hauschild, A.; Röcken, C.; Egberts, F. Tropomyosin Receptor Kinase A Expression on Merkel Cell Carcinoma Cells. JAMA Dermatol. 2017, 153, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.; Simonette, R.A.; Nguyen, H.P.; Rady, P.L.; Tyring, S.K. Merkel cell polyomavirus in Merkel cell carcinogenesis: Small T antigen-mediates c-Jun phosphorylation. Virus Genes 2016, 52, 397–399. [Google Scholar] [CrossRef]
- Ahasanul Hoque, K.M.; Azim, M.F.; Mia, M.R.; Kayesh, R.; Ali, M.H.; Islam, M.J.; Shakil, S.K.; Shuvra, T.M. Design of potential siRNA molecules for T antigen gene silencing of Merkel Cell Polyomavirus. Bioinformation 2012, 8, 924–930. Available online: http://www.bioinformation.net/008/97320630008924.htm (accessed on 27 February 2024). [CrossRef]
- Iwasaki, T.; Matsushita, M.; Nonaka, D.; Nagata, K.; Kato, M.; Kuwamoto, S.; Murakami, I.; Hayashi, K. Lower expression of CADM1 and higher expression of MAL in Merkel cell carcinomas are associated with Merkel cell polyomavirus infection and better prognosis. Hum. Pathol. 2016, 48, 1–8. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0046817715003925 (accessed on 27 February 2024). [CrossRef]
- Miles, B.; Saini, A. Merkel cell carcinoma of the head and neck: Pathogenesis, current and emerging treatment options. OTT 2015, 2015, 2157–2167. [Google Scholar] [CrossRef]
- Erstad, D.; Cusack, J. Mutational Analysis of Merkel Cell Carcinoma. Cancers 2014, 6, 2116–2136. Available online: https://www.mdpi.com/2072-6694/6/4/2116 (accessed on 27 February 2024). [CrossRef]
- Knight, L.M.; Stakaityte, G.; Wood, J.J.; Abdul-Sada, H.; Griffiths, D.A.; Howell, G.J.; Wheat, R.; Blair, G.E.; Steven, N.M.; Macdonald, A.; et al. Merkel Cell Polyomavirus Small T Antigen Mediates Microtubule Destabilization To Promote Cell Motility and Migration. J. Virol. 2015, 89, 35–47. Available online: https://journals.asm.org/doi/10.1128/JVI.02317-14 (accessed on 27 February 2024). [CrossRef]
- Karpinski, P.; Rosales, I.; Laczmanski, L.; Kowalik, A.; Wenson, S.; Hoang, M.P. Expression of Genes Associated With Epithelial-Mesenchymal Transition in Merkel Cell Polyomavirus–Negative Merkel Cell Carcinoma. Lab. Investig. 2023, 103, 100177. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0023683723001204 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Laurito, T.L.; França, F.T.; Vieira-Damiani, G.; Pelegati, V.B.; Baratti, M.O.; De Carvalho, H.F.; Cesar, C.L.; De Moraes, A.M.; Cintra, M.L.; Teixeira, F. The texture of collagen in the microenvironments of Merkel cell carcinoma. Medicine 2021, 100, e27925. Available online: https://journals.lww.com/10.1097/MD.0000000000027925 (accessed on 26 February 2024). [CrossRef]
- Muralidharan, S.; Kervarrec, T.; Weiss, G.J.; Samimi, M. Glypican-3 (GPC3) is associated with MCPyV-negative status and impaired outcome in Merkel cell carcinoma. Oncotarget 2022, 13, 960–967. Available online: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.28260 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Drexler, K.; Schwertner, B.; Haerteis, S.; Aung, T.; Berneburg, M.; Geissler, E.K.; Mycielska, M.E.; Haferkamp, S. The Role of Citrate Homeostasis in Merkel Cell Carcinoma Pathogenesis. Cancers 2022, 14, 3425. Available online: https://www.mdpi.com/2072-6694/14/14/3425 (accessed on 26 February 2024). [CrossRef] [PubMed]
- Morimoto, Y.; Fushimi, A.; Yamashita, N.; Hagiwara, M.; Bhattacharya, A.; Cheng, J.; Frost, T.C.; Ahmad, R.; Daimon, T.; Huang, L.; et al. Addiction of Merkel cell carcinoma to MUC1-C identifies a potential new target for treatment. Oncogene 2022, 41, 3511–3523. Available online: https://www.nature.com/articles/s41388-022-02361-3 (accessed on 26 February 2024). [CrossRef]
