Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine
Abstract
:1. Introduction
2. Results
2.1. Behavioral Studies
2.1.1. NFPS Induces Delayed Morphine Antinociceptive Tolerance Development
2.1.2. Effects of NFPS on Motor Function in the Rat Rotarod Test
2.2. In Vitro Studies
2.2.1. The Effect of NFPS on the Level of Glycine and Glutamate in the Cerebrospinal Fluid in Rats Treated Chronically with Morphine
2.2.2. The Effect of NFPS on Morphine Efficacy in Spinal Tissues in Rats Treated Chronically with Morphine
2.2.3. The Effect of NFPS on µ-Opioid Receptor Protein Level in Spinal Tissues in Rats Treated Chronically with Morphine
2.2.4. The Effect of NFPS on µ-Opioid Receptor and GluN2B mRNA Expression in Spinal Tissues in Rats Treated Chronically with Morphine
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Materials
4.3. Thermal Acute Pain Model (Rat Tail-Flick) and the Induction of Morphine Antinociceptive Tolerance
4.4. Rotarod Test
4.5. Capillary Electrophoresis
4.6. G-Protein Receptor Binding Assay
4.6.1. Spinal Cord Sample Preparations
4.6.2. Functional [35S]GTPγS Binding Assays
4.7. Western Blot Analysis
4.8. qRT-PCR
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portenoy, R.K. Treatment of Cancer Pain. Lancet 2011, 377, 2236–2247. [Google Scholar] [CrossRef]
- Mestdagh, F.; Steyaert, A.; Lavand’homme, P. Cancer Pain Management: A Narrative Review of Current Concepts, Strategies, and Techniques. Curr. Oncol. 2023, 30, 6838–6858. [Google Scholar] [CrossRef]
- Essmat, N.; Karádi, D.Á.; Zádor, F.; Király, K.; Fürst, S.; Al-Khrasani, M. Insights into the Current and Possible Future Use of Opioid Antagonists in Relation to Opioid-Induced Constipation and Dysbiosis. Molecules 2023, 28, 7766. [Google Scholar] [CrossRef]
- Morgan, M.M.; Christie, M.J. Analysis of Opioid Efficacy, Tolerance, Addiction and Dependence from Cell Culture to Human. Br. J. Pharmacol. 2011, 164, 1322–1334. [Google Scholar] [CrossRef]
- Hosztafi, S.; Galambos, A.R.; Köteles, I.; Karádi, D.Á.; Fürst, S.; Al-Khrasani, M. Opioid-Based Haptens: Development of Immunotherapy. Int. J. Mol. Sci. 2024, 25, 7781. [Google Scholar] [CrossRef]
- Dumas, E.O.; Pollack, G.M. Opioid Tolerance Development: A Pharmacokinetic/Pharmacodynamic Perspective. AAPS J. 2008, 10, 537–551. [Google Scholar] [CrossRef]
- Martyn, J.A.J.; Mao, J.; Bittner, E.A. Opioid Tolerance in Critical Illness. Reply. N. Engl. J. Med. 2019, 380, e26. [Google Scholar] [CrossRef]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- Bates, D.; Carsten Schultheis, B.; Hanes, M.C.; Jolly, S.M.; Chakravarthy, K.V.; Deer, T.R.; Levy, R.M.; Hunter, C.W. A Comprehensive Algorithm for Management of Neuropathic Pain. Pain Med. 2019, 20, S2–S12. [Google Scholar] [CrossRef]
- Stein, C.; Schäfer, M.; Machelska, H. Attacking Pain at Its Source: New Perspectives on Opioids. Nat. Med. 2003, 9, 1003–1008. [Google Scholar] [CrossRef]
