Li–Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation
Abstract
:1. Introduction
1.1. LFS and TP53
1.2. Epidemiology of LFS
1.3. Diagnostic Approach and Prevention
- Classic LFS criteria:
- A member of a kindred with a known TP53 pathogenic or likely pathogenic variant.
- A combination of an individual diagnosed at 45 years or younger with a sarcoma first-degree relative diagnosed with cancer at 45 years or younger.
- And an additional first- or second-degree relative in the same lineage with cancer diagnosed at younger than 45 years or a sarcoma diagnosed at any age.
- Chompret criteria:
- Multiple primary tumors of at least 2 “core” LFS tumor types (sarcoma, breast cancer, adrenocortical carcinoma, brain tumors) diagnosed at <36 years or patients with adrenocortical carcinoma diagnosed at any age, regardless of family history.
1.4. The Cancer Diversity Within LFS
- 0 to 15 years: adrenocortical carcinoma, rhabdomyosarcoma, choroid plexus carcinoma, and medulloblastoma.
- 16 to 50 years: osteosarcoma, leukemia, gliomas, breast cancer, lung cancer, and gastrointestinal cancer.
1.5. The Precancerous Niche in LFS
1.6. Intervening on Precancerous Niche
1.7. The Impact of Natural Compounds on Cancer
1.8. The Role of Sechium Edule in Chronic Degenerative Diseases
1.9. Sechium H387 07 and Its Intervention in Precancerous Niche
2. Case Description
2.1. Literature Review
2.2. Family History
- Debut at age 34 with breast cancer, thyroid cancer, radio-induced osteosarcoma, dealing currently with glioblastoma.
- Debut at age 45 with lung cancer, currently at stage IV.
- Debut at age 35 with breast cancer, thyroid cancer, and currently stage IV lung cancer.
2.3. Personal History
2.4. First in Human (FIH) Calculation
2.5. Capsule Elaboration from the Extract of Sechium H387 07
2.6. Implemented Intervention
2.7. Laboratory, Histopathology, and Imaging Studies
2.8. Full Body PET/CT
3. Discussion
3.1. Administration and Adverse Effects
3.2. Malignancy Follow-Up
3.3. Clinical Follow-Up
3.4. Laboratory Follow-Up
3.5. PET/CT Follow-Up
- Left rib region increased inflammatory metabolism: metabolic activity was observed in the corresponding area to the resection site with mesh placement. The SUVmax value was 2.8, falling within the expected and favorable prognostic range (<10.2 SUVmax) [73].
- Lung base subsegmental atelectasis: subsegmental atelectasis was noted in lung bases, along with a nodule in the lower lingula. The SUVmax for the nodule was 0.8, which is below the predictive malignancy cutoff value (SUVmax > 2.5) [74].
3.6. Analysis of the Intervention of Polyphenols Present in Sechium on the Precancerous Niche
- Oxidative Stress/Immune Dysregulation/Metabolic Reprogramming/Angiogenesis: these pathways are closely associated and are particularly affected in family members carrying mTP53 mutations. Individuals with these pathogenic variants exhibit increased oxidative phosphorylation and oxidative stress compared to healthy relatives. This prooxidant state leads to inflammation and DNA damage, predisposing to cancer development [13,75]. Recent studies have demonstrated that inhibiting oxidative stress can prevent oncogenesis [76]. Additionally, p53 influences AKT/mTOR pathways critical for regulating proliferation, survival, glucose metabolism, and amino acid use, and where, in the presence of mTP53, anaerobic glycolysis (Warburg effect) is stimulated, favoring the tumor microenvironment [77,78]. Persistent inflammatory conditions also stimulate vascular growth factor synthesis. This perpetuation occurs in cases where TP53 is absent because it normally modulates antiangiogenic factors via proteins like thrombospondin-1 (TSP-1) [79]. TP53 regulates toll-like receptors (TLR), which are essential in the tumor microenvironment. In the presence of mTP53, recognition of premalignant cells is impaired, facilitating malignant transformation, inflammation, and aberrant cytokine production, perpetuating the proinflammatory state [80,81]. Some interventions through antioxidant and anti-inflammatory factors are described below:
- ○
- Instead, it is known that polyphenols counteract these activities. Thus, polyphenols can mediate proliferation, cell cycle, and arachidonic acid pathways by regulating transcription factors such as PI3K, STAT, and MAPK. They can also inhibit aberrant TLR and have a significant metabolic impact by increasing high-density lipoprotein (HDL) and reducing low-density lipoprotein (LDL), thus preventing the production of oxidized LDL (an essential source of vascular comorbidities) [51,52,82,83].
- ○
- On the other hand, naringenin or rutin donates hydrogen atoms to OH groups, stabilizing molecules and limiting damage to free radicals. Consequently, they can inhibit the release of nuclear factor kappa B (NF-κB), subsequently reducing proinflammatory cytokines [51,52,57,83,84]. Additionally, they play an essential role in Keap-Nrf2 overexpression, inducing antioxidant production rather than inhibiting oxidant enzymes [51,52,57,64,85].
