Special Issue: MAPK Signaling Cascades in Human Health and Diseases
1. Introduction
2. The Composition of MAPK Cascades
3. Recent Notable Advances in the Field of MAPK Signaling
4. Recent Advances on the Role of MAPK in Diseases That Are Discussed in This Special Issue
5. Recent Advances in MAPK Activity and Effects That Are Discussed in This Special Issue
Conflicts of Interest
References
- Keshet, Y.; Seger, R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol. Biol. 2010, 661, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Lopez, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef] [PubMed]
- Nadel, G.; Maik-Rachline, G.; Seger, R. JNK Cascade-Induced Apoptosis—A Unique Role in GqPCR Signaling. Int. J. Mol. Sci. 2023, 24, 13527. [Google Scholar] [CrossRef] [PubMed]
- Plotnikov, A.; Zehorai, E.; Procaccia, S.; Seger, R. The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 2011, 1813, 1619–1633. [Google Scholar] [CrossRef]
- Kim, E.K.; Choi, E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol. 2015, 89, 867–882. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecinska, A.; Budzinska, A.; Mojzych, M.; Kontek, R. Metastasis and MAPK Pathways. Int. J. Mol. Sci. 2022, 23, 3847. [Google Scholar] [CrossRef]
- Engin, A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. Adv. Exp. Med. Biol. 2024, 1460, 199–229. [Google Scholar] [CrossRef]
- Sanz, A.B.; Garcia, R.; Pavon-Verges, M.; Rodriguez-Pena, J.M.; Arroyo, J. Control of Gene Expression via the Yeast CWI Pathway. Int. J. Mol. Sci. 2022, 23, 1791. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Gao, Y.; Ren, C.; Huang, Z.; Liu, B.; Li, X.; Chang, L.; Shen, K.; Ding, H.; et al. Feasibility of (68)Ga-Labeled Fibroblast Activation Protein Inhibitor PET/CT in Light-Chain Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2022, 15, 1960–1970. [Google Scholar] [CrossRef]
- Gan, T.; Fan, L.; Zhao, L.; Misra, M.; Liu, M.; Zhang, M.; Su, Y. JNK Signaling in Drosophila Aging and Longevity. Int. J. Mol. Sci. 2021, 22, 9649. [Google Scholar] [CrossRef]
- Zhou, Y.; Singh, S.K.; Patra, B.; Liu, Y.; Pattanaik, S.; Yuan, L. Mitogen-Activated Protein Kinase Mediated Regulation of Plant Specialized Metabolism. J. Exp. Bot. 2024, erae400. [Google Scholar] [CrossRef] [PubMed]
- Peti, W.; Page, R. Molecular basis of MAP kinase regulation. Protein Sci. 2013, 22, 1698–1710. [Google Scholar] [CrossRef] [PubMed]
- Martin-Vega, A.; Cobb, M.H. Navigating the ERK1/2 MAPK Cascade. Biomolecules 2023, 13, 1555. [Google Scholar] [CrossRef] [PubMed]
- Nussinov, R.; Zhang, W.; Liu, Y.; Jang, H. Mitogen signaling strength and duration can control cell cycle decisions. Sci. Adv. 2024, 10, eadm9211. [Google Scholar] [CrossRef]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Burton, J.C.; Antoniades, W.; Okalova, J.; Roos, M.M.; Grimsey, N.J. Atypical p38 Signaling, Activation, and Implications for Disease. Int. J. Mol. Sci. 2021, 22, 4183. [Google Scholar] [CrossRef]
- Canovas, B.; Nebreda, A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021, 22, 346–366. [Google Scholar] [CrossRef]
- Martinez-Limon, A.; Joaquin, M.; Caballero, M.; Posas, F.; de Nadal, E. The p38 Pathway: From Biology to Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 1913. [Google Scholar] [CrossRef]
- Caliz, A.D.; Vertii, A.; Fisch, V.; Yoon, S.; Yoo, H.J.; Keaney, J.F., Jr.; Kant, S. Mitogen-activated protein kinase kinase 7 in inflammatory, cancer, and neurological diseases. Front. Cell Dev. Biol. 2022, 10, 979673. [Google Scholar] [CrossRef]
- Zeke, A.; Misheva, M.; Remenyi, A.; Bogoyevitch, M.A. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol. Mol. Biol. Rev. 2016, 80, 793–835. [Google Scholar] [CrossRef]
- Ha, J.; Kang, E.; Seo, J.; Cho, S. Phosphorylation Dynamics of JNK Signaling: Effects of Dual-Specificity Phosphatases (DUSPs) on the JNK Pathway. Int. J. Mol. Sci. 2019, 20, 6157. [Google Scholar] [CrossRef] [PubMed]
- Paudel, R.; Fusi, L.; Schmidt, M. The MEK5/ERK5 Pathway in Health and Disease. Int. J. Mol. Sci. 2021, 22, 7594. [Google Scholar] [CrossRef] [PubMed]