- Khalefa, B.I.; Mousa, S.A.; Shaqura, M.; Lackó, E.; Hosztafi, S.; Riba, P.; Schäfer, M.; Ferdinandy, P.; Fürst, S.; Al-Khrasani, M. Peripheral Antinociceptive Efficacy and Potency of a Novel Opioid Compound 14-O-MeM6SU in Comparison to Known Peptide and Non-Peptide Opioid Agonists in a Rat Model of Inflammatory Pain. Eur. J. Pharmacol. 2013, 713, 54–57. [Google Scholar] [CrossRef]
- Pasternak, G.W. Pharmacological Mechanisms of Opioid Analgesics. Clin. Neuropharmacol. 1993, 16, 1–18. [Google Scholar] [CrossRef]
- Bagley, E.E.; Ingram, S.L. Endogenous Opioid Peptides in the Descending Pain Modulatory Circuit. Neuropharmacology 2020, 173, 108131. [Google Scholar] [CrossRef]
- Fürst, S.; Zádori, Z.S.; Zádor, F.; Király, K.; Balogh, M.; László, S.B.; Hutka, B.; Mohammadzadeh, A.; Calabrese, C.; Galambos, A.R. On the Role of Peripheral Sensory and Gut Mu Opioid Receptors: Peripheral Analgesia and Tolerance. Molecules 2020, 25, 2473. [Google Scholar] [CrossRef]
- Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of μ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacol. Rev. 2013, 65, 223–254. [Google Scholar] [CrossRef]
- Miess, E.; Gondin, A.B.; Yousuf, A.; Steinborn, R.; Mösslein, N.; Yang, Y.; Göldner, M.; Ruland, J.G.; Bünemann, M.; Krasel, C.; et al. Multisite Phosphorylation Is Required for Sustained Interaction with GRKs and Arrestins during Rapid-Opioid Receptor Desensitization. Sci. Signal 2018, 11, eaas9609. [Google Scholar] [CrossRef]
- Dang, V.C.; Williams, J.T. Morphine-Induced μ-Opioid Receptor Desensitization. Mol. Pharmacol. 2005, 68, 1127–1132. [Google Scholar] [CrossRef]
- Allouche, S.; Noble, F.; Marie, N. Opioid Receptor Desensitization: Mechanisms and Its Link to Tolerance. Front. Pharmacol. 2014, 5, 280. [Google Scholar] [CrossRef]
- Zádor, F.; Király, K.; Essmat, N.; Al-Khrasani, M. Recent Molecular Insights into Agonist-Specific Binding to the Mu-Opioid Receptor. Front. Mol. Biosci. 2022, 9, 900547. [Google Scholar] [CrossRef]
- Raiteri, L. Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine–Glutamate Crosstalk. Biomedicines 2024, 12, 1518. [Google Scholar] [CrossRef]
- Piniella, D.; Zafra, F. Functional Crosstalk of the Glycine Transporter GlyT1 and NMDA Receptors. Neuropharmacology 2023, 232, 109514. [Google Scholar] [CrossRef]
- Galambos, A.R.; Papp, Z.T.; Boldizsár, I.; Zádor, F.; Köles, L.; Harsing, L.G.; Al-Khrasani, M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024, 12, 421. [Google Scholar] [CrossRef]
- Trujillo, K.A.; Akil, H. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801. Science 1991, 251, 85–87. [Google Scholar] [CrossRef]
- Mao, J.; Sung, B.; Ji, R.R.; Lim, G. Chronic Morphine Induces Downregulation of Spinal Glutamate Transporters: Implications in Morphine Tolerance and Abnormal Pain Sensitivity. J. Neurosci. 2002, 22, 8312–8323. [Google Scholar] [CrossRef]
- Gong, K.; Bhargava, A.; Jasmin, L. GluN2B N-Methyl-d-Aspartate Receptor and Excitatory Amino Acid Transporter 3 Are Upregulated in Primary Sensory Neurons after 7 Days of Morphine Administration in Rats: Implication for Opiate-Induced Hyperalgesia. Pain 2016, 157, 147–158. [Google Scholar] [CrossRef]
