Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach
Abstract
:1. Introduction
2. Results
2.1. The E326K Mutation Does Not Affect the Catalytic Dyad’s Structure
2.2. GCase Dimerization Is Disfavoured by the E326K Mutation
2.3. The Effects of E326K on GCase Interactome
3. Discussion
4. Materials and Methods
4.1. Structures’ Preparation
4.2. MD Simulations
4.3. Analysis of the Trajectories
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neudorfer, O.; Giladi, N.; Elstein, D.; Abrahamov, A.; Turezkite, T.; Aghai, E.; Reches, A.; Bembi, B.; Zimran, A. Occurrence of Parkinson’s Syndrome in Type 1 Gaucher Disease. QJM 1996, 89, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, N. Gaucher Disease with Parkinsonian Manifestations: Does Glucocerebrosidase Deficiency Contribute to a Vulnerability to Parkinsonism? Mol. Genet. Metab. 2003, 79, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Kolter, T.; Sandhoff, K. Lysosomal Degradation of Membrane Lipids. FEBS Lett. 2010, 584, 1700–1712. [Google Scholar] [CrossRef]
- Berent, S.L.; Radin, N.S. Mechanism of Activation of Glucocerebrosidase by CO-β-Glucosidase (Glucosidase Activator Protein). Biochim. Biophys. Acta (BBA)—Lipids Lipid Metab. 1981, 664, 572–582. [Google Scholar] [CrossRef]
- Sun, Y.; Qi, X.; Grabowski, G.A. Saposin C Is Required for Normal Resistance of Acid β-Glucosidase to Proteolytic Degradation. J. Biol. Chem. 2003, 278, 31918–31923. [Google Scholar] [CrossRef]
- Lieberman, R.L.; D’aquino, J.A.; Ringe, D.; Petsko, G.A. Effects of pH and Iminosugar Pharmacological Chaperones on Lysosomal Glycosidase Structure and Stability. Biochemistry 2009, 48, 4816–4827. [Google Scholar] [CrossRef]
- Dvir, H.; Harel, M.; McCarthy, A.A.; Toker, L.; Silman, I.; Futerman, A.H.; Sussman, J.L. X-ray Structure of Human Acid-β-glucosidase, the Defective Enzyme in Gaucher Disease. EMBO Rep. 2003, 4, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, R.L.; Wustman, B.A.; Huertas, P.; Powe, A.C.; Pine, C.W.; Khanna, R.; Schlossmacher, M.G.; Ringe, D.; Petsko, G.A. Structure of Acid β-Glucosidase with Pharmacological Chaperone Provides Insight into Gaucher Disease. Nat. Chem. Biol. 2007, 3, 101–107. [Google Scholar] [CrossRef]
- Lieberman, R.L. A Guided Tour of the Structural Biology of Gaucher Disease: Acid- β-Glucosidase and Saposin C. Enzym. Res. 2011, 2011, 973231. [Google Scholar] [CrossRef]
- Smith, L.; Mullin, S.; Schapira, A.H.V. Insights into the Structural Biology of Gaucher Disease. Exp. Neurol. 2017, 298, 180–190. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-Talks among GBA Mutations, Glucocerebrosidase, and α-Synuclein in GBA-Associated Parkinson’s Disease and Their Targeted Therapeutic Approaches: A Comprehensive Review. Transl. Neurodegener. 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Duran, R.; Mencacci, N.E.; Angeli, A.V.; Shoai, M.; Deas, E.; Houlden, H.; Mehta, A.; Hughes, D.; Cox, T.M.; Deegan, P.; et al. The Glucocerobrosidase E326K Variant Predisposes to Parkinson’s Disease, but Does Not Cause Gaucher’s Disease. Mov. Disord. 2013, 28, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, M.; Pasmanik-Chor, M.; Ron, I.; Kolodny, E.H. The Enigma of the E326K Mutation in Acid β-Glucocerebrosidase. Mol. Genet. Metab. 2011, 104, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Marano, M.; Zizzo, C.; Malaguti, M.C.; Bacchin, R.; Cavallieri, F.; De Micco, R.; Spagnolo, F.; Bentivoglio, A.R.; Schirinzi, T.; Bovenzi, R.; et al. Increased Glucosylsphingosine Levels and Gaucher Disease in GBA1-Associated Parkinson’s Disease. Park. Relat. Disord. 2024, 124, 107023. [Google Scholar] [CrossRef]
- Gegg, M.E.; Burke, D.; Heales, S.J.R.; Cooper, J.M.; Hardy, J.; Wood, N.W.; Schapira, A.H.V. Glucocerebrosidase Deficiency in Substantia Nigra of Parkinson Disease Brains. Ann. Neurol. 2012, 72, 455–463. [Google Scholar] [CrossRef]
- Smith, L.J.; Bolsinger, M.M.; Chau, K.-Y.; Gegg, M.E.; Schapira, A.H.V. The GBA Variant E326K Is Associated with Alpha-Synuclein Aggregation and Lipid Droplet Accumulation in Human Cell Lines. Human Mol. Genet. 2022, 32, 773–789. [Google Scholar] [CrossRef]
- Stefanis, L. α-Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Logan, T.; Bendor, J.; Toupin, C.; Thorn, K.; Edwards, R.H. α-Synuclein Promotes Dilation of the Exocytotic Fusion Pore. Nat. Neurosci. 2017, 20, 681–689. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Tanji, K.; Mori, F.; Takahashi, H. The Lewy Body in Parkinson’s Disease: Molecules Implicated in the Formation and Degradation of A-synuclein Aggregates. Neuropathology 2007, 27, 494–506. [Google Scholar] [CrossRef]
- Yap, T.L.; Velayati, A.; Sidransky, E.; Lee, J.C. Membrane-Bound α-Synuclein Interacts with Glucocerebrosidase and Inhibits Enzyme Activity. Mol. Genet. Metab. 2013, 108, 56–64. [Google Scholar] [CrossRef]
- Yap, T.L.; Jiang, Z.; Heinrich, F.; Gruschus, J.M.; Pfefferkorn, C.M.; Barros, M.; Curtis, J.E.; Sidransky, E.; Lee, J.C. Structural Features of Membrane-Bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy. J. Biol. Chem. 2015, 290, 744–754. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.; Skinner, O.S.; Ysselstein, D.; Remis, J.; Lansbury, P.; Skerlj, R.; Mrosek, M.; Heunisch, U.; Krapp, S.; et al. β-Glucocerebrosidase Modulators Promote Dimerization of β-Glucocerebrosidase and Reveal an Allosteric Binding Site. J. Am. Chem. Soc. 2018, 140, 5914–5924. [Google Scholar] [CrossRef] [PubMed]
- Benz, J.; Rufer, A.C.; Huber, S.; Ehler, A.; Hug, M.; Topp, A.; Guba, W.; Hofmann, E.C.; Jagasia, R.; Rodríguez Sarmiento, R.M. Novel β-Glucocerebrosidase Activators That Bind to a New Pocket at a Dimer Interface and Induce Dimerization. Angew. Chem. Int. Ed. 2021, 60, 5436–5442. [Google Scholar] [CrossRef] [PubMed]
- Gruschus, J.M.; Jiang, Z.; Yap, T.L.; Hill, S.A.; Grishaev, A.; Piszczek, G.; Sidransky, E.; Lee, J.C. Dissociation of Glucocerebrosidase Dimer in Solution by Its Co-Factor, Saposin C. Biochem. Biophys. Res. Commun. 2015, 457, 561–566. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, C.; Cantale, C.; Galeffi, P.; Rosato, V. Structure and Dynamics of the Anti-AMCV scFv(F8): Effects of Selected Mutations on the Antigen Combining Site. J. Struct. Biol. 2008, 164, 119–133. [Google Scholar] [CrossRef]
- Arcangeli, C.; Lico, C.; Baschieri, S.; Mancuso, M. Characterization Of Blood–Brain Barrier Crossing And Tumor Homing Peptides By Molecular Dynamics Simulations. Int. J. Nanomed. 2019, 14, 10123–10136. [Google Scholar] [CrossRef]
- Innamorati, G.; Pierdomenico, M.; Benassi, B.; Arcangeli, C. The Interaction of DNMT1 and DNMT3A Epigenetic Enzymes with Phthalates and Perfluoroalkyl Substances: An in Silico Approach. J. Biomol. Struct. Dyn. 2023, 41, 1586–1602. [Google Scholar] [CrossRef]