- Stecca, B.; Rovida, E. Impact of ERK5 on the Hallmarks of Cancer. Int. J. Mol. Sci. 2019, 20, 1426. [Google Scholar] [CrossRef] [PubMed]
- Maik-Rachline, G.; Wortzel, I.; Seger, R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity. Cells 2021, 10, 3466. [Google Scholar] [CrossRef]
- Coulombe, P.; Meloche, S. Atypical mitogen-activated protein kinases: Structure, regulation and functions. Biochim. Biophys. Acta 2007, 1773, 1376–1387. [Google Scholar] [CrossRef]
- Shaul, Y.D.; Seger, R. The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim. Biophys. Acta 2007, 1773, 1213–1226. [Google Scholar] [CrossRef]
- Klomp, J.E.; Diehl, J.N.; Klomp, J.A.; Edwards, A.C.; Yang, R.; Morales, A.J.; Taylor, K.E.; Drizyte-Miller, K.; Bryant, K.L.; Schaefer, A.; et al. Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer. Science 2024, 384, eadk0850. [Google Scholar] [CrossRef]
- Klomp, J.A.; Klomp, J.E.; Stalnecker, C.A.; Bryant, K.L.; Edwards, A.C.; Drizyte-Miller, K.; Hibshman, P.S.; Diehl, J.N.; Lee, Y.S.; Morales, A.J.; et al. Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers. Science 2024, 384, eadk0775. [Google Scholar] [CrossRef]
- Bahar, M.E.; Kim, H.J.; Kim, D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023, 8, 455. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Guo, Y.; Liu, C.; Yang, Y.; Fan, X.; Yang, H.; Liu, Y.; Ma, T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem. Pharmacol. 2024, 220, 115973. [Google Scholar] [CrossRef]
- Hepp Rehfeldt, S.C.; Majolo, F.; Goettert, M.I.; Laufer, S. c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer’s Diseases. Int. J. Mol. Sci. 2020, 21, 9677. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.C.; Harnor, S.J.; Martin, M.P.; Noble, R.A.; Wedge, S.R.; Cano, C. Modulation of ERK5 Activity as a Therapeutic Anti-Cancer Strategy. J. Med. Chem. 2023, 66, 4491–4502. [Google Scholar] [CrossRef] [PubMed]
- Maik-Rachline, G.; Seger, R. The ERK cascade inhibitors: Towards overcoming resistance. Drug Resist. Updates 2016, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vellano, C.P.; White, M.G.; Andrews, M.C.; Chelvanambi, M.; Witt, R.G.; Daniele, J.R.; Titus, M.; McQuade, J.L.; Conforti, F.; Burton, E.M.; et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022, 606, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Vaisar, D.; Jones, D.N.; Pegram, L.M.; Vigers, G.P.; Chen, H.; Moffat, J.G.; Ahn, N.G. Conformation selection by ATP-competitive inhibitors and allosteric communication in ERK2. eLife 2024, 12, RP91507. [Google Scholar] [CrossRef]
- Ham, H.; Jing, H.; Lamborn, I.T.; Kober, M.M.; Koval, A.; Berchiche, Y.A.; Anderson, D.E.; Druey, K.M.; Mandl, J.N.; Isidor, B.; et al. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024, 385, eadd8947. [Google Scholar] [CrossRef]
- Nadel, G.; Yao, Z.; Hacohen-Lev-Ran, A.; Wainstein, E.; Maik-Rachline, G.; Ziv, T.; Naor, Z.; Admon, A.; Seger, R. Phosphorylation of PP2Ac by PKC is a key regulatory step in the PP2A-switch-dependent AKT dephosphorylation that leads to apoptosis. Cell Commun. Signal. 2024, 22, 154. [Google Scholar] [CrossRef]
- Nadel, G.; Yao, Z.; Wainstein, E.; Cohen, I.; Ben-Ami, I.; Schajnovitz, A.; Maik-Rachline, G.; Naor, Z.; Horwitz, B.A.; Seger, R. GqPCR-stimulated dephosphorylation of AKT is induced by an IGBP1-mediated PP2A switch. Cell Commun. Signal. 2022, 20, 5. [Google Scholar] [CrossRef]
- Nadel, G.; Yao, Z.; Ben-Ami, I.; Naor, Z.; Seger, R. Gq-Induced Apoptosis is Mediated by AKT Inhibition That Leads to PKC-Induced JNK Activation. Cell. Physiol. Biochem. 2018, 50, 121–135. [Google Scholar] [CrossRef]
- Maik-Rachline, G.; Lifshits, L.; Seger, R. Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int. J. Mol. Sci. 2020, 21, 6102. [Google Scholar] [CrossRef]
- Maik-Rachline, G.; Hacohen-Lev-Ran, A.; Seger, R. Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int. J. Mol. Sci. 2019, 20, 1194. [Google Scholar] [CrossRef] [PubMed]