- Garzón, J.; Rodríguez-Muñoz, M.; Sánchez-Blázquez, P. Do Pharmacological Approaches That Prevent Opioid Tolerance Target Different Elements in the Same Regulatory Machinery? Curr. Drug Abus. Rev. 2008, 1, 222–238. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Chen, S.R.; Chen, H.; Pan, H.L. Chronic Opioid Potentiates Presynaptic but Impairs Postsynaptic N-Methyl-D-Aspartic Acid Receptor Activity in Spinal Cords: Implications for Opioid Hyperalgesia and Tolerance. J. Biol. Chem. 2012, 287, 25073–25085. [Google Scholar] [CrossRef]
- Grande, L.A.; O’Donnell, B.R.; Fitzgibbon, D.R.; Terman, G.W. Ultra-Low Dose Ketamine and Memantine Treatment for Pain in an Opioid-Tolerant Oncology Patient. Anesth. Analg. 2008, 107, 1380–1383. [Google Scholar] [CrossRef]
- Deng, M.; Chen, S.R.; Chen, H.; Pan, H.L. A2δ-1-Bound N-Methyl-d-Aspartate Receptors Mediate Morphine-Induced Hyperalgesia and Analgesic Tolerance by Potentiating Glutamatergic Input in Rodents. Anesthesiology 2019, 130, 804–819. [Google Scholar] [CrossRef]
- Jiang, S.; Zheng, C.; Wen, G.; Bu, B.; Zhao, S.; Xu, X. Down-Regulation of NR2B Receptors Contributes to the Analgesic and Antianxiety Effects of Enriched Environment Mediated by Endocannabinoid System in the Inflammatory Pain Mice. Behav. Brain Res. 2022, 435, 114062. [Google Scholar] [CrossRef]
- Gonçalves, S.V.; Woodhams, S.G.; Li, L.; Hathway, G.J.; Chapman, V. Sustained Morphine Exposure Alters Spinal NMDA Receptor and Astrocyte Expression and Exacerbates Chronic Pain Behavior in Female Rats. Pain. Rep. 2024, 9, e1145. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Lakatos, P.P.; Balogh, M.; Zádor, F.; Karádi, D.Á.; Zádori, Z.S.; Király, K.; Galambos, A.R.; Barsi, S.; Riba, P.; et al. Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int. J. Mol. Sci. 2021, 22, 2479. [Google Scholar] [CrossRef]
- Cioffi, C.L. Inhibition of Glycine Re-Uptake: A Potential Approach for Treating Pain by Augmenting Glycine-Mediated Spinal Neurotransmission and Blunting Central Nociceptive Signaling. Biomolecules 2021, 11, 864. [Google Scholar] [CrossRef]
- Al-Khrasani, M.; Mohammadzadeh, A.; Balogh, M.; Király, K.; Barsi, S.; Hajnal, B.; Köles, L.; Zádori, Z.S.; Harsing, L.G. Glycine Transporter Inhibitors: A New Avenue for Managing Neuropathic Pain. Brain Res. Bull. 2019, 152, 143–158. [Google Scholar] [CrossRef]
- Harsing, L.G.; Matyus, P. Mechanisms of Glycine Release, Which Build up Synaptic and Extrasynaptic Glycine Levels: The Role of Synaptic and Non-Synaptic Glycine Transporters. Brain Res. Bull. 2013, 93, 110–119. [Google Scholar] [CrossRef]
- Todd, A.J. Neuronal Circuitry for Pain Processing in the Dorsal Horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef]
- Eulenburg, V.; Armsen, W.; Betz, H.; Gomeza, J. Glycine Transporters: Essential Regulators of Neurotransmission. Trends Biochem. Sci. 2005, 30, 325–333. [Google Scholar] [CrossRef]