- Abdul-Sada, H.; Müller, M.; Mehta, R.; Toth, R.; Arthur, J.S.C.; Whitehouse, A.; Macdonald, A. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen. Oncotarget 2017, 8, 25418–25432. [Google Scholar] [CrossRef]
- Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A.; Robert, F.; et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017, 18, 42–51. [Google Scholar] [CrossRef]
Therapy | Type | General Mechanism | Reference |
---|---|---|---|
Imatinib | Receptor TK inhibitor | A small-molecule inhibitor that binds to receptor tyrosine kinases, including those with the c-KIT receptor, CD117. | Samlowski et al. (2010) [14] |
Pazopanib | Targets multiple receptor tyrosine kinases, including c-KIT, FGFR, PDGFR, and VEGFR to prevent angiogenesis. | Tothill et al. (2015) [15] | |
Cabozantinib | Inhibits multiple receptor tyrosine kinases, (VEGFR)-2, tyrosine-protein kinase receptor UFO (AXL), mesenchymal epidermal transcription factor (MET), and rearranged during transfection (RET). | Zago et al. (2024) [16] | |
Apatinib | VEGFR-2 tyrosine kinase inhibitor that prevents angiogenesis. | Feng et al. (2021) [17] | |
Cetuximab | Monoclonal antibody that binds and inhibits EGFR, thus preventing proliferation. | Scarpati et al. (2016) [18] | |
Lenvatinib | Inhibits VEGFR, FGFR, and RET and subsequently halts angiogenesis. | Celikdemir et al. (2023) [5] | |
Axitinib | Small-molecule inhibitor of VEGFR1, 2, and 3. | Celikdemir et al. (2023) [5] | |
Lanreotide | Somatostatin analogs (SSAs) | SSAs bind to somatostatin receptors (SSTRs), a family of GPCR, and prevent the release of insulin, gut hormones, TSH, and GH in tumors that promote the synthesis and release of such hormones. | Grimberg et al. (2004) [19] |
Octreotide | |||
90Y-DOTATOC and PPRT | |||
IMGN901 | Anti-CD56 antibody | Used for treatment of CD56-positive cancers. CD56 (NCAM1) is a neural cell adhesion molecule that functions in normal development and is associated with several hematological malignancies and solid tumors. IMGN901 releases DM1 upon binding to CD56 and entering the cell. DM1 disrupts microtubule assembly and induces G2/M phase arrest. | Shah et al. (2016) [20] |
Adcitmer® | Used for the treatment of CD56-positive cancers. Adcitmer is an antibody–drug conjugate that combines a CD56-specific mAb with MMAE, an antimitotic drug, to kill cancer cells. | Esnault et al. (2022) [21,22] | |
Domatinostat | Epigenetic modifier | Domatinostat, a class I HDACi, inhibits the transcriptional silencing of certain genes, whose expression would have been otherwise silenced by a tumor cell. In this way, Domatinostat rescues tumor suppressor gene activity in tumor cells, promotes cell cycle arrest, and induces apoptosis in tumor cells through persistent G2M arrest. | Song et al. (2021) [23] |
LSD1 | LSD1 removes mono- and demethylation marks on histone H3 lysine 4 (H3K4), which are linked to active transcription. Thus, LSD1 represses gene expression. | Mauri and Blanpain (2018) [24] | |
Panobinostat | Panobinostat is an HDACi that induces strong expression of HLA molecules in the cell. | Ugurel et al. (2019) [25] | |
Tazemetostat | EZH2 is a subunit of polycomp repressive complex 2, which is involved in chromatin compaction and gene silencing via histone methyltransferase. | Gartin et al. (2022) [26] | |
Nutlin-3a | MDM2 inhibitor | Small-molecule inhibitors that bind to the p53 active site in the MDM2 protein and prevents MDM2-mediated targeting of p53 degradation. | Park et al. (2019) [27] |
Navtemadlin (KRT-232) | |||
Lenalidomide | MDM4 inhibitor | Inhibits MDM4 via degradation of Ck1 [28]. Degradation of Ck1 prevents MDM4 interaction with p53 and rescues p53 function in the cell. Lenalidomide has previously been applied in the treatment of multiple myeloma. | Park et al. (2019), Sperling et al. (2022) [27,28] |