- ○
- In glycolysis disorders, the hyperglycemic states promote nucleotide, lipid, and amino acid synthesis, which are necessary for the proliferation, invasion, and migration of malignant cells. Sechium H387 07 extract, with hypoglycemic and antioxidant effects, improves disease control in patients with metabolic syndrome [51,52,57,64]. This effect is attributed to PI3K pathway inhibition (which modulates glucose transporters) combined with oxidative stress reduction, potentially reversing insulin resistance and mitigating metabolic disorder effects [86].
- ○
- Regarding the role of tyrosines and protein tyrosine phosphatase 1B (PTP1B) in breast cancer development, tyrosines play a role through PTP1B in estrogenic and proliferation pathways. Aberrant PTP1B activity, present in breast cancer, can lead to oncogenesis [87,88]. This is particularly relevant in patients with LFS due to the high incidence of breast cancer. Preclinical studies have shown that silencing aberrant PTP1B activity inhibits proliferation, and Sechium edule has been documented as a potential inhibitor of this tyrosine [89].
- ○
- Telomere shortening is a natural process associated with aging, marking the finite replicative capacity of cells. However, excessive telomere shortening is pathological and linked to oxidative stress, which can predispose to mutagenesis [39,90]. Early-onset cancer incidence in LFS has been associated with excessive telomere shortening due to MDM2 signaling disturbances that promote genomic instability and increase cancer susceptibility [91,92], highlighting it as an important therapeutic target. Applying Sechium edule in patients with metabolic syndrome has shown telomere length maintenance without altering telomerase levels, an effect closely associated with its antioxidant capacity [39,90]. Additionally, polyphenols have the potential to overexpress and stabilize p53, an opportunity to reactivate aberrant p53 and regulate transcription factors such as MDMX and MDM2 through phosphorylation and acetylation, favoring telomere length [32].
- ○
- In apoptosis, TP53 plays a crucial role in cell cycle regulation by controlling transcription factors associated with DNA repair, such as GADD45 and PCNA. It acts as a direct apoptosis regulator, inhibiting survival genes like anti-apoptotic BCL2 and upregulating pro-apoptotic genes like BAX. However, this capacity is compromised in mTP53 presence, promoting tumor development. Stimulating pro-apoptotic pathways becomes necessary [93]. Naringenin, also present in Sechium H387 07 extract, inhibits Prdx-1, an important ASK1 inhibitor in programmed cell death, and upregulates both extrinsic (TNFRST10D/CRADD/CASP-2) and intrinsic (PTEN/BBC3/APAF-1/CASP-9) apoptosis pathways. Naringenin also promotes overexpression of estrogen receptors (ERβ), which regulate apoptosis via p38/MAPK, while inhibiting ERα, responsible for proliferation [37,94,95].
- ○
- Overexpression of PI3K/AKT pathways is associated with poor prognosis in some cancers [96,97]. Quercetin, rutin, and cucurbitacin I inhibit this pathway, leading to cell cycle arrest and caspase production [98]. They also induce apoptosis due to PI3K/AKT’s role in regulating Bcl-2 and Bax proteins. Quercetin additionally inhibits critical Wnt/β-catenin pathways involved in proliferation, stimulates ferroptosis via lipid peroxidation [99], and induces G2/M cell cycle arrest through p-STAT modulation and favoring caspase pathways via LC3/ERK/Caspase-3 [100].
- ○
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, F.P. Soft-Tissue Sarcomas, Breast Cancer, and Other Neoplasms: A Familial Syndrome? Ann. Intern. Med. 1969, 71, 747. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Freycon, C.; Maxwell, K.N.; Nichols, K.E.; Schiffman, J.D.; Evans, D.G.; Achatz, M.I.; Savage, S.A.; Weitzel, J.N.; Garber, J.E.; et al. Analysis of the Li-Fraumeni Spectrum Based on an International Germline TP53 Variant Data Set: An International Agency for Research on Cancer TP53 Database Analysis. JAMA Oncol. 2021, 7, 1800. [Google Scholar] [CrossRef] [PubMed]