- Karádi, D.; Galambos, A.R.; Lakatos, P.P.; Apenberg, J.; Abbood, S.K.; Balogh, M.; Király, K.; Riba, P.; Essmat, N.; Szűcs, E.; et al. Telmisartan Is a Promising Agent for Managing Neuropathic Pain and Delaying Opioid Analgesic Tolerance in Rats. Int. J. Mol. Sci. 2023, 24, 7970. [Google Scholar] [CrossRef]
- Essmat, N.; Galambos, A.R.; Lakatos, P.P.; Karádi, D.Á.; Mohammadzadeh, A.; Abbood, S.K.; Geda, O.; Laufer, R.; Király, K.; Riba, P.; et al. Pregabalin–Tolperisone Combination to Treat Neuropathic Pain: Improved Analgesia and Reduced Side Effects in Rats. Pharmaceuticals 2023, 16, 1115. [Google Scholar] [CrossRef]
- Jakó, T.; Szabó, E.; Tábi, T.; Zachar, G.; Csillag, A.; Szöko, É. Chiral Analysis of Amino Acid Neurotransmitters and Neuromodulators in Mouse Brain by CE-LIF. Electrophoresis 2014, 35, 2870–2876. [Google Scholar] [CrossRef]
- Balogh, M.; Zádor, F.; Zádori, Z.S.; Shaqura, M.; Király, K.; Mohammadzadeh, A.; Varga, B.; Lázár, B.; Mousa, S.A.; Hosztafi, S.; et al. Efficacy-Based Perspective to Overcome Reduced Opioid Analgesia of Advanced Painful Diabetic Neuropathy in Rats. Front. Pharmacol. 2019, 10, 347. [Google Scholar] [CrossRef]
- Aubrey, K.R.; Vandenberg, R.J. N[3-(4′-Fluorophenyl)-3-(4′-Phenylphenoxy)Propyl]Sarcosine (NFPS) Is a Selective Persistent Inhibitor of Glycine Transport. Br. J. Pharmacol. 2001, 134, 1429–1436. [Google Scholar] [CrossRef]
- Cioffi, C.L.; Wolf, M.A.; Guzzo, P.R.; Sadalapure, K.; Parthasarathy, V.; Dethe, D.; Maeng, J.H.; Carulli, E.; Loong, D.T.J.; Fang, X.; et al. Design, Synthesis, and SAR of N-((1-(4-(Propylsulfonyl)Piperazin-1-Yl) Cycloalkyl)Methyl)Benzamide Inhibitors of Glycine Transporter-1. Bioorg. Med. Chem. Lett. 2013, 23, 1257–1261. [Google Scholar] [CrossRef]
- Raiteri, L.; Stigliani, S.; Usai, C.; Diaspro, A.; Paluzzi, S.; Milanese, M.; Raiteri, M.; Bonanno, G. Functional Expression of Release-Regulating Glycine Transporters GLYT1 on GABAergic Neurons and GLYT2 on Astrocytes in Mouse Spinal Cord. Neurochem. Int. 2008, 52, 103–112. [Google Scholar] [CrossRef]
- Roux, M.J.; Supplisson, S. Neuronal and Glial Glycine Transporters Have Different Stoichiometries. Neuron 2000, 25, 373–383. [Google Scholar] [CrossRef]
- Aubrey, K.R.; Vandenberg, R.J.; Clements, J.D. Dynamics of Forward and Reverse Transport by the Glial Glycine Transporter, Glyt1b. Biophys. J. 2005, 89, 1657–1668. [Google Scholar] [CrossRef]
- Betz, H.; Laube, B. Glycine Receptors: Recent Insights into Their Structural Organization and Functional Diversity. J. Neurochem. 2006, 97, 1600–1610. [Google Scholar] [CrossRef]
- Vandenberg, R.J.; Mostyn, S.N.; Carland, J.E.; Ryan, R.M. Glycine Transporter2 Inhibitors: Getting the Balance Right. Neurochem. Int. 2016, 98, 89–93. [Google Scholar] [CrossRef]
- Hermanns, H.; Muth-Selbach, U.; Williams, R.; Krug, S.; Lipfert, P.; Werdehausen, R.; Braun, S.; Bauer, I. Differential Effects of Spinally Applied Glycine Transporter Inhibitors on Nociception in a Rat Model of Neuropathic Pain. Neurosci. Lett. 2008, 445, 214–219. [Google Scholar] [CrossRef]