ABT-199 | Bcl2i | A senolytic agent used in combined therapies that targets senescent cells for apoptosis through inhibition of an antiapoptotic factor, bcl2, which functions to sequester cytochrome c from the cytoplasm. | Liu et al. (2020) [10] |
G3139 | An antisense 18 mer phosphorothioate oligonucleotide that binds to bcl-2 mRNA and downregulates bcl-2, thus stimulating apoptosis. | Shah et al. (2009) [29] | |
YM155 | Survivin inhibitor | YM-155 binds to interleukin enhancer binding factor 3 (ILF3) and disrupts transcriptional complexes at the survivin promoter to suppress transcription of the protein. | Dresang et al. (2013) [30] |
BETd-246 | BET degrader | Inhibits bromodomain proteins such as Brd2, Brd3, and Brd4, which drive transcription of oncogenes and promote proliferation of malignant tumor cells. | Choi et al. (2019) [31] |
JQ1 | A BET degrader that epigenetically silences genes via competitive binding with BET proteins and the displacement of these enzymes from acetylated lysine within the chromatin. | Shao et al. (2014) [32] | |
Copanlisib | PI3Ki | Inhibits an intracellular tyrosine kinase PI3K that is responsible for promoting cell proliferation, survival gene expression, differentiation, metabolism, and more. | Fang et al. (2020) [33] |
Idelalisib | Specific inhibitor of the p110δ subunit of PI3K. | Chteinberg et al. (2018) [34] | |
BYL719 | Specific inhibitor of the p110α subunit of PI3K. | Chteinberg et al. (2018) [34] | |
MLN0128 | mTORi | mTOR functions within the PI3K pathway; the inhibition of mTOR reduces cell growth, proliferation, and survival. | Kannan et al. (2016) [35] |
Olaparib | PARP1i | PARP1 and PARP2 inhibitor that prevents overactivation of the DNA damage repair pathway by tumor cells, thus reducing tumor cell survival. | Ferrarotto et al. (2018) [36] |
3C2-1D12 | Anti-ABCB5 mAb | Directly binds ABCB5, a multidrug resistance (MDR) mediator in various solid tumors. | Kleffel et al. (2016) [37] |
Palbociclib | CDK4/6 inhibitor | CD4/6i that prevents progression through the cell cycle and increases programmed death ligand 1 (PD-L1) protein levels. | Lee et al. (2024) [38] |
AK-01/LY3295668 | Aurora Kinase Inhibitor (AURKi) | AURK inhibitors block the serine/threonine kinase activity of AURKs and subsequently prevent downstream activation of cell survival genes. | Das et al. (2021) [39] |
CHIR99021 | GSK3i | GSK3 functions in the ST-antigen regulation pathway and helps promote proliferation in MCPyV-positive MCC lines. CHIR99021 inhibits GSK3 function and subsequently causes the downregulation of ST-antigen expression. | Houben et al. (2022) [40] |
Selinexor (KPT-330) | XP01i | Inhibits a specific exportin 1 transporter that LTA and STA mRNAs require to transport to the cytoplasm for translation. | Gupta et al. (2021) [41] |
Trametinib | MEKi | Inhibitor of MEK1 and MEK2, both upregulators of growth gene expression and cellular proliferation. | Liu et al. (2016) [42] |
NT-17 | IL-7 mAb | Analog of IL-7 to increase the number of T-cells and enhance T-cell response to oncogenesis. | Wang et al. (2022) [43] |
Ruxolitinib | JAKi | JAK is a non-receptor tyrosine kinase that promotes the proliferation of malignant cells and has been found to be upregulated in MCPyV-negative MCC. The inhibition of JAKi prevents constitutive activation of the JAK-STAT pathway. | Iwasaki et al. (2022) [44] |
Targeted Therapy | Type | Summary of Outcomes | References |
---|---|---|---|
Domatinostat | Epigenetic modifier | Domatinostat has been shown to upregulate antigen presentation on MCC cells in vitro and can be used to promote immunotherapeutic response. | Song et al. (2021) [23] |