- Ogden, J.; Pippen, J. Presentation, diagnosis, and management of the Li-Fraumeni syndrome. Bayl. Univ. Med. Cent. Proc. 2022, 35, 678–679. [Google Scholar] [CrossRef] [PubMed]
- Hafner, A.; Bulyk, M.L.; Jambhekar, A.; Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 2019, 20, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Li, V.D.; Li, K.H.; Li, J.T. TP53 mutations as potential prognostic markers for specific cancers: Analysis of data from The Cancer Genome Atlas and the International Agency for Research on Cancer TP53 Database. J. Cancer Res. Clin. Oncol. 2019, 145, 625–636. [Google Scholar] [CrossRef]
- The European Reference Network GENTURIS; Frebourg, T.; Bajalica Lagercrantz, S.; Oliveira, C.; Magenheim, R.; Evans, D.G. Guidelines for the Li–Fraumeni and heritable TP53-related cancer syndromes. Eur. J. Hum. Genet. 2020, 28, 1379–1386. [Google Scholar] [CrossRef]
- Kumamoto, T.; Yamazaki, F.; Nakano, Y.; Tamura, C.; Tashiro, S.; Hattori, H.; Nakagawara, A.; Tsunematsu, Y. Medical guidelines for Li–Fraumeni syndrome 2019, version 1.1. Int. J. Clin. Oncol. 2021, 26, 2161–2178. [Google Scholar] [CrossRef]
- Aedma, S.K.; Kasi, A. Li-Fraumeni Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Mai, P.L.; Best, A.F.; Peters, J.A.; DeCastro, R.M.; Khincha, P.P.; Loud, J.T.; Bremer, R.C.; Rosenberg, P.S.; Savage, S.A. Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 2016, 122, 3673–3681. [Google Scholar] [CrossRef]
- Malkin, D. Li-Fraumeni Syndrome. Genes Cancer 2011, 2, 475–484. [Google Scholar] [CrossRef]
- Frankenthal, I.A.; Alves, M.C.; Tak, C.; Achatz, M.I. Cancer surveillance for patients with Li-Fraumeni Syndrome in Brazil: A cost-effectiveness analysis. Lancet Reg. Health-Am. 2022, 12, 100265. [Google Scholar] [CrossRef]
- Limacher, J.; Frebourg, T.; Natarajan-Ame, S.; Bergerat, J. Two metachronous tumors in the radiotherapy fields of a patient with Li-Fraumeni syndrome. Int. J. Cancer 2001, 96, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Pantziarka, P.; Blagden, S. Inhibiting the Priming for Cancer in Li-Fraumeni Syndrome. Cancers 2022, 14, 1621. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Zelley, K.; Nichols, K.E.; Garber, J. Li-Fraumeni Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 2024. [Google Scholar]
- Daly, M.B.; Pal, T.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Goggins, M.; Hutton, M.L.; et al. Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 77–102. [Google Scholar] [CrossRef]
- Department of Clinical Effectiveness. Li-Fraumeni Syndrome Screening; The University of Texas MD Anderson Cancer Center: Houston, TX, USA, 2023. [Google Scholar]
- Hanson, H.; Brady, A.F.; Crawford, G.; Eeles, R.A.; Gibson, S.; Jorgensen, M.; Izatt, L.; Sohaib, A.; Tischkowitz, M.; Evans, D.G. UKCGG Consensus Group guidelines for the management of patients with constitutional TP53 pathogenic variants. J. Med. Genet. 2021, 58, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Kasper, E.; Angot, E.; Colasse, E.; Nicol, L.; Sabourin, J.-C.; Adriouch, S.; Lacoume, Y.; Charbonnier, C.; Raad, S.; Frebourg, T.; et al. Contribution of genotoxic anticancer treatments to the development of multiple primary tumours in the context of germline TP53 mutations. Eur. J. Cancer 2018, 101, 254–262. [Google Scholar] [CrossRef]
- Funato, M.; Tsunematsu, Y.; Yamazaki, F.; Tamura, C.; Kumamoto, T.; Takagi, M.; Kato, S.; Sugimura, H.; Tamura, K. Characteristics of Li-Fraumeni syndrome in Japan: A review study by the special committee of JSHT. Cancer Sci. 2021, 112, 2821–2834. [Google Scholar] [CrossRef]
- Chan, C.S. Prevalence and penetrance of Li-Fraumeni cancer predisposition syndrome. Curr. Opin. Syst. Biol. 2017, 1, 48–53. [Google Scholar] [CrossRef]
- Kaplan, R.N.; Rafii, S.; Lyden, D. Preparing the “Soil”: The Premetastatic Niche. Cancer Res. 2006, 66, 11089–11093. [Google Scholar] [CrossRef]
- Peinado, H.; Zhang, H.; Matei, I.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.; Bromberg, J.F.; Kang, Y.; et al. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer 2017, 17, 302–317. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Walcott, F.L.; Kang, J.-G.; Starost, M.F.; Talagala, S.L.; Zhuang, J.; Park, J.-H.; Huffstutler, R.D.; Bryla, C.M.; et al. Inhibiting mitochondrial respiration prevents cancer in a mouse model of Li-Fraumeni syndrome. J. Clin. Investig. 2016, 127, 132–136. [Google Scholar] [CrossRef]