- Chater, R.C.; Quinn, A.S.; Wilson, K.; Frangos, Z.J.; Sutton, P.; Jayakumar, S.; Cioffi, C.L.; O’Mara, M.L.; Vandenberg, R.J. The Efficacy of the Analgesic GlyT2 Inhibitor, ORG25543, Is Determined by Two Connected Allosteric Sites. J. Neurochem. 2023, 168, 1973–1992. [Google Scholar] [CrossRef]
- Madia, P.A.; Navani, D.M.; Yoburn, B.C. [35S]GTPγS Binding and Opioid Tolerance and Efficacy in Mouse Spinal Cord. Pharmacol. Biochem. Behav. 2012, 101, 155–165. [Google Scholar] [CrossRef]
- Darcq, E.; Kieffer, B.L. Opioid Receptors: Drivers to Addiction? Nat. Rev. Neurosci. 2018, 19, 499–514. [Google Scholar] [CrossRef]
- Papouin, T.; Ladépêche, L.; Ruel, J.; Sacchi, S.; Labasque, M.; Hanini, M.; Groc, L.; Pollegioni, L.; Mothet, J.P.; Oliet, S.H.R. Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell 2012, 150, 633–646. [Google Scholar] [CrossRef]
- Gledhill, L.J.; Babey, A.M. Synthesis of the Mechanisms of Opioid Tolerance: Do We Still Say NO? Cell Mol. Neurobiol. 2021, 41, 927–948. [Google Scholar] [CrossRef]
- Ivanov, A.; Pellegrino, C.; Rama, S.; Dumalska, I.; Salyha, Y.; Ben-Ari, Y.; Medina, I. Opposing Role of Synaptic and Extrasynaptic NMDA Receptors in Regulation of the Extracellular Signal-Regulated Kinases (ERK) Activity in Cultured Rat Hippocampal Neurons. J. Physiol. 2006, 572, 789–798. [Google Scholar] [CrossRef]
- Herman, B.H.; Vocci, F.; Bridge, P. The Effects of NMDA Receptor Antagonists and Nitric Oxide Synthase Inhibitors on Opioid Tolerance and Withdrawal Medication Development Issues for Opiate Addiction. Neuropsychopharmacology 1995, 13, 269–293. [Google Scholar] [CrossRef]
- Christensen, D.; Guilbaud, G.; Kayser, V. Complete Prevention but Stimulus-Dependent Reversion of Morphine Tolerance by the Glycine/NMDA Receptor Antagonist (+)-HA966 in Neuropathic Rats. Anesthesiology 2000, 92, 786–794. [Google Scholar] [CrossRef]
- Houghton, A.K.; Parsons, C.G.; Headley, P.M. Mrz 2/579, a Fast Kinetic NMDA Channel Blocker, Reduces the Development of Morphine Tolerance in Awake Rats. Pain 2001, 91, 201–207. [Google Scholar] [CrossRef]
- Guo, R.-X.; Zhang, M.; Liu, W.; Zhao, C.-M.; Cui, Y.; Wang, C.-H.; Feng, J.-Q.; Chen, P.-X. NMDA Receptors Are Involved in Upstream of the Spinal JNK Activation in Morphine Antinociceptive Tolerance. Neurosci. Lett. 2009, 467, 95–99. [Google Scholar] [CrossRef]
- Ozdemir, E.; Bagcivan, I.; Gursoy, S. Modulation of Morphine Analgesia and Tolerance in Rats by NMDA Receptor Antagonists. Neurophysiology 2012, 44, 123–130. [Google Scholar] [CrossRef]
- Tiseo, P.J.; Cheng, J.; Pasternak, G.W.; Inturrisi, C.E. Modulation of Morphine Tolerance by the Competitive N-Methyl-D-Aspartate Receptor Antagonist LY274614: Assessment of Opioid Receptor Changes. J. Pharmacol. Exp. Ther. 1994, 268, 195–201. [Google Scholar]
- Deng, M.; Chen, S.R.; Chen, H.; Luo, Y.; Dong, Y.; Pan, H.L. Mitogen-Activated Protein Kinase Signaling Mediates Opioid-Induced Presynaptic NMDA Receptor Activation and Analgesic Tolerance. J. Neurochem. 2019, 148, 275–290. [Google Scholar] [CrossRef]