- Camilleri-Robles, C.; Climent-Canto, P.; Llorens-Giralt, P.; Klein, C.C.; Serras, F.; Corominas, M. A shift in chromatin binding of phosphorylated p38 precedes transcriptional changes upon oxidative stress. FEBS Lett. 2024. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xie, Z.; Onishi, A.; Yu, X.; Jiang, L.; Lin, J.; Rho, H.S.; Woodard, C.; Wang, H.; Jeong, J.S.; et al. Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell 2009, 139, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Agudo-Ibanez, L.; Morante, M.; Garcia-Gutierrez, L.; Quintanilla, A.; Rodriguez, J.; Munoz, A.; Leon, J.; Crespo, P. ERK2 stimulates MYC transcription by anchoring CDK9 to the MYC promoter in a kinase activity-independent manner. Sci. Signal. 2023, 16, eadg4193. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Zhang, D.; Liu, J.; Liang, C.; Yang, R.; Zhang, C.; Wu, J.; Lin, J.; Ye, T.; Ding, L.; et al. HPIP is an essential scaffolding protein running through the EGFR-RAS-ERK pathway and drives tumorigenesis. Sci. Adv. 2023, 9, eade1155. [Google Scholar] [CrossRef]
- Martin-Vega, A.; Ruiz-Peinado, L.; Garcia-Gomez, R.; Herrero, A.; de la Fuente-Vivas, D.; Parvathaneni, S.; Caloto, R.; Morante, M.; von Kriegsheim, A.; Bustelo, X.R.; et al. Scaffold coupling: ERK activation by trans-phosphorylation across different scaffold protein species. Sci. Adv. 2023, 9, eadd7969. [Google Scholar] [CrossRef]
- Juyoux, P.; Galdadas, I.; Gobbo, D.; von Velsen, J.; Pelosse, M.; Tully, M.; Vadas, O.; Gervasio, F.L.; Pellegrini, E.; Bowler, M.W. Architecture of the MKK6-p38alpha complex defines the basis of MAPK specificity and activation. Science 2023, 381, 1217–1225. [Google Scholar] [CrossRef]
- Chen, W.; Park, J.I. Tumor Cell Resistance to the Inhibition of BRAF and MEK1/2. Int. J. Mol. Sci. 2023, 24, 14837. [Google Scholar] [CrossRef]
- Plotnikov, A.; Chuderland, D.; Karamansha, Y.; Livnah, O.; Seger, R. Nuclear extracellular signal-regulated kinase 1 and 2 translocation is mediated by casein kinase 2 and accelerated by autophosphorylation. Mol. Cell. Biol. 2011, 31, 3515–3530. [Google Scholar] [CrossRef]
- Maik-Rachline, G.; Cohen, I.; Seger, R. RAF, MEK and ERK inhibitors as anti-cancer drugs: Intrinsic and acquired resistance as a major therapeutic challenge. In Resistance to Targeted Anti-Cancer Therapeutics; Springer: Cham, Switzerland, 2018; Volume 15. [Google Scholar]
- Burgermeister, E. Mitogen-Activated Protein Kinase and Exploratory Nuclear Receptor Crosstalk in Cancer Immunotherapy. Int. J. Mol. Sci. 2023, 24, 14546. [Google Scholar] [CrossRef]
- Burgermeister, E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int. J. Mol. Sci. 2023, 24, 13661. [Google Scholar] [CrossRef] [PubMed]
- Nandi, I.; Aroeti, B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay. Int. J. Mol. Sci. 2023, 24, 11905. [Google Scholar] [CrossRef] [PubMed]
- Gilad, N.; Mohanam, M.P.; Darlyuk-Saadon, I.; Heng, C.K.M.; Plaschkes, I.; Benyamini, H.; Berezhnoy, N.V.; Engelberg, D. Asynchronous Pattern of MAPKs’ Activity during Aging of Different Tissues and of Distinct Types of Skeletal Muscle. Int. J. Mol. Sci. 2024, 25, 1713. [Google Scholar] [CrossRef] [PubMed]
- Werner, H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int. J. Mol. Sci. 2023, 24, 14882. [Google Scholar] [CrossRef] [PubMed]
- Melamed Kadosh, D.; Beenstock, J.; Engelberg, D.; Admon, A. Differential Modulation of the Phosphoproteome by the MAP Kinases Isoforms p38alpha and p38beta. Int. J. Mol. Sci. 2023, 24, 12442. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seger, R. Special Issue: MAPK Signaling Cascades in Human Health and Diseases. Int. J. Mol. Sci. 2024, 25, 11226. https://doi.org/10.3390/ijms252011226
Seger R. Special Issue: MAPK Signaling Cascades in Human Health and Diseases. International Journal of Molecular Sciences. 2024; 25(20):11226. https://doi.org/10.3390/ijms252011226
Chicago/Turabian StyleSeger, Rony. 2024. "Special Issue: MAPK Signaling Cascades in Human Health and Diseases" International Journal of Molecular Sciences 25, no. 20: 11226. https://doi.org/10.3390/ijms252011226
APA StyleSeger, R. (2024). Special Issue: MAPK Signaling Cascades in Human Health and Diseases. International Journal of Molecular Sciences, 25(20), 11226. https://doi.org/10.3390/ijms252011226