- Walcott, F.L.; Wang, P.-Y.; Bryla, C.M.; Huffstutler, R.D.; Singh, N.; Pollak, M.N.; Khincha, P.P.; Savage, S.A.; Mai, P.L.; Dodd, K.W.; et al. Pilot Study Assessing Tolerability and Metabolic Effects of Metformin in Patients With Li-Fraumeni Syndrome. JNCI Cancer Spectr. 2020, 4, pkaa063. [Google Scholar] [CrossRef] [PubMed]
- Dixon-Zegeye, M.; Shaw, R.; Collins, L.; Perez-Smith, K.; Ooms, A.; Qiao, M.; Pantziarka, P.; Izatt, L.; Tischkowitz, M.; Harrison, R.E.; et al. Cancer Precision-Prevention trial of Metformin in adults with Li Fraumeni syndrome (MILI) undergoing yearly MRI surveillance: A randomised controlled trial protocol. Trials 2024, 25, 103. [Google Scholar] [CrossRef] [PubMed]
- Golubovskaya, V.M.; Cance, W.G. FAK and p53 Protein Interactions. Anti-Cancer Agents Med. Chem. 2011, 11, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Aguiñiga-Sánchez, I.; Soto-Hernández, M.; Cadena-Iñiguez, J.; Ruíz-Posadas, L.D.M.; Cadena-Zamudio, J.D.; González-Ugarte, A.K.; Weiss Steider, B.; Santiago-Osorio, E. Fruit Extract from A Sechium edule Hybrid Induce Apoptosis in Leukaemic Cell Lines but not in Normal Cells. Nutr. Cancer 2015, 67, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Kaweme, N.M.; Zhou, S.; Changwe, G.J.; Zhou, F. The significant role of redox system in myeloid leukemia: From pathogenesis to therapeutic applications. Biomark. Res. 2020, 8, 63. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Khan, H.; Reale, M.; Ullah, H.; Sureda, A.; Tejada, S.; Wang, Y.; Zhang, Z.-J.; Xiao, J. Anti-cancer effects of polyphenols via targeting p53 signaling pathway: Updates and future directions. Biotechnol. Adv. 2020, 38, 107385. [Google Scholar] [CrossRef]
- Rajendran, P.; Abdelsalam, S.A.; Renu, K.; Veeraraghavan, V.; Ben Ammar, R.; Ahmed, E.A. Polyphenols as Potent Epigenetics Agents for Cancer. Int. J. Mol. Sci. 2022, 23, 11712. [Google Scholar] [CrossRef]
- Benvenuto, M.; Focaccetti, C.; Ciuffa, S.; Fazi, S.; Bei, A.; Miele, M.T.; Albonici, L.; Cifaldi, L.; Masuelli, L.; Bei, R. Polyphenols affect the humoral response in cancer, infectious and allergic diseases and autoimmunity by modulating the activity of TH1 and TH2 cells. Curr. Opin. Pharmacol. 2021, 60, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Cherniack, E.P. The potential influence of plant polyphenols on the aging process. Forsch. Komplementmed 2010, 17, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Choi, Y.J.; Lee, J.H.; Nam, M.J. Naringenin causes ASK1-induced apoptosis via reactive oxygen species in human pancreatic cancer cells. Food Chem. Toxicol. 2017, 99, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Samec, M.; Liskova, A.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Buhrmann, C.; Varghese, E.; Abotaleb, M.; Qaradakhi, T.; Zulli, A.; et al. Flavonoids against the Warburg phenotype-concepts of predictive, preventive and personalised medicine to cut the Gordian knot of cancer cell metabolism. EPMA J. 2020, 11, 377–398. [Google Scholar] [CrossRef]
- Gavia-García, G.; Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Sechium edule var. nigrum spinosum (Chayote) on Telomerase Levels and Antioxidant Capacity in Older Adults with Metabolic Syndrome. Antioxidants 2020, 9, 634. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, B.; Wang, N.; Gu, J. Tumor immunomodulatory effects of polyphenols. Front. Immunol. 2022, 13, 1041138. [Google Scholar] [CrossRef]
- Gairola, K.; Gururani, S.; Dubey, S.K. Polyphenols and Its Effect on the Immune System. In Nutraceuticals and Functional Foods in Immunomodulators; Kesharwani, R.K., Keservani, R.K., Sharma, A.K., Eds.; Springer Nature: Singapore, 2022; pp. 121–140. [Google Scholar] [CrossRef]
- Yaswen, P.; MacKenzie, K.L.; Keith, W.N.; Hentosh, P.; Rodier, F.; Zhu, J.; Firestone, G.L.; Matheu, A.; Carnero, A.; Bilsland, A.; et al. Therapeutic targeting of replicative immortality. Semin. Cancer Biol. 2015, 35, S104–S128. [Google Scholar] [CrossRef]