- Eulenburg, V.; Hülsmann, S. Synergistic Control of Transmitter Turnover at Glycinergic Synapses by GlyT1, GlyT2 and ASC-1. Int. J. Mol. Sci. 2022, 23, 2561. [Google Scholar] [CrossRef]
- Li, Y.; Bao, Y.; Zheng, H.; Qin, Y.; Hua, B. Can Src Protein Tyrosine Kinase Inhibitors Be Combined with Opioid Analgesics? Src and Opioid-Induced Tolerance, Hyperalgesia and Addiction. Biomed. Pharmacother. 2021, 139, 111653. [Google Scholar] [CrossRef]
- Sánchez-Blázquez, P.; Rodríguez-Muñoz, M.; Garzón, J. Mu-Opioid Receptors Transiently Activate the Akt-NNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling. PLoS ONE 2010, 5, e11278. [Google Scholar] [CrossRef]
- Harris, L.D.; Regan, M.C.; Myers, S.J.; Nocilla, K.A.; Akins, N.S.; Tahirovic, Y.A.; Wilson, L.J.; Dingledine, R.; Furukawa, H.; Traynelis, S.F.; et al. Novel GluN2B-Selective NMDA Receptor Negative Allosteric Modulator Possesses Intrinsic Analgesic Properties and Enhances Analgesia of Morphine in a Rodent Tail Flick Pain Model. ACS Chem. Neurosci. 2023, 14, 917–935. [Google Scholar] [CrossRef]
- Thomas, C.G.; Miller, A.J.; Westbrook, G.L. Synaptic and Extrasynaptic NMDA Receptor NR2 Subunits in Cultured Hippocampal Neurons. J. Neurophysiol. 2006, 95, 1727–1734. [Google Scholar] [CrossRef]
- Nong, Y.; Huang, Y.Q.; Ju, W.; Kalia, L.V.; Ahmadian, G.; Wang, Y.T.; Salter, M.W. Glycine Binding Primes NMDA Receptor Internalization. Nature 2003, 422, 302–307. [Google Scholar] [CrossRef]
- Han, L.; Campanucci, V.A.; Cooke, J.; Salter, M.W. Identification of a Single Amino Acid in GluN1 That Is Critical for Glycine-Primed Internalization of NMDA Receptors. Mol. Brain 2013, 6, 36. [Google Scholar] [CrossRef]
- Thomson, A.M. Glycine Modulation of the NMDA Receptor/Channel Complex. Trends Neurosci. 1989, 12, 349–353. [Google Scholar] [CrossRef]
- Bhargava, H.N.; Reddy, P.L.; Gudehithlu, K.P. Down-Regulation of N-Methyl-d-Aspartate (NMDA) Receptors of Brain Regions and Spinal Cord of Rats Treated Chronically with Morphine. Gen. Pharmacol. 1995, 26, 131–136. [Google Scholar] [CrossRef]
- Garzón, J.; Rodríguez-Muñoz, M.; Sánchez-Blázquez, P. Direct Association of Mu-Opioid and NMDA Glutamate Receptors Supports Their Cross-Regulation: Molecular Implications for Opioid Tolerance. Curr. Drug Abus. Rev. 2012, 5, 199–226. [Google Scholar] [CrossRef]
- Le Grevès, P.; Huang, W.; Zhou, Q.; Thörnwall, M.; Nyberg, F. Acute Effects of Morphine on the Expression of MRNAs for NMDA Receptor Subunits in the Rat Hippocampus, Hypothalamus and Spinal Cord. Eur. J. Pharmacol. 1998, 341, 161–164. [Google Scholar] [CrossRef]
- Koyuncuoglu, H.; Nurten, A.; Yamantürk, P.; Nurten, R. The Importance of the Number of NMDA Receptors in the Development of Supersensitivity or Tolerance to and Dependence on Morphine. Pharmacol. Res. 1999, 39, 311–319. [Google Scholar] [CrossRef]