LSD1i | In vivo treatment of PeTa MCC cells with GSK-LSD1 for 6 days revealed markedly reduced tumor volume when compared with the vehicle. Annexin V and TUNEL staining revealed a ~2-fold increase in apoptosis for MCC cells treated with GSK-LSD1 as compared with the DMSO control group. | Leiendecker et al. (2020) [88] | |
Panobinostat | Panobinostat is an HDACi that led to an improved HLA class I expression and greater CD8+ T-cell infiltration in MCC tumor cells, though it did not seem to have a major clinical impact on two patients that had failed PD-1/PDL-1 blockade. | Ugurel et al. (2019) [25] | |
Nutlin-3 | MDM2 inhibitor | The combination of MDM2 and MDM4 inhibition in the application of in vitro and in vivo mouse treatments of virus-positive cell lines resulted in significantly elevated p53 levels as well as more pronounced cell death than the vehicle following 96 h of treatment with the Lenalidomide-and-Nutlin-3 combination. | Park et al. (2019) [27] |
Lenalidomide | MDM4 inhibitor | ||
ABT-199 | Bcl2i | Five out of the eight MCPyV cell lines tested showed markedly reduced viability of MCC cells when treated with the synergistic combination of glaucarubin and ABT-199. | Liu et al. (2020) [10] |
A1331852 WEHI-539 | Bcl-xLi | The inhibition of B-cell lymphoma extra-large (Bcl-xL), which is encoded by Bcl2L1, results in antitumor effects in MCC cell lines, including a synergistic effect when poly (ADP-ribose) polymerase 1 (PARP) inhibitors are added. | Fan et al. (2023) [95] |
Copanlisib | PI3Ki | Treatment with copanlisib showed a reduction in tumor size in in vivo mouse models as well as apoptosis in in vitro studies on MCC cells. In vitro treatment of MCC cells with BYL719 (alpelalisib) and idelalisib reduced cell viability after 120 h of treatment. BYL719 displayed more potent activity against MCC cells than idelalisib. | Fang et al. (2020) [33] Chteinberg et al. (2018) [34] |
BYL719 | |||
BETd-246 | BET degrader | In vitro and in vivo applications of BET degraders in the treatment of 16 MCC cell lines revealed a reduced tumor volume of cells when treated with BETd-246 for 16 days. | Choi et al. (2019) [31] |
JQ1 | Treatment of MCC cell lines with JQ1 in vivo revealed decreased c-Myc expression and increased p21, p27, and p57, suggesting its role in inducing G1 arrest in MCC cells. | Shao et al. (2014) [32] | |
YM-155 | Survivin (BIRC5i) | YM155 showed efficacy at low concentrations at inducing necroptotic cell death, but it acted more as a cytostatic agent in vivo, temporarily halting tumor growth without completely eliminating MCC tumor cells. | Donepudi et al. (2012) [98] Arora et al. (2012) [97] |
Olaparib | PARP1i | In vitro investigations of Olaparib in the treatment of MCC cell lines revealed higher sensitivity to cell death in cell lines with increased PARP1 expression. While BRCA1/2 pathogenic variants are rare in MCC, PARPi may be a useful treatment in MCC that does show BRCA1/2 mutations. | Ferrarotto et al. (2018) [36] Gaubert et al. (2023) [106] |
3C2-1D12 | Anti-ABCB5 mAb | ABCB5 blockage in vivo reversed MCC drug resistance to carboplatin and etoposide, attenuated xenograft growth, and increased caspase 3 expression in mice injected with MKL-1 tumor cells. | Kleffel et al. (2016) [37] |
Adcitmer® | Anti-CD56 mAb | Treatment of MCC xenograft mouse models with three injectable doses of Adcitmer ® led to statistically significant and sustained tumor volume reduction for ~30 days. Minimal to no toxicity was observed as a consequence of the treatment. | Esnault et al. (2022) [22] |
Palbociclib | CDK4/6i | When MCC cells were co-treated with Palbociclib combined with TC-S7009, an HIF2α inhibitor, increased PD-L1 expression was impeded, resulting in increased reactive oxygen species and cell death via ferroptosis. | Lee et al. (2024) [38] |
AK-01 (LY3295668) | AURK inhibitor | A total of 6 MCC cell lines and 2 xenograft mouse models were treated with AK-01. CCK-8 assays revealed decreased proliferation of MCC cells in vitro by ~50% at doses >100 nM. Xenograft mouse models showed an increased proportion of cells that entered G2 when treated with AK-01, suggesting G2-M transition failure in these cell lines. | Das et al. (2021) [39] |
CHIR99021 | GSK3 inhibitor | In vitro and in vivo inhibition of GSK3 in MLK-1 (MCPyV-positive MCC) xenograft tumor mice led to the suppression of MCC tumor size, although complete cessation of growth was not observed. Importantly, treatment of mice with the GSK3 inhibitor did not precipitate any visual signs of toxicity, indicating its potential to be translated into clinical trials and potentially combined with another ST-antigen inhibitor to synergistically prevent the proliferation of MCC cells. | Houben et al. (2022) [40] |
Selinexor | XP01i | Displayed antiviral activity in MCC MCPyV-positive cell lines by downregulating expression of the virus. | Gupta et al. (2021) [41] |
Trametinib | MEKi | Found that EGF and FGF are required to promote MCPyV infection of human dermal fibroblasts, inhibition of the MAPK pathway, and subsequent growth factor activation. Trametinib also prevents MCPyV infection. | Liu et al. (2016) [42] |
Ruxolitinib | JAKi | In vitro treatment of both MCPyV-positive and -negative MCC cell lines with (50–500 uM) of ruxolitinib yielded significant inhibition of cell growth and prevented ERK phosphorylation, as confirmed through WST8 cell viability assays and Western blots. | Iwasaki et al. (2022) [44] |
Tazemetostat | EZH2i | Mice with MCC xenograft tumors were treated with the EZH2i Tazemetostat for 50 days, and the results revealed delayed tumor growth upon treatment with the agent, without complete inhibition of tumor growth over time. | Gartin et al. (2022) [26] |
Proposed Target | Summary of Outcomes | References |
---|---|---|
p-ALK | p-ALK was identified in ~47.8% of MCC cell samples tested with IHC and could be a potential target for treatment, as ALK has been shown to contribute to the pathogenesis of various tumors such as MCC. Not only can ALK be targeted therapeutically, but it can also act as a prognostic marker, as p-ALK correlates with MCPyV positivity, younger patients, and non-metastatic lesions. | Jaatinen et al. (2021) [107] Cao and Namburidi (2017) [108] |
PLK | Polo-like kinase 1 (PLK1) was found to be expressed in a significant proportion of patients, suggesting its prominent role in the disease’s pathogenesis and potential as a therapeutic target. The potential of PLK1 inhibitors, such as BI2536, offers a promising therapeutic avenue. | Kadletz et al. (2016) [109] |
BRD4 | BRD4 has been shown to interact with the truncated MCV LT antigen, aiding viral replication. BRD4 could act as a potential target to reduce MCV viral load. | Arora et al. (2019) [110] |
ADAM 10, ADAM 17 | A previous investigation performed by Nwogu et al. (2018) found that MCPyV ST antigen expression promotes upregulation of the ADAM 10 and 17 proteins, which are disintegrins and metalloproteinases partly responsible for the detachment and metastasis of MCC tumor cells. Targeting of ADAM 10 and 17 could reduce the metastatic potential of MCC tumor cells. | Nwogu et al. (2018) [111] |
KOC | KOC, also known as L523S or IMP-3, is an insulin-like growth factor II messenger RNA-binding protein involved in promoting tumor cell proliferation. Upon analyzing 20 MCC specimens for KOC expression using immunohistochemistry, a significant majority (90%) of MCCs expressed KOC, with many showing moderate to strong immunostaining intensity. The degree of KOC expression might be indicative of the tumor’s potential to metastasize, thereby helping in the stratification of patients for more aggressive treatment and closer monitoring. | Pryor et al. (2009) [112] Lien et al. (2010) [113] |
CCL17/TARC, CCR4 | CCL17/TARC and CCR4 upregulated in MCC MCPyV-positive cell lines, which contributed to the constitutive activation of the MAPK and NF-KB pathway and the stimulation of MCPyV promoter activity. Taken together, CCL17/TARC and CCR4 act as a potential target for therapy. | Rasheed et al. (2018) [114] |
trKA | A case series involving 55 patients was performed to understand whether anti-tropomyosin receptor kinase A was upregulated in MCC and revealed that trKA was present in all cell lines used in the study. | Wehkamp et al. (2017) [115] |
c-Jun | c-Jun phosphorylation promotes MCPyV ST antigen activity, which helps upregulate proliferation of MCPyV MCC-positive cells. Inhibiting c-Jun could potentially reduce viral load and prevent oncogenic proliferation. | Wu et al. (2016) [116] |
Mcl-1 | The high expression of Mcl-1, an antiapoptotic protein, and Bmi-1, a transcriptional repressor, in MCC samples suggests they could be targets for antisense oligonucleotide therapies. This could be a novel approach in treating MCC by inhibiting genes essential for tumor growth and survival. | Brunner et al. (2008) [54] |
RNAi | RNA interference (RNAi) may serve as a targeted therapeutic strategy against MCPyV-positive MCC cases. RNAi, a gene-silencing mechanism, uses small double-stranded RNA to target and degrade specific mRNA molecules. This process can inhibit the expression of essential viral proteins like the T antigen in MCV, crucial for the virus’s role in cancer development. | Hoque et al. (2012) [117] |
CADM1 | CADM1 expression is typically lower in MCPyV-positive cases compared to MCPyV-negative cases. Higher CADM1 expression correlates with poorer outcomes in MCC, indicating its potential role as an oncoprotein in MCPyV-negative MCCs. This finding suggests the diverse functions of CADM1 in MCC and its possible significance in developing targeted therapies. | Iwasaki et al. (2016) [118] |
TERT | Telomerase reverse transcriptase (TERT) has been identified as a crucial factor in the progression of MCC. Mutations in the TERT promoter are more frequent in sun-exposed areas and MCPyV-negative tumors. These mutations and increased TERT mRNA expression correlate with poorer survival outcomes. This underscores the potential of TERT as a therapeutic target in MCC treatment. | Miles and Saini (2015) [119] |
RB1 | RB1, often inactivated in MCC, especially in cases without MCPyV, can be a potential target. Its inactivation is pivotal in MCC pathogenesis, suggesting therapies that could counteract this effect. | Erstad et al. (2014) [120] |
TP53 | TP53, although rarely mutated in MCC, has an altered expression in some cases, and its role in the cell cycle and apoptosis makes it a potential target for therapies that could restore or mimic its tumor-suppressive functions. | Erstad et al. (2014) [120] |
Stathmin | Stathmin, a microtubule-associated protein, is overexpressed in various cancers, including MCC, and is linked to poor prognosis and high metastatic potential. Small T antigens (ST) promote microtubule destabilization and lead to increased levels of unphosphorylated stathmin, thereby enhancing microtubule destabilization and cell motility. Targeting stathmin through siRNAs is suggested as a potential strategy to inhibit the metastatic capability of MCC. | Knight et al. (2015) [121] |
EMT pathway | Karpinski et al. (2023) propose focusing on the epithelial mesenchymal transition (EMT) pathway, a biological process in which epithelial cells develop factors leading to cancer progression, may be a potential target particularly in MCPyV-negative MCCs, as these MCCs demonstrated higher expression of EMT-associated genes. | Karpinski et al. (2023) [122] |
DLL3 | DLL3 is a protein involved in neurogenesis during embryonic development and has been found to be expressed in 91% of MCPyV-positive MCC cases. Treatment of small-cell lung cancer patients with Rovalpituzumab tesirine, a DLL3 inhibitor, led to antitumor activity and indicates its possibility of being applied in MCC therapies as well. | Esnault et al. (2022) [95] |
BRCA1/2 | Although there is a low frequency (3%) of BRCA1/2 pathogenic variants in MCC, poly-(ADP-Ribose)-polymerase inhibitors could be effective for patients with BRCA-mutated MCC, though this requires further investigation. | Gaubert et al. (2023) [106] |
ECM | In a study of ECM composition of 11 MCC tumors, second-harmonic-generation (SHG) microscopy revealed profound changes in the collagen structure of these tumors. Specifically, SHG revealed thinner, more homogenous collagen fibers in MCC samples, and this variation indicated the possibility that collagen remodeling may play a role in the aggressiveness of this tumor type. | Laurito et al. (2021) [123] |
GPC3 | Glypican-3 (GPC3) is a tumor antigen expressed in MCC, particularly in MCPyV-negative cases that are more aggressive and is another potential drug target. | Muralidharan et al. (2022) [124] |
pmCiC | Plasma membrane citrate transporter (pmCiC), which is involved in cancer cell proliferation and spread, has been shown to be upregulated in MCC cell lines and may serve as another drug target. | Drexler et al. (2022) [125] |
MUC-1 | The inhibition of MUC-1, a protein that promotes MCC cell survival, is another therapeutic approach demonstrated in MCC cell line studies. | Morimoto et al. (2022) [126] |
PP4R1 | PP4R1 has been found to form a complex with other regulators, such as the MCC MCPyV small T antigen, PP4C, and the NEMO adaptor protein, to deactivate the NF-KB pathway. Interactions between PP4R1 and NEMO are specific to MCPyV and thus can act as a target for treatment. | Abdul-Sada et al. (2017) [127] |
PDGFRA | Platelet-derived growth factor receptor alpha (PDGFRA) was found to be expressed in ~87% of MCC cases and is a member of the type III receptor tyrosine kinase family, just like c-KIT [45]. This suggests its potential to be targeted with TKIs similar to imatinib. | Kartha et al. (2008) [45] Swick et al. (2013) [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nammour, H.M.; Madrigal, K.; Starling, C.T.; Doan, H.Q. Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies. Int. J. Mol. Sci. 2024, 25, 11055. https://doi.org/10.3390/ijms252011055
Nammour HM, Madrigal K, Starling CT, Doan HQ. Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies. International Journal of Molecular Sciences. 2024; 25(20):11055. https://doi.org/10.3390/ijms252011055
Chicago/Turabian StyleNammour, Helena M., Karla Madrigal, Caroline T. Starling, and Hung Q. Doan. 2024. "Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies" International Journal of Molecular Sciences 25, no. 20: 11055. https://doi.org/10.3390/ijms252011055
APA StyleNammour, H. M., Madrigal, K., Starling, C. T., & Doan, H. Q. (2024). Advancing Treatment Options for Merkel Cell Carcinoma: A Review of Tumor-Targeted Therapies. International Journal of Molecular Sciences, 25(20), 11055. https://doi.org/10.3390/ijms252011055