- Lyubitelev, A.; Studitsky, V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci. 2023, 24, 10663. [Google Scholar] [CrossRef]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of polyphenols and its anticancer properties in biomedical research: A narrative review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Caban, M.; Lewandowska, U. Inhibiting effects of polyphenols on angiogenesis and epithelial-mesenchymal transition in anterior segment eye diseases. J. Funct. Foods 2021, 87, 104761. [Google Scholar] [CrossRef]
- Sorrenti, V.; Buriani, A.; Fortinguerra, S.; Davinelli, S.; Scapagnini, G.; Cassidy, A.; De Vivo, I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: The Role of (Poly)phenols. Adv. Nutr. 2023, 14, 1111–1130. [Google Scholar] [CrossRef] [PubMed]
- Sufianova, G.; Gareev, I.; Beylerli, O.; Wu, J.; Shumadalova, A.; Sufianov, A.; Chen, X.; Zhao, S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front. Cell Dev. Biol. 2022, 10, 1011435. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; De Luca, A.; D’Amico, M.; De Amicis, F.; Pezzi, V. The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 1680. [Google Scholar] [CrossRef]
- Matsuno, Y.; Atsumi, Y.; Alauddin, M.; Rana, M.M.; Fujimori, H.; Hyodo, M.; Shimizu, A.; Ikuta, T.; Tani, H.; Torigoe, H.; et al. Resveratrol and its Related Polyphenols Contribute to the Maintenance of Genome Stability. Sci. Rep. 2020, 10, 5388. [Google Scholar] [CrossRef]
- Cháirez-Ramírez, M.H.; De La Cruz-López, K.G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharmacol. 2021, 12, 710304. [Google Scholar] [CrossRef]
- Arista Ugalde, T.L. Efecto del Consumo de Frutos de Sechium edule sobre Marcadores de Estrés Oxidativo, Inflamación Crónica y Daño Oxidativo al ADN en Adultos Mayores con Síndrome Metabólico. Ph.D. Thesis, Facultad de Estudios Superiores Zaragoza, Mexico City, Mexico, 2023. [Google Scholar]
- Arista-Ugalde, T.L.; Santiago-Osorio, E.; Monroy-García, A.; Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Cadena-Iñiguez, J.; Gavia-García, G.; Mendoza-Núñez, V.M. Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome. Antioxidants 2022, 11, 1076. [Google Scholar] [CrossRef]
- Iñiguez, J.C.; Soto-Hernández, M.; Torres-Salas, A. The antiproliferative effect of chayote varieties (Sechium edule (Jacq.) Sw.) on tumour cell lines. J. Med. Plants Res. 2013, 7, 455–460. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Aguiñiga-Sánchez, I.; Uriostegui-Arias, M.T.; Santiago-Osorio, E.; Ruiz-Posadas, L.D.M.; Soto-Hernández, M. Antiproliferative Effect of Sechium edule (Jacq.) Sw., cv. Madre Negra Extracts on Breast Cancer In Vitro. Separations 2022, 9, 230. [Google Scholar] [CrossRef]
- Aguiñiga Sánchez, I. Efecto Antitumoral In Vivo de Sechium P. Browne (Cucurbitaceae). Ph.D. Thesis, Colegio de Postgraduados, Instituto de Enseñanza e Investigación en Ciencias Agrícolas, Texcoco, Mexico, 2017. [Google Scholar]
- Delgado-Tiburcio, E.E.; Cadena-Iñiguez, J.; Santiago-Osorio, E.; Ruiz-Posadas, L.D.M.; Castillo-Juárez, I.; Aguiñiga-Sánchez, I.; Soto-Hernández, M. Pharmacokinetics and Biological Activity of Cucurbitacins. Pharmaceuticals 2022, 15, 1325. [Google Scholar] [CrossRef]
- Aguiñiga-Sánchez, I.; Soto-Hernández, M.; Cadena-Iñiguez, J.; Suwalsky, M.; Colina, J.R.; Castillo, I.; Rosado-Pérez, J.; Mendoza-Núñez, V.M.; Santiago-Osorio, E. Phytochemical Analysis and Antioxidant and Anti-Inflammatory Capacity of the Extracts of Fruits of the Sechium Hybrid. Molecules 2020, 25, 4637. [Google Scholar] [CrossRef] [PubMed]
- Arévalo-Galarza, M.d.L. Desarrollo y transferencia del híbrido amargo de chayote [Sechium edule (Jacq) Sw.] “H 387 07”. Agro D 2024, 3, 63–78. [Google Scholar] [CrossRef]
- Iñiguez-Luna, M.I.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Morales-Flores, F.J.; Cortes-Cruz, M.; Watanabe, K.N.; Machida-Hirano, R.; Cadena-Zamudio, J.D. Bioprospecting of Sechium spp. varieties for the selection of characters with pharmacological activity. Sci. Rep. 2021, 11, 6185. [Google Scholar] [CrossRef] [PubMed]
- Iñiguez-Luna, M.I.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Morales-Flores, F.J.; Cortes-Cruz, M.; Watanabe, K.N. Natural Bioactive Compounds of Sechium spp. for Therapeutic and Nutraceutical Supplements. Front. Plant Sci. 2021, 12, 772389. [Google Scholar] [CrossRef] [PubMed]