- Wong, C.S.; Hsu, M.M.; Chou, Y.Y.; Tao, P.L.; Tung, C.S. Morphine Tolerance Increases [3H]MK-801 Binding Affinity and Constitutive Neuronal Nitric Oxide Synthase Expression in Rat Spinal Cord. Br. J. Anaesth. 2000, 85, 587–591. [Google Scholar] [CrossRef]
- Zhu, H.; Brodsky, M.; Gorman, A.L.; Inturrisi, C.E. Region-Specific Changes in NMDA Receptor MRNA Induced by Chronic Morphine Treatment Are Prevented by the Co-Administration of the Competitive NMDA Receptor Antagonist LY274614. Mol. Brain Res. 2003, 114, 154–162. [Google Scholar] [CrossRef]
- Temi, S.; Rudyk, C.; Armstrong, J.; Landrigan, J.A.; Dedek, C.; Salmaso, N.; Hildebrand, M.E. Differential Expression of GluN2 NMDA Receptor Subunits in the Dorsal Horn of Male and Female Rats. Channels 2021, 15, 179–192. [Google Scholar] [CrossRef]
- Brodsky, M.; Elliott, K.; Hynansky, A.; Inturrisi, C.E. CNS Levels of Mu Opioid Receptor (MOR-1) MRNA during Chronic Treatment with Morphine or Naltrexone. Brain Res. Bull. 1995, 38, 135–141. [Google Scholar] [CrossRef]
- Starowicz, K.; Obara, I.; Przewłocki, R.; Przewlocka, B. Inhibition of Morphine Tolerance by Spinal Melanocortin Receptor Blockade. Pain 2005, 117, 401–411. [Google Scholar] [CrossRef]
- Kao, S.C.; Zhao, X.; Lee, C.Y.; Atianjoh, F.E.; Gauda, E.B.; Yaster, M.; Tao, Y.X. Absence of μ Opioid Receptor MRNA Expression in Astrocytes and Microglia of Rat Spinal Cord. Neuroreport 2012, 23, 378–384. [Google Scholar] [CrossRef]
- Zhang, P.; Bu, J.; Wu, X.; Deng, L.; Chi, M.; Ma, C.; Shi, X.; Wang, G. Upregulation of μ-Opioid Receptor in the Rat Spinal Cord Contributes to the A2-Adrenoceptor Agonist Dexmedetomidine-Induced Attenuation of Chronic Morphine Tolerance in Cancer Pain. J. Pain Res. 2020, 13, 2617–2627. [Google Scholar] [CrossRef]
- Hutka, B.; Várallyay, A.; László, S.B.; Tóth, A.S.; Scheich, B.; Paku, S.; Vörös, I.; Pós, Z.; Varga, Z.V.; Norman, D.D.; et al. A Dual Role of Lysophosphatidic Acid Type 2 Receptor (LPAR2) in Nonsteroidal Anti-Inflammatory Drug-Induced Mouse Enteropathy. Acta Pharmacol. Sin. 2024, 45, 339–353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galambos, A.R.; Essmat, N.; Lakatos, P.P.; Szücs, E.; Boldizsár, I., Jr.; Abbood, S.K.; Karádi, D.Á.; Kirchlechner-Farkas, J.M.; Király, K.; Benyhe, S.; et al. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int. J. Mol. Sci. 2024, 25, 11136. https://doi.org/10.3390/ijms252011136
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I Jr., Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, et al. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. International Journal of Molecular Sciences. 2024; 25(20):11136. https://doi.org/10.3390/ijms252011136
Chicago/Turabian StyleGalambos, Anna Rita, Nariman Essmat, Péter P. Lakatos, Edina Szücs, Imre Boldizsár, Jr., Sarah Kadhim Abbood, Dávid Á. Karádi, Judit Mária Kirchlechner-Farkas, Kornél Király, Sándor Benyhe, and et al. 2024. "Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine" International Journal of Molecular Sciences 25, no. 20: 11136. https://doi.org/10.3390/ijms252011136