- Romero, R.; Ramanathan, A.; Yuen, T.; Bhowmik, D.; Mathew, M.; Munshi, L.B.; Javaid, S.; Bloch, M.; Lizneva, D.; Rahimova, A.; et al. Mechanism of Glucocerebrosidase Activation and Dysfunction in Gaucher Disease Unraveled by Molecular Dynamics and Deep Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 5086–5095. [Google Scholar] [CrossRef]
- Zunke, F.; Andresen, L.; Wesseler, S.; Groth, J.; Arnold, P.; Rothaug, M.; Mazzulli, J.R.; Krainc, D.; Blanz, J.; Saftig, P.; et al. Characterization of the Complex Formed by β-Glucocerebrosidase and the Lysosomal Integral Membrane Protein Type-2. Proc. Natl. Acad. Sci. USA 2016, 113, 3791–3796. [Google Scholar] [CrossRef]
- Qi, X.; Qin, W.; Sun, Y.; Kondoh, K.; Grabowski, G.A. Functional Organization of Saposin C: DEFINITION OF THE NEUROTROPHIC AND ACID β-GLUCOSIDASE ACTIVATION REGIONS (∗). J. Biol. Chem. 1996, 271, 6874–6880. [Google Scholar] [CrossRef] [PubMed]
- Weiler, S.; Tomich, J.M.; Kishimoto, Y.; O’Brien, J.S.; Barranger, J.A. Identification of the Binding and Activating Sites of the Sphingolipid Activator Protein, Saposin C, with Glucocerebrosidase. Protein Sci. 1995, 4, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Brooks, B.R.; Bruccoleri, R.E.; Olafson, B.D.; States, D.J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4, 187–217. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model. 2017, 57, 1511–1516. [Google Scholar] [CrossRef]
- Rossmann, M.; Schultz-Heienbrok, R.; Behlke, J.; Remmel, N.; Alings, C.; Sandhoff, K.; Saenger, W.; Maier, T. Crystal Structures of Human Saposins C and D: Implications for Lipid Recognition and Membrane Interactions. Structure 2008, 16, 809–817. [Google Scholar] [CrossRef]
- Zhao, M.; Cascio, D.; Sawaya, M.R.; Eisenberg, D. Structures of Segments of α-Synuclein Fused to Maltose-Binding Protein Suggest Intermediate States during Amyloid Formation. Protein Sci. 2011, 20, 996–1004. [Google Scholar] [CrossRef]
- Neculai, D.; Schwake, M.; Ravichandran, M.; Zunke, F.; Collins, R.F.; Peters, J.; Neculai, M.; Plumb, J.; Loppnau, P.; Pizarro, J.C.; et al. Structure of LIMP-2 Provides Functional Insights with Implications for SR-BI and CD36. Nature 2013, 504, 172–176. [Google Scholar] [CrossRef]
- Honorato, R.V.; Trellet, M.E.; Jiménez-García, B.; Schaarschmidt, J.J.; Giulini, M.; Reys, V.; Koukos, P.I.; Rodrigues, J.P.G.L.M.; Karaca, E.; Van Zundert, G.C.P.; et al. The HADDOCK2.4 Web Server for Integrative Modeling of Biomolecular Complexes. Nat. Protoc. 2024. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-field Parameter Sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Petrova, S.S.; Solov’ev, A.D. The Origin of the Method of Steepest Descent. Hist. Math. 1997, 24, 361–375. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1998, 18, 1463–1472. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Iannone, F.; Ambrosino, F.; Bracco, G.; De Rosa, M.; Funel, A.; Guarnieri, G.; Migliori, S.; Palombi, F.; Ponti, G.; Santomauro, G.; et al. CRESCO ENEA HPC Clusters: A Working Example of a Multifabric GPFS Spectrum Scale Layout. In Proceedings of the 2019 International Conference on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15–19 July 2019; IEEE: Piscataway, NJ, USA, 2020; pp. 1051–1052. [Google Scholar]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W.F.; Mark, A.E. Peptide Folding: When Simulation Meets Experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
- Honorato, R.V.; Koukos, P.I.; Jiménez-García, B.; Tsaregorodtsev, A.; Verlato, M.; Giachetti, A.; Rosato, A.; Bonvin, A.M.J.J. Structural Biology in the Clouds: The WeNMR-EOSC Ecosystem. Front. Mol. Biosci. 2021, 8, 729513. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Amadei, A.; Linssen, A.B.; Berendsen, H.J. Essential dynamics of proteins. Proteins 1993, 17, 412–425. [Google Scholar] [CrossRef] [PubMed]
Simulation at pH 5.5 | Wild-Type | E326K |
---|---|---|
E/K326-E235 | 2.04 ± 0.08 | 2.13 ± 0.08 |
E/K326-E340 | 2.03 ± 0.06 | 2.38 ± 0.08 |
E235-E340 | 0.73 ± 0.06 | 0.77 ± 0.04 |
Pair Residues, pH | Wild-Type | E326K |
---|---|---|
Y313-E235, pH 7.0 | 67.70 a | -- |
Y313-E340, pH 5.5 | -- | 47.80 |
pH 7.0 | Wild-Type | E326K |
---|---|---|
Residue/Residue | E326 | K326 |
H328 | 70.82 a | -- |
R329 | 82.43 | -- |
L330 | 76.72 | 80.78 |
pH | Wild-Type | E326K |
---|---|---|
pH 5.5 | 37 ± 0.17 a | 48 ± 0.05 |
pH 7.0 | 46 ± 0.15 | 50 ± 0.10 |
Residue of Chain A | Residue of Chain B | WT-WT | E326K-E326K | WT-E326K |
---|---|---|---|---|
S12 | S242 | -- | 46.00 a | -- |
Y244 | F347 | 36.63 | -- | -- |
W348 | Y244 | 37.84 | -- | -- |
E349 | S242 | -- | -- | 60.02 |
E349 | G243 | -- | -- | 44.07 |
E349 | Y244 | 46.97 | -- | -- |
E350 | G243 | -- | -- | 64.75 |
E350 | S345 | -- | -- | 35.44 |
D358 | S242 | -- | 88.59 | -- |
R395 | E349 | 35.55 | -- | -- |
F397 | F347 | 38.85 | -- | -- |
Number of total hydrogen bonds | 5 | 2 | 4 |
Residue of Chain A | Residue of Chain B | WT-WT | E326K-E326K | WT-E326K |
---|---|---|---|---|
N192 | D358 | -- | 36.40 a | -- |
S242 | D358 | 44.20 | 43.20 | 43.94 |
Y244 | Y313 | -- | -- | 42.20 |
Y244 | F347 | -- | -- | 47.95 |
Y244 | E349 | 42.25 | -- | -- |
E254 | S464 | -- | 44.75 | 39.82 |
E254 | S465 | -- | -- | 37.25 |
E284 | D315 | -- | -- | 39.18 |
Y291 | D445 | -- | 35.40 | -- |
K293 | D443 | -- | 44.76 | -- |
V294 | D443 | -- | 41.63 | -- |
V295 | D443 | -- | 42.15 | -- |
D315 | L240 | 45.32 | -- | -- |
D315 | G243 | -- | 45.57 | -- |
L317 | A320 | -- | -- | 37.18 |
D358 | S242 | 55.15 | -- | -- |
Number of total hydrogen bonds | 4 | 8 | 7 |
Dimers | ΔG (kcal/mol) at pH 5.5 | ΔG (kcal/mol) at pH 7.0 |
---|---|---|
WT-WT | −18.89 ± 0.43 | −15.70 ± 0.16 |
E326K-E326K | −14.55 ± 0.18 | −14.72 ± 0.25 |
E326K-WT | −16.88 ± 0.22 | −14.99 ± 0.24 |
GCase Residue | LIMP-2 Residue | Wild-Type | E326K |
---|---|---|---|
L94 | K153 | -- | 10.96 a |
A95 | K153 | -- | 12.92 |
Q101 | K153 | -- | 27.79 |
Q101 | Q 156 | -- | 41.23 |
N102 | Q156 | 80.61 | |
N102 | E146 | 32.97 | -- |
K106 | E146 | 23.19 | -- |
R163 | E149 | 64.37 b | -- |
R163 | A154 | -- | 13.50 |
R163 | Q156 | -- | 17.80 |
Q166 | E175 | -- | 11.10 |
Number of total hydrogen bonds | 3 | 8 | |
Number of total salt bridges | 1 | 0 |
GCase Residue | SapC Residue | Wild-Type | E326K |
---|---|---|---|
G10 | Y53 | -- | 17.35 a |
R44 | E48 | 12.95 | -- |
R44 | D51 | -- | 20.14 |
S237 | E8 b | 19.86 | -- |
K321 | E13 | -- | 11.12 |
R329 | C77 | -- | 38.05 |
K346 | E24 | -- | 53.65 c |
F347 | L76 | 16.67 | -- |
W348 | S55 | -- | 13.31 |
E 349 | Y3 | 16.59 | -- |
R353 | D51 | -- | 48.53 |
D358 | K25 | -- | 26.66 |
Q362 | E24 | -- | 24.62 |
D443 | T15 | -- | 10.90 |
D443 | K16 | 20.31 | |
D443 | S55 | 28.89 | -- |
D445 | K16 | -- | 12.32 |
D463 | D19 | -- | 88.08 |
D463 | S59 | 11.18 | -- |
S465 | E63 | 18.55 | |
K466 | E8 | -- | 15.00 |
Number of total hydrogen bonds | 6 | 14 | |
Number of total salt bridges | 0 | 2 |
GCase Residue | α-Syn Residue | Wild-Type | E326K |
---|---|---|---|
Y11 | P133 | 16.40 a | -- |
Y11 | E138 | 17.27 | -- |
R48 | E130 | 31.80 b | -- |
Y313 | E131 | -- | 21.32 |
S345 | K127 | -- | 12.06 |
K346 | E131 | 31.07 | -- |
W348 | L121 | 21.50 | -- |
S351 | E138 | 18.81 | -- |
R353 | E138 | 22.11 | -- |
Number of total hydrogen bonds | 7 | 2 | |
Number of total salt bridges | 2 | 0 |
ΔG (kcal/mol) Wild-Type | ΔG (kcal/mol) E326K | |
---|---|---|
LIMP-2 | −6.73 ± 0.14 | −7.07 ± 0.12 |
SapC | −7.60 ± 0.21 | −7.86 ± 0.14 |
α-Syn | −9.31 ± 0.21 | −7.47 ± 0.50 |
Simulation Name | Description of the System | Simulation Length |
---|---|---|
WT-WT_pH5 | Wild-type GCase homodimer at pH 5.5 | 1000 ns, 2 replicas a |
E326K-E326K_pH5 | Mutated GCase homodimer at pH 5.5 | 1000 ns, 2 replicas |
WT-E326K_pH5 | GCase heterodimer at pH 5.5 | 1000 ns, 2 replicas |
WT-WT_pH7 | Wild-type GCase homodimer at pH 7.0 | 1000 ns, 2 replicas |
E326K-E326K_pH7 | Mutated GCase homodimer at pH 7.0 | 1000 ns, 2 replicas |
WT-E326K_pH7 | GCase heterodimer at pH 7.0 | 1000 ns, 2 replicas |
WT-LIMP2 | Wild-type GCase monomer at pH 7.0 in complex with LIMP-2 (endoplasmic reticulum interaction) | 200 ns, 3 replicas b |
E326K-LIMP2 | Mutated GCase monomer at pH 7.0 in complex with LIMP-2 (endoplasmic reticulum interaction) | 200 ns, 3 replicas |
WT-SapC | Wild-type GCase monomer at pH 5.5 in complex with Saposin C (lysosomal interaction) | 200 ns, 3 replicas |
E326K-SapC | Mutated GCase monomer at pH 5.5 in complex with Saposin C (lysosomal interaction) | 200 ns, 3 replicas |
WT-α-Syn | Wild-type GCase monomer at pH 5.5 in complex with α−Synuclein (lysosomal interaction) | 200 ns, 3 replicas |
E326K-α-Syn | Muated GCase monomer at pH 5.5 in complex with α-Synuclein (lysosomal interaction) | 200 ns, 3 replicas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrafesa, D.; Casamassa, A.; Benassi, B.; Santoro, M.; Marano, M.; Consales, C.; Rosati, J.; Arcangeli, C. Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach. Int. J. Mol. Sci. 2024, 25, 11443. https://doi.org/10.3390/ijms252111443
Pietrafesa D, Casamassa A, Benassi B, Santoro M, Marano M, Consales C, Rosati J, Arcangeli C. Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach. International Journal of Molecular Sciences. 2024; 25(21):11443. https://doi.org/10.3390/ijms252111443
Chicago/Turabian StylePietrafesa, Davide, Alessia Casamassa, Barbara Benassi, Massimo Santoro, Massimo Marano, Claudia Consales, Jessica Rosati, and Caterina Arcangeli. 2024. "Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach" International Journal of Molecular Sciences 25, no. 21: 11443. https://doi.org/10.3390/ijms252111443
APA StylePietrafesa, D., Casamassa, A., Benassi, B., Santoro, M., Marano, M., Consales, C., Rosati, J., & Arcangeli, C. (2024). Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach. International Journal of Molecular Sciences, 25(21), 11443. https://doi.org/10.3390/ijms252111443