- Gavia-García, G.; Rosado-Pérez, J.; Arista-Ugalde, T.L.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. The consumption of Sechium edule (chayote) has antioxidant effect and prevents telomere attrition in older adults with metabolic syndrome. Redox Rep. 2023, 28, 2207323. [Google Scholar] [CrossRef]
- Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Sechium edule var. nigrum spinosum (Chayote) on Oxidative Stress and Pro-Inflammatory Markers in Older Adults with Metabolic Syndrome: An Exploratory Study. Antioxidants 2019, 8, 146. [Google Scholar] [CrossRef]
- De Las Heras, B.; Bouyoucef-Cherchalli, D.; Reeve, L.; Reichl, A.; Mandarino, D.; Flach, S.; Vidal, L.; Van Brummelen, E.M.J.; Steeghs, N. Healthy volunteers in first-in-human oncology drug development for small molecules. Brit J. Clin. Pharma 2022, 88, 1773–1784. [Google Scholar] [CrossRef]
- Montiel Garcia, L.D. Participación del extracto del hibrido de Sechium H387-07 como hipoglucemiante en un modelo de ratón diabético. Bachelor’s Thesis, Facultad de Estudios Superiores Zaragoza, Mexico City, Mexico, 2023. [Google Scholar]
- Cadena Iñiguez, J. El Chayote; GISEM: Texcoco, México, 2010. [Google Scholar]
- Sokic-Milutinovic, A.; Pavlovic-Markovic, A.; Tomasevic, R.S.; Lukic, S. Diarrhea as a Clinical Challenge: General Practitioner Approach. Dig. Dis. 2022, 40, 282–289. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S20–S42. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Almuhaideb, A.; Papathanasiou, N.; Bomanji, J. 18F-FDG PET/CT Imaging In Oncology. Ann. Saudi Med. 2011, 31, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, S.T.S.; Lima, E.N.P.; NÃbrega, A.F.; Torres, I.D.C.G.; Cavicchioli, M.; Hainaut, P.; Achatz, M.I.W. 18F-FDG PET-CT for Surveillance of Brazilian Patients with Li-Fraumeni Syndrome. Front. Oncol. 2015, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gosangi, B.; Dixe De Oliveira Santo, I.; Keraliya, A.; Wang, Y.; Irugu, D.; Thomas, R.; Khandelwal, A.; Rubinowitz, A.N.; Bader, A.S. Li-Fraumeni Syndrome: Imaging Features and Guidelines. RadioGraphics 2024, 44, e230202. [Google Scholar] [CrossRef] [PubMed]
- Masciari, S. F18-Fluorodeoxyglucose–Positron Emission Tomography/Computed Tomography Screening in Li-Fraumeni Syndrome. JAMA 2008, 299, 1315. [Google Scholar] [CrossRef] [PubMed]
- Villalón-López, J.S.; Rodríguez-Pérez, A.; Meléndez-Rodríguez, S. Fibrosarcoma de la parrilla costal, resección y reconstrucción con malla de polipropileno y metilmetacrilato. GAMO 2014, 13, 266–270. [Google Scholar]
- Dalpiaz, G. Computed Tomography of Diffuse Lung Diseases and Solitary Pulmonary Nodules. In Practical Pulmonary Pathology: A Diagnostic Approach; Elsevier: Amsterdam, The Netherlands, 2018; pp. 35–98.e6. [Google Scholar] [CrossRef]
- Wang, P.-Y.; Ma, W.; Park, J.-Y.; Celi, F.S.; Arena, R.; Choi, J.W.; Ali, Q.A.; Tripodi, D.J.; Zhuang, J.; Lago, C.U.; et al. Increased Oxidative Metabolism in the Li–Fraumeni Syndrome. N. Engl. J. Med. 2013, 368, 1027–1032. [Google Scholar] [CrossRef]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef]
- Feng, Z. p53 Regulation of the IGF-1/AKT/mTOR Pathways and the Endosomal Compartment. Cold Spring Harb. Perspect. Biol. 2010, 2, a001057. [Google Scholar] [CrossRef]
- Olovnikov, I.A.; Kravchenko, J.E.; Chumakov, P.M. Homeostatic functions of the p53 tumor suppressor: Regulation of energy metabolism and antioxidant defense. Semin. Cancer Biol. 2009, 19, 32–41. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, M.; Zhao, Q.; Li, S.; Peng, Y.; Zhang, P.; Han, M. Vascular endothelial growth factor plays a critical role in the formation of the pre-metastatic niche via prostaglandin E2. Oncol. Rep. 2014, 32, 2477–2484. [Google Scholar] [CrossRef]
- Menendez, D.; Shatz, M.; Azzam, K.; Garantziotis, S.; Fessler, M.B.; Resnick, M.A. The Toll-Like Receptor Gene Family Is Integrated into Human DNA Damage and p53 Networks. PLoS Genet. 2011, 7, e1001360. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Goto, Y.; Narita, N.; Hoon, D.S.B. Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment. Cancer Microenviron. 2009, 2, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Ugarte, A. Producción diferencial de citocinas promotoras e inhibidoras de la proliferación mieloide en el sobredrenante de cultivos de la línea cellular WEHI-3, células de médula ósea de ratón normal y Suero de ratones tratados con extracto de Sechium spp. Bachelor’s Thesis, Facultad de Estudios Superiores Zaragoza, Mexico City, Mexico, 2014. [Google Scholar]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F.; Qari, H.A.; Oves, M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals 2021, 14, 1069. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, Z.; Lu, H.; Xu, Z.; Tong, R.; Shi, J.; Jia, G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. Biodivers. 2019, 16, e1900400. [Google Scholar] [CrossRef] [PubMed]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef]
- Hernández-Flores, O.; Esparza-López, J. Sobreexpresión de PTP1B induce mayor proliferación celular en cultivos primarios de cáncer de mama. GAMO 2013, 12, 4–9. [Google Scholar]
- Villamar-Cruz, O.; Loza-Mejía, M.A.; Arias-Romero, L.E.; Camacho-Arroyo, I. Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep. 2021, 41, BSR20211994. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kumar, D.A.; Sweeya, P.S.R.; Abhinay, K.M.; Hanumantha, A.C.; Lavanya, V.; Raju, A.S.; Sireesha, K.; Pavithra, K. Protein-Tyrosine Phosphatase 1β Inhibitory Activity Potential in Vegetables Juice. Pharmacologia 2013, 4, 311–319. [Google Scholar] [CrossRef]
- Gavia-García, G.; Rosado-Pérez, J.; Arista-Ugalde, T.L.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology 2021, 10, 253. [Google Scholar] [CrossRef]
- Ruijs, M.W.G.; Schmidt, M.K.; Nevanlinna, H.; Tommiska, J.; Aittomäki, K.; Pruntel, R.; Verhoef, S.; Van’T Veer, L.J. The single-nucleotide polymorphism 309 in the MDM2 gene contributes to the Li–Fraumeni syndrome and related phenotypes. Eur. J. Hum. Genet. 2007, 15, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Tabori, U.; Nanda, S.; Druker, H.; Lees, J.; Malkin, D. Younger Age of Cancer Initiation Is Associated with Shorter Telomere Length in Li-Fraumeni Syndrome. Cancer Res. 2007, 67, 1415–1418. [Google Scholar] [CrossRef] [PubMed]
- Hernández Borrero, L.J.; El-Deiry, W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2021, 1876, 188556. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Herrera, S.J.; Luna-Bárcenas, G.; Guevara-González, R.G.; Campos-Vega, R.; Solís-Sáinz, J.C.; Hernández-Puga, A.G.; Vergara-Castañeda, H.A. Fermentation Extract of Naringenin Increases the Expression of Estrogenic Receptor β and Modulates Genes Related to the p53 Signalling Pathway, miR-200c and miR-141 in Human Colon Cancer Cells Exposed to BPA. Molecules 2022, 27, 6588. [Google Scholar] [CrossRef]
- Totta, P.; Acconcia, F.; Leone, S.; Cardillo, I.; Marino, M. Mechanisms of Naringenin-induced Apoptotic Cascade in Cancer Cells: Involvement of Estrogen Receptor a and ß Signalling. IUBMB Life 2004, 56, 491–499. [Google Scholar] [CrossRef]
- Abraham, A.G.; O’Neill, E. PI3K/Akt-mediated regulation of p53 in cancer. Biochem. Soc. Trans. 2014, 42, 798–803. [Google Scholar] [CrossRef]
- Chen, M.; Choi, S.; Wen, T.; Chen, C.; Thapa, N.; Lee, J.H.; Cryns, V.L.; Anderson, R.A. A p53–phosphoinositide signalosome regulates nuclear AKT activation. Nat. Cell Biol. 2022, 24, 1099–1113. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, H.; Zhang, J.; Liu, H.; Ao, R.; Xiao, M.; Wu, Y. The anticancer effects of Cucurbitacin I inhibited cell growth of human non-small cell lung cancer through PI3K/AKT/p70S6K pathway. Mol. Med. Report. 2017, 17, 2750–2756. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Li, X.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.; Lu, G.; Zhou, J. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. Br. J. Pharmacol. 2021, 178, 1133–1148. [Google Scholar] [CrossRef]
- Asgharian, P.; Tazekand, A.P.; Hosseini, K.; Forouhandeh, H.; Ghasemnejad, T.; Ranjbar, M.; Hasan, M.; Kumar, M.; Beirami, S.M.; Tarhriz, V.; et al. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int. 2022, 22, 257. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Liu, L.; Deng, Z.; Zeng, Q.; Pang, W.; Liu, Y.; Song, D.; Deng, H. Glycogen synthase kinase-3β inhibition promotes lysosome-dependent degradation of c-FLIPL in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Liu, F.; Lin, X.; Li, L.; Chen, W.; Zhang, T.; Liu, Y.; Niu, L.; Zhang, Y.; Hu, P. Cucurbitacin E inhibits the proliferation of glioblastoma cells via FAK/AKT/GSK3β pathway. Oncol. Rep. 2023, 50, 221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Huang, J.; Wang, D.; Wan, X.; Wang, Y. Covalent polyphenols-proteins interactions in food processing: Formation mechanisms, quantification methods, bioactive effects, and applications. Front. Nutr. 2024, 11, 1371401. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Polyphenols: The interactions with CYP isoenzymes and effect on pharmacokinetics of drugs. Curr. Trends Pharm. Pharm. Chem. 2022, 4, 13–23. [CrossRef]
Laboratories | June 2006 | January 2007 | November 2010 | February 2011 | October 2012 | May 2013 | November 2014 | September 2015 | February 2024 |
---|---|---|---|---|---|---|---|---|---|
Hemoglobin (g/dL) | 14.7 | 13.3 | 14.1 | 15.1 | 14.7 | 15 | 14.6 | 14.9 | 16.2 |
Hematocrit (%) | 44.1 | 40.2 | 44 | 46.1 | 45.2 | 45.8 | 42.9 | 45.6 | 51.2 |
Erythrocytes (mm3) | 5,250,000 | 4,800,000 | 5,150,000 | 5,180,000 | 5,220,000 | 5,320,000 | 5,090,000 | 5,310,000 | 6,090,000 |
Leukocytes (mm3) | 10,000 | 4060 | 7100 | 4800 | 8100 | 6500 | 8000 | 7100 | 6060 |
Neutrophils (mm3) | 6300 | 2400 | 4260 | 2980 | 4430 | 4000 | 5410 | 4300 | 3490 |
Lymphocytes (mm3) | 3400 | 1200 | 2556 | 1060 | 2580 | 1810 | 1910 | 1980 | 1880 |
Monocytes (mm3) | 200 | 200 | 142 | 610 | 670 | 420 | 400 | 460 | 316 |
Eosinophils (mm3) | 100 | 200 | 142 | 130 | 400 | 210 | 220 | 330 | 190 |
Basophils (mm3) | 0 | 0 | 0 | 10 | 70 | 50 | 60 | 30 | 140 |
Platelets (mm3) | 366,000 | 260,000 | 370,000 | 251,000 | 289,000 | 289,000 | 357,000 | 295,000 | 334,000 |
Glucose (g/dL) | 73 | 98 | 83 | 64 | 92 | 83 | 81 | 87 | 119 |
Urea (g/dL) | 20 | 24 | 39 | - | 25 | 15.6 | - | 37 | 32.1 |
Uric acid (g/dL) | 5 | - | 5.2 | 6.7 | 6 | 5.9 | 6.6 | 5.5 | 6.8 |
BUN (g/dL) | 9.35 | 11.1 | 18.2 | 10.0 | - | - | 16.8 | 17.3 | 15 |
Creatinine (g/dL) | 0.9 | 0.91 | 0.7 | 0.7 | 0.81 | 0.7 | 0.7 | 0.7 | 0.8 |
Cholesterol (g/dL) | 234 | 222 | 309 | 218 | 301 | 321 | 282 | 285 | 304 |
Triglycerides (g/dL) | 133 | 337 | 133 | 88 | 204 | 202 | 191 | 229 | 245 |
Direct bilirubin (g/dL) | 0.1 | 0.11 | - | 0.2 | 0.16 | 0.12 | 0.09 | 0.12 | 0.16 |
Indirect bilirubin (g/dL) | 0.6 | 0.32 | - | 0.5 | 0 | 1 | 0.61 | 0.7 | 0.87 |
AST/TGO (U/L) | 22 | 22 | - | 30 | 24 | 24 | 20 | 21 | 29 |
ALT/TGP (U/L) | 26 | 42 | - | 47 | 48 | 39 | 47 | 32 | 35 |
ALP (U/L) | 70 | 105 | - | 111 | 116 | 116 | 115 | 114 | - |
LDH (U/L) | 255 | 257 | - | 454 | 294 | 213 | 151 | 160 | 210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador-Gómez, A.I.; Aguiñiga-Sánchez, I.; Mendoza-Núñez, V.M.; Cadena-Iñiguez, J.; Romero-López, E.; Santiago-Osorio, E. Li–Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation. Int. J. Mol. Sci. 2024, 25, 11477. https://doi.org/10.3390/ijms252111477
Amador-Gómez AI, Aguiñiga-Sánchez I, Mendoza-Núñez VM, Cadena-Iñiguez J, Romero-López E, Santiago-Osorio E. Li–Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation. International Journal of Molecular Sciences. 2024; 25(21):11477. https://doi.org/10.3390/ijms252111477
Chicago/Turabian StyleAmador-Gómez, Angel Iván, Itzen Aguiñiga-Sánchez, Víctor Manuel Mendoza-Núñez, Jorge Cadena-Iñiguez, Ernesto Romero-López, and Edelmiro Santiago-Osorio. 2024. "Li–Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation" International Journal of Molecular Sciences 25, no. 21: 11477. https://doi.org/10.3390/ijms252111477
APA StyleAmador-Gómez, A. I., Aguiñiga-Sánchez, I., Mendoza-Núñez, V. M., Cadena-Iñiguez, J., Romero-López, E., & Santiago-Osorio, E. (2024). Li–Fraumeni Syndrome: Narrative Review Through a Case Report with Ten Years of Primary Tumor Remission Associated with Sechium H387 07 Supplementation. International Journal of Molecular Sciences, 25(21), 11477. https://doi.org/10.3390/ijms252111477