Advancing Immunotherapy in Pancreatic Cancer
Abstract
:1. Introduction
2. Strategy
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
3. Mechanisms of Pancreatic Adenocarcinoma Tumorigenesis and Treatment Resistance
4. Antibody Therapy
5. Vaccine Therapy
NCT | Phase | Intervention | Study Participant | Study Initiation |
---|---|---|---|---|
NCT00669734 | I | Single Arm: Falimarev (recombiant fowlpox CEA-expressing viral vector vaccine) + Inalimarev (recombinant vaccinia CEA-expressing viral vector vaccine) + Sargramostim | n = 18 locally advanced or metastatic PDAC | 2010– |
NCT01595321 | II | Arm A: SBRT + FOLFIRINOX Arm B: SBRT + modified FOLFIRINOX Arm C: CY + GVAX + SBRT + modified FOLFIRINOX | n = 19 surgically resected PDAC with no prior treatment | 2012– |
NCT02451982 | II | Arm A: GVAX + CY Arm B: GVAX + Nivolumab + CY Arm C: GVAX + Nivolumab + Urelumab (anti-CD137) + CY Arm D: Nivolumab + BMS-986253 (anti-IL8) | n = 76 surgically resectable PDAC | 2016– |
NCT03104439 | II | Single Arm: Nivolumab + Ipilimumab + Radiation | n = 80 CRC and PDAC with prior chemotherapy treatment | 2017– |
NCT03193190 | I, II | Arm A: GnP Arm B: Atezolizumab (anti-PD-L1) + Selicrelumab (agonist CD40 Ab) + GnP Arm C: Atezolizumab + Bevacizumab (anti-VEGF-A) + GnP Arm D: Atezolizumab + AB928 (dual adenosine receptor antagonist) + GnP Arm E: Atezolizumab + Tiragolumab (anti-TIGIT) + GnP Arm F: Atezolizumab + Cobimetinib (Anti-MEK) Arm G: Atezolizumab + PEGPH20 Arm H: Atezolizumab + BL-8040 (CXCR4 antagonist) Arm I: Atezolizumab + RO6874281 (immunocytokine-targeting FAP) Arm J: Atezolizumab + Tocilizumab (anti-IL-6 mAb) + GnP | n = 340 metastatic PDAC with either no prior treatment (Arm 1) or disease progression following first-line systemic therapy (Arm 2) | 2017– |
NCT03080974 | II | Single Arm: IRE + adjuvant Nivolumab | n = 10 locally advanced PDAC | 2017– |
NCT03323944 | I | Single Arm: anti-mesothelin CAR vector-transduced autologous T-lymphocytes | n = 18 unresectable or metastatic PDAC | 2017– |
NCT03269526 | I, II | Single Arm: anti-EGFR-armed activated T cells (EGFR BATs) + SoC | n = 22 locally advanced or metastatic pancreatic cancer who have received at least one dose of first-line chemotherapy | 2017– |
NCT03153410 | I | Single Arm: CY + GVAX + Pembrolizumab + IMC-CS4 (anti-CSF1R Ab) | n = 12 borderline resectable PDAC | 2018– |
NCT03607890 | II | Arm A: Nivolumab + Relatimab (Anti-LAG-3 Ab), coadministration Arm B: Nivolumab + Relatimab, sequential administration | n = 42 metastatic or locally advanced PDAC, received prior PD-1 therapy, mismatch repair-deficient disease | 2018– |
NCT03257761 | I | Single Arm: Durvalumab + guadecitabine (antimetabolite) | n = 55 advanced HCC, PDAC, BC | 2018– |
NCT03563248 | II | Arm A: FOLFIRINOX + SBRT + surgical resection Arm B: FOLFIRINOX + Losartan + SBRT + surgical resection Arm C: FOLFIRINOX + Losartan + Nivolumab + SBRT + surgical resection Arm D: FOLFIRINOX + Nivolumab + SBRT + surgical resection | n = 168 borderline resectable and locally advanced PDAC | 2018– |
NCT03404960 | I, II | Arm A: Niraparib (PARP inhibitor) + Nivolumab Arm B: Niraparib + Ipilimumab | n = 104 advanced PDAC that has not progressed on platinum-based therapy | 2018– |
NCT03496662 | I, II |
Arm A: BMS-813160 (CCR2/CCR5 Inhibitor) + Nivolumab + GnP Arm B: GnP | n = 40 borderline resectable and locally advanced PDAC | 2018– |
NCT03592888 | I | Single Arm: Mature dendritic cell (mDC3/8) vaccine primer and booster | n = 29 resected PDAC with KRAS(G12D), KRAS(G12V), KRAS(G12R), KRAS(G12C-mutated), HLA-A02, HLA-A03, HLA-A11, HLA-B07, HLA-C08 | 2018– |
NCT03006302 | II | Arm A: Epacadostat (IDO1 inhbitor) + Pembrolizumab + CRS-207 + CY + GVAX, on different dosages Arm B: Epacadostat + Pembrolizumab + CRS-207 on different dosages | n = 41 metastatic PDAC that has progressed on prior chemotherapy | 2018– |
NCT03829501 | I, II | Arm A: KY1044 (anti-ICOS) Arm B: KY1044 +Atezolizumab | n = 280 metastatic solid tumors, including PDAC | 2019– |
NCT03970252 | I | Single Arm: Nivolumab + mFOLFIRNOX pre-surgery | n = 28 borderline resectable PDAC | 2019– |
NCT03682289 | II | Arm A: Ceralasertib (ATR kinase inhibitor) Arm B: Ceralasertib + Olaparib (PARP inhibitor) Arm C: Ceralasertib + Durvalumab | n = 89 locally advanced or metastatic solid tumors, including PDAC | 2019– |
NCT03816358 | I | Arm A: Anetumab Ravtansine (anti-mesothelin) + Nivolumab Arm B: Anetumab Ravtansine + Ipilimumab + Nivolumab Arm C: Anetumab Ravtansine + Nivolumab + Gemcitabine Hydrochloride | n = 74 recurrent, unresectable, or metastatic mesothelin-positive PDAC | 2019– |
NCT04137536 | I | Single Arm: EGFR BATs | n = 7 metastatic PDAC already treated with first-line standard chemotherapy | 2019– |
NCT03745326 | I, II | Single Arm: anti-KRAS G12D murine TCR PBL cells + CY + Fludarabine (antimetabolite) + Aldesleukin (recombinant IL-2) | n = 70 metastatic or unresectable cancers with G12D mutated KRAS, NRAS or HRAS, HLA-A*11:01 positive, no prior therapy or nonresponders; PDAC, GI cancer, gastric cancer, colon cancer, rectal cancer | 2019– |
NCT03806309 | II | Arm A: OSE2101 (T cell epitope-based vaccine) + FOLFIRI Arm B: FOLFIRI | n = 106 HLA-A2 patients with locally advanced or metastatic PDAC not amenable to surgery | 2019– |
NCT04161755 | I | Single Arm: RO7198457 (Personalized Tumor Vaccine) + Atezolizumab + mFOLFIRNOX | n = 29 resectable or radiographically resectable PDAC | 2019– |
NCT03767582 | I, II | Arm A: GVAX + Nivolumab + SBRT + CCR2/CCR5 dual antagonist Arm B: Nivolumab + SBRT + CCR2/CCR5 dual antagonist | n = 30 locally advanced unresectable PDAC | 2019– |
NCT04390763 | II | Arm A: NIS793 (anti-TGF-β) + Spartalizumab + GnP Arm B: NIS973 + GnP Arm C: GnP | n = 164 treatment naive, metastatic PDAC | 2020– |
NCT04477343 | I | Single Arm: SX-682 (CXCR1/2 inhibitor) + Nivolumab as maintenance | n = 20 metastatic PDAC with 16+ weeks first-line chemo without evidence of progression | 2020– |
NCT04612530 | I | Arm A: Nivolumab Arm B: Nivolumab + IRE Arm C: Nivolumab + IRE + TLR ligand (CpG) | n = 18 primary oligometastatic PDAC | 2020– |
NCT04493060 | II | Single Arm: Niraparib (PARP inhibitor) + Dostarlimab (anti-PD-1) | n = 22 germline or somatic BRCA and PALB2 metastatic PDAC | 2020– |
NCT04672434 | I | Arm A: Sym024 (anti-CD73), tested at different dosages Arm B: Sym024 + Sym021 (anti-PD-L1), tested at different dosages | n = 48 locally advanced or metastatic solid tumors, including PDAC | 2020– |
NCT04365049 | observational | Arm A: Camrelizumab (PD-1) + Radiotherapy + GnP Arm B: GnP | n = 100 locally advanced PDAC | 2020– |
NCT04666740 | II | Arm A/B: Pembrolizumab + Olaparib in patients with homologous recombination mutations, with stable or responding disease on platinum therapy Arm C: Pembrolizumab + Olaparib in patients without homologous recombination mutations with platinum-sensitive disease | n = 63 metastatic PDAC with responding disease on platinum-based treatment or homologous recombination gene deficiency | 2020– |
NCT04581473 | I, II | Single Arm: Claudin 18.2-targeting autologous CAR-T cell injection (CT041) | n = 192 advanced PDAC or GEA positive for Claudin 18.2 who have failed at least 2 prior lines treatment, or patients with pathologically diagnosed advanced PDAC who have failed at least 1 prior line treatment | 2020– |
NCT04157127 | I | Single Arm: Th-1 DC immunotherapy (autologous DC) vaccine | n = 43 potentially resectable PDAC following completion of standard chemotherapy | 2020– |
NCT04627246 | I | Single Arm: PEP-DC (autologous DC vax loaded with personal peptides) + Nivolumab + SoC chemotherapy | n = 12 resectable PDAC | 2020– |
NCT04753879 | II | Single Arm: Low-dose chemotherapy GAX-CI followed by Olaparib + Pembrolizumab | n = 38 untreated metastatic PDAC | 2021– |
NCT04548752 | II | Arm A: Olaparib Arm B: Olaparib + Pembrolizumab | n = 88 metastatic PDAC with germline BRCA 1/2 mutation | 2021– |
NCT04940286 | II | Single Arm: Durvalumab + Oleclumab + GnP | n = 30 resectable or borderline resectable PDAC | 2021– |
NCT04802876 | II | Arm A: Spartalizumab in patients with high PD-1 expression Arm B: Spartalizumab in patients with low PD-1 expression Arm C: Tislelizumab (anti-PD-1) in patient with high PD-1 expression | n = 184 PD1-high mRNA expressing solid tumors, including PDAC | 2021– |
NCT04888312 | Ib, II | Single Arm: Mitazalimab (anti-CD40) + FOLFIRINOX | n = 94 metastatic PDAC | 2021– |
NCT04887805 | II | Single Arm: Pembrolizumab + Lenvatinib (TKI inhibitor) | n = 28 advanced unresectable PDAC | 2021– |
NCT05000294 | I, II | Single Arm: Atezolizumab + Tivozanib (VEGF inhibitor) in immunologically cold tumors | n = 29 metastatic immunologically cold tumors, including PDAC | 2021– |
NCT04146298 | I, II | Single Arm: Mutant KRAS G12V-specific TCR transduced T-cell therapy | n = 30 locally advanced or metastatic PDAC with KRAS G12V mutation and HLA-A*11:01 | 2021– |
NCT05239182 | II | Single Arm: 9-ING-41 (GSK-3β inhibitor) + Retinfanlimab (anti-PD-1) + GnP | n = 32 previously untreated metastatic PDAC | 2022– |
NCT05052723 | II | Single Arm: Pembrolizumab + Cabozantinib | n = 21 metastatic PDAC progressed on SoC | 2022– |
NCT05132504 | II | Single Arm: mFOLFIRINOX + Pembrolizumab followed by surgery | n = 30 resectable PDAC | 2022– |
NCT05088889 | I | Single Arm: Ipilimumab + Nivolumab + SBRT + low dose irradiation | n = 10 metastatic PDAC | 2022– |
NCT05102721 | I, II | Single Arm: Avelumab (anti-PD-1) + Pepinemab (anti-SEMA4D) | n = 48 metastatic PDAC after progression on first-line chemotherapy | 2022– |
NCT05239143 | I | Single Arm: P-MUC1-Allogenic CAR-T cells (targeting the Mucin 1 antigen) | n = 180 advanced or metastatic epithelial-derived solid tumors refractory to SoC, including PDAC | 2022– |
NCT05194735 | I, II | Arm A: TCR-T cell (sleeping beauty transposon/transposase to express TCRs against neoantigens) Arm B: TCR-T cell + IL 2 | n = 180 with solid tumors who are TCR-applicable, completed HLA typing, and progressed on at least SoC therapy, including PDAC | 2022– |
NCT05014776 | II | Single Arm: Tadalafil (PDE5 inhibitor) + Pembrolizumab + Ipilimumab + CRS-207 (Listeria vaccine) | n = 17 previously treated metastatic PDAC | 2022– |
NCT06005493 | I, II | Arm A: AZD5863 (CLDN18.2) Intravenous Arm B: AZD5863 Subcutaneous | n = 200 locally advanced or metastatic tumor expressing Claudin 18.2; PDAC, gastric cancer, GEA | 2023– |
NCT05482893 | I, II | Arm A: PT886 (CLDN18.2, CD47) dose escalation Arm B: PT886 (ClLDN18.2, CD47) dose expansion Arm C: PT886 + GnP Arm D: PT886 + Pembrolizumab + oxaliplatin + leucovorin + Fluorouracil + capecitabine | n = 114 unresectable or metastatic PDAC and GEA | 2023– |
NCT05604560 | II | Single Arm: Tislelizumab and SX-682 (CXCR1/2 inhibitor) | n = 25 patients with resectable PDAC | 2023– |
NCT05945823 | II | Single Arm (For PDAC): Pembrolizumab + Futibatinib (FGER1-4 inhibitor) + mFOLFIRINOX | n = 66 locally advanced or metastatic solid tumors, including PDAC | 2023– |
NCT05630183 | II | Arm A: Botensilimab (CTLA-4 inhibitor) + GnP Arm B: GnP | n = 78 metastatic PDAC with progression on FOLFIRINOX | 2023– |
NCT06060405 | II | Single Arm: Durvalumab and Oleclumab | n = 22 resectable PDAC | 2023– |
NCT06051851 | II | Arm A: Penpulimab (anti-PD-1) and Anlotinib (multitargetting TKI) + GnP Arm B: GnP | n = 177 untreated metastatic PDAC | 2023– |
NCT05558982 | II | Single Arm: BXCL701 (DPP inhibitor) + Pembrolizmab | n = 43 metastatic PDAC refractory to SoC | 2023– |
NCT05846516 | I | Arm A: VSV-GP154 (chimeric oncolytic vesicular stomatitis virus vaccine with undisclosed peptides) + ATP150 (undisclosed protein vaccine) + ATP152 (undisclosed protein vaccine) Arm B: VSV-GP154 + ATP150 + ATP152 + Ezabenlimab (anti-PD-1) | n = 85 KRAS G12D or KRAS G12V-mutated advanced or metastatic PDAC | 2023– |
NCT05968326 | II | Arm A: Autogene Cevumeran (individualized neoantigen vaccine) + Atezolizumab + mFOLIRINOX Arm B: mFOLFIRINOX | n = 260 resected T1–T3, N0–N2, M0 PDAC with no prior systemic treatment | 2023– |
NCT05927142 | I, II | Single Arm: Durvalumab with Rintatolimod (TLR-3 agonist) | n = 43 stable metastatic PDAC | 2024– |
NCT06158139 | I | Single Arm: Autologous CAR-T targeting the B7-H3 antigen | n = 27 B7-H3 antigen-positive PDAC refractory to SoC | 2024– |
NCT06015724 | II | Single Arm: Daratumumab (anti-CD38) + KRAS vaccine + Nivolumab | n = 54, advanced PDAC or NSCLC with mutated KRAS G12A, C, D, R, S, V, or KRAS G13D and failed one prior treatment | 2024– |
6. Cellular Therapy
7. Discussion
NCT | Phase | Intervention | Study Participant | Study Duration | Clinical Outcomes |
---|---|---|---|---|---|
NCT01473940 #, [84] | Ib | Gemcitabine Hydrochloride + Ipilimumab (anti-CTLA-4) 3 mg/kg (Arm A) or 6 mg/kg (Arm B) | n = 20, unresectable PDAC | 2012–2018 | mPFS: 2.52 mo in Arm A (0.789–4.83), 3.86 mo in Arm B (0.756–22.42), OS: 5.72 mo in Arm A (1.61–22.81), 8.99 mo in Arm B (0.75–30.05) |
NCT02558894 #, [74] | II | Arm A: Durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) Arm B: Durvalumab | n = 65, metastatic PDAC | 2015–2017 | ORR: 3.1% in Arm A (0.08–16.22), 0% in Arm B (0–10.58) PFS: 1.5 mo in Arm A (1.2–1.5), 1.4 mo in Arm B (1.3–1.5) mOS: 3.1 mo in Arm A (2.2–6.1), 3.6 mo in Arm B (2.7–6.1) |
NCT02503774 +, [75] | I | Single Arm: Oleclumab (anti-CD73) + durvalumab | n = 192 advanced solid tumor, n = 42 advanced PDAC | 2015–2021 | PFS-6 mo (PDAC): 13.2% ORR (PDAC): 4.8% |
NCT02305186 *, [85] | I, II | Arm A: Pembrolizumab (anti-PD-L1) + neoadjuvant CRT Arm B: Neoadjuvant CRT | n = 37, resectable/borderline resectable PDAC | 2015–2022 | OS: 27.8 mo A vs. 24.3 mo B (p = 0.68) mRFS: 18.2 mo A vs. 14.1 mo B (p = 0.41) |
NCT02527434 *, [86] | II | Single Arm: Tremelimumab | n = 20 metastatic PDAC with prior first-line chemotherapy | 2015–2023 | ORR: 0% (0–16.8) mOS: 3.98 mo (2.83–5.42) |
NCT02583477 #, [87] | I, II | Durvalumab + AZD5069 (CXCR2 inhibitor) | n = 20 metastatic PDAC | 2016–2018 | ORR: 5.6% (0.58–19.95) DCR-12: 5.6 mo mPFS: 1.6 mo (1.29–1.69) |
NCT02646748 +, [76] | I | Single Arm: Pembrolizumab + itacitinib (JAK inhibitor) | n = 159 advanced solid tumors, n = 8 advanced PDAC | 2016–2020 | ORR (PDAC): 12.5% |
NCT03250273 #, [77] | II | Single Arm for PDAC: Nivolumab (anti-PD-1) + entinostat (HDAC inhibitor) | n = 30 metastatic PDAC | 2017–2020 | ORR: 11.1% OS: 2.729 mo (1.84 to 5.64) PFS6: 0.067 (0.017–0.254) |
NCT03214250 #, [88] | I, II | Arm A: GnP + nivolumab Arm B: GnP + sotigalimab (CD40 agonist) Arm C: GnP + sotigalimab + nivolumab | n = 105 previously untreated metastatic PDAC | 2017–2022 | One-year OS: 0.577 in Arm A (0.384–0.729), 0.481 in Arm B (0.309–0.634), 0.413 in Arm C (0.244–0.575) PFS: 6.37 mo A (5.19–8.80), 7.26 mo B (5.36–9.23), 6.74 mo C (4.17–9.79) ORR: 50% A (32.43–67.57), 33% B (18.56–50.97), 31.4% C (16.85–49.29) |
NCT03723915 #, [78] | II | Single Arm: Pembrolizumab and pelareorep (oncolytic reovirus) | n = 17, advanced PDAC | 2018–2019 | ORR: 8.33% mPFS: 1.87 mo (1.61–7.20) mOS: 6.21 mo (2.63–26.08) Terminated due to interim analysis criteria not met |
NCT03549000 #,*, [79] | I | Arm A: NZV930 (anti-CD73) Arm B: spartalizumab (anti-PD-L1), NIR178 (A2A receptor inhibitor) | n = 127 advanced solid tumors, n = 11 advanced PDAC | 2018–2022 | Terminated early because of poor interim analysis of treatment efficacy |
NCT03611556 #,* [89] | I, II | Arm A: GnP Arm B: Oleclumab + GnP Arm C: Oleclumab + durvalumab + GnP | n = 195 metastatic PDAC | 2018–2022 | PFS: 5.6 mo B (3.5–7.5), 7.5 mo C (5.5–10.9) DoR: 12.9 mo B(2.2–NA), 9.5 mo C (5.7–12.0) OS: 8.9 mo B (6.9–11.5), 12.9 mo C (10.1–15.3) |
NCT03634332 *, [80] | II | Single Arm: PEGPH20 and pembrolizumab | n = 8, metastatic PDAC + high hyaluronic acid | 2019–2021 | mOS: 7.2 mo (1.2–11.8) mPFS: 1.5 mo (0.9–4.4) Halted accrual early due to lack of response |
NCT04060342 #, [81] | I | Arm A: GB1275 (CD11b modulator) Arm B: GB1275 + pembrolizumab Arm C: GB1275 + GnP | n = 61, metastatic PDAC | 2019–2022 | No clear benefit of GB1275 was observed either as monotherapy or in combination with pembrolizumab |
NCT05061017 +, [82] | II | Arm A: Nivolumab + pixatimod (TLR-9 activator) Arm B: Nivolumab + pixatimod + CY | n = 58 solid tumor patients, n = 18 PDAC | 2021–2024 | ORR (PDAC): 0% |
NCT | Phase | Intervention | Study Participant | Study Duration | Clinical Outcomes |
---|---|---|---|---|---|
NCT00836407 #, [90] | I | Arm A: Ipilimumab alone Arm B: Ipilimumab + pancreatic cancer vaccine (allogenic pancreatic tumor cells transfected with a GM-CSF gene) | n = 30 advanced PDAC | 2009–2012 | OS: 3.6 mo Arm A (2.5–9.2) vs. 5.7 mo Arm B (4.3–14.7) |
NCT01896869 #, [91] | II | Arm A: Ipilimumab + pancreatic cancer vaccine Arm B: FOLFIRNOX | n = 82 metastatic PDAC treated with FOLFIRNOX with ongoing response or stable disease after 8–12 doses | 2013–2019 |
OS: 9.38 mo Arm A (5.0–12.2) vs. 14.7 mo Arm B (11.6–20.0) PFS: 2.4 mo Arm A (1.87–2.53) vs. 5.55 mo Arm B (3.32–8.51) ORR: 2.9% Arm A vs. 10.3% Arm B |
NCT02243371 #, [92] | II | Arm A: CY + GVAX + CRS-207 + Nivolumab Arm B: CY + GVAX + CRS-207 | n = 93 previously treated metastatic PDAC | 2015–2017 | OS: 5.88 mo Arm A (4.73–8.64) vs. 6.11 mo Arm B (3.52–7.00) PFS: 2.23 mo Arm A (2.14–2.33) vs. 2.17 mo Arm B (2.00–2.30) |
NCT03161379 *, [93] | II | Single Arm: CY + Nivolumab + GVAX + SBRT | n = 31 borderline resectable PDAC | 2018–2024 | MPRR (<10% residual viable tumor): 35% mOS: 20.4 mo (18.2–NA) |
NCT | Phase | Intervention | Study Participant | Study Duration | Clinical Outcomes |
---|---|---|---|---|---|
NCT00084383 #, [94] | II | Single Arm: GVAX following SoC | n = 60, surgically resected PDAC | 2002–2006 | OS: 24.8 (21.2–31.6) DFS: 17.3 mo (14.6–22.8) |
NCT00358566 #, [99] | III | Arm A: Gemcitabine Arm B: GV1001 (telomerase peptide vaccine) + gemcitabine | n = 360, locally advanced or metastatic PDAC | 2006–2008 | Terminated, preliminary data showed no survival benefit in the GV1001 group compared to the gemcitabine group. |
NCT00425360 *, [100] | III | Arm A: Sargramostim (recombinant human GM-CSF) + GV1001 + capecitabine + gemcitabine hydrochloride concurrently Arm B: Capecitabine + gemcitabine hydrochloride with sequential GV1001 Arm C: Capecitabine + gemcitabine hydrochloride alone | n = 1062 locally advanced or metastatic PDAC | 2006–2013 | OS: 8.4 mo (7.3–9.7) in Arm A vs. 6.9 mo (6.4–7.6) in Arm B vs. 7.9 mo (7.1–8.8) in Arm C |
NCT00389610 #, [95] | II | Arm A: Previously vaccinated with GVAX, booster every 6 mo Arm B: GVAX naive, priming once a mo for 3 mo, every 6 mo afterwards | n = 56 surgically resected PDAC | 2006–2022 | OS: 80.5 mo in Arm A (22.5 to 187.8), 30.7 mo in Arm B (19.3 to 40.7) DFS after 16 years: 109.5 mo in Arm A (5.59 to NA), 13.7 in Arm B (5.55 to 25.1) |
NCT01417000 #, [96] | II | Arm A: CY + GVAX + CRS-207 (mesothelin-expressing LADD) Arm B: CY + GVAX | n = 93 previously treated metastatic PDAC | 2011–2017 | OS: 6.26 mo in Arm A (4.47–9.40) vs. 4.07 mo in Arm B (3.32–5.42) |
NCT02261714 #, [102] | I, II | Single Arm: TG01 (KRAS vaccine)/GM-CSF + gemcitabine | n = 32 surgically resected PDAC | 2012–2019 | OS: 33.3 mo (24.0–40.0) DFS: 16.1 mo (11.1–19.6) |
NCT02004262 +, [97] | II | Arm A: CY + GVAX + CRS-207 Arm B: CRS-207 Arm C: SoC | n = 213 previously treated metastatic PDAC | 2014–2016 | mOS: 3.7 mo in Arm A (2.9–5.3) vs. 5.4 mo in Arm B (4.2–6.4) vs. 4.6 mo in Arm C (4.2–5.7) HR: 1.17 (0.84–1.64) |
NCT03190265 #, [98] | II | Arm A: CY + Nivolumab + Ipilimumab + GVAX + CRS-207 Arm B: Nivolumab + Ipilimumab + CRS-207 | n = 61 previously treated metastatic PDAC | 2017–2023 | ORR 0.0% in Arm A, 7.4% in Arm B |
NCT | Phase | Intervention | Study Participant | Study Duration | Clinical Outcomes |
---|---|---|---|---|---|
NCT00965718 #,+, [107] | II | Single Arm: Activated cytokine-induced killer cells | n = 20, gemcitabine refractory advanced PDAC | 2009–2010 | DCR: 25% (3.78 to 46.22) OS: 6.6 weeks (8.6 to 44.6) PFS: 11 weeks (8.8 to 13.2) |
NCT01897415 *, [108] | I | Single Arm: Autologous mesothelin-CAR-T cells | n = 6 metastatic PDAC | 2013–2017 | SD: 33.33% |
NCT02718859 +, [109] | I, II | Arm A: IRE alone Arm B: IRE + allogenic NK cell therapy | n = 40 advanced PDAC | 2016–2019 | ORR at 2 mo: 63.16% in Arm A vs. 80% in Arm B |
NCT03180437 +, [110] | I, II | Arm A1: IRE surgery + single course of γδT cells Arm B: IRE surgery | n = 62 locally advanced PDAC | 2017–2019 | mOS: 14.5 mo in Arm A vs. 11 mo in Arm B. mPFS: 11 mo in Arm A vs. 8.5 mo in Group B |
NCT03114631 +, [111] | I, II | Arm A: Autologous DC tumor lysate (5 doses) Arm B: Autologous DC tumor lysate (10 doses) Arm C: Autologous DC tumor lysate (15 doses) | n = 26 unresectable PDAC | 2017–2019 | One-year OS: 78.2% in Arm C vs. 33.8% in control p = 0.0001 |
NCT03159819 *, [106] | I | Single Arm: Autologous CAR-CLD18.2 T cells | n = 12, including gastric adenocarcinoma, n = 5 advanced or metastatic PDAC patients | 2017–2021 | ORR: 20% |
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49, Erratum in CA Cancer J. Clin. 2024, 74, 203. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Gaduputi, V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J. Oncol. 2019, 10, 10–27. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Melisi, D.; Macarulla, T.; Pazo Cid, R.; Chandana, S.R.; De La Fouchardiere, C.; Dean, A.; Kiss, I.; Lee, W.J.; Goetze, T.O.; et al. NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naive patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): A randomised, open-label, phase 3 trial. Lancet 2023, 402, 1272–1281. [Google Scholar] [CrossRef]
- Beatty, G.L.; Werba, G.; Lyssiotis, C.A.; Simeone, D.M. The biological underpinnings of therapeutic resistance in pancreatic cancer. Genes Dev. 2021, 35, 940–962. [Google Scholar] [CrossRef]
- Patnaik, A.; Kang, S.P.; Rasco, D.; Papadopoulos, K.P.; Elassaiss-Schaap, J.; Beeram, M.; Drengler, R.; Chen, C.; Smith, L.; Espino, G.; et al. Phase I Study of Pembrolizumab (MK-3475; Anti-PD-1 Monoclonal Antibody) in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2015, 21, 4286–4293. [Google Scholar] [CrossRef]
- Lundy, J.; McKay, O.; Croagh, D.; Ganju, V. Exceptional Response to Olaparib and Pembrolizumab for Pancreatic Adenocarcinoma with Germline BRCA1 Mutation and High Tumor Mutation Burden: Case Report and Literature Review. JCO Precis. Oncol. 2022, 6, e2100437. [Google Scholar] [CrossRef]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A., Jr.; Mandelker, D.; Yu, K.H.; et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef]
- Gkountakos, A.; Singhi, A.D.; Westphalen, C.B.; Scarpa, A.; Luchini, C. Fusion genes in pancreatic tumors. Trends Cancer 2024, 10, 430–443. [Google Scholar] [CrossRef]
- Hu, H.F.; Ye, Z.; Qin, Y.; Xu, X.W.; Yu, X.J.; Zhuo, Q.F.; Ji, S.R. Mutations in key driver genes of pancreatic cancer: Molecularly targeted therapies and other clinical implications. Acta Pharmacol. Sin. 2021, 42, 1725–1741. [Google Scholar] [CrossRef]
- Rosenberg, A.; Mahalingam, D. Immunotherapy in pancreatic adenocarcinoma-overcoming barriers to response. J. Gastrointest. Oncol. 2018, 9, 143–159. [Google Scholar] [CrossRef]
- Feig, C.; Gopinathan, A.; Neesse, A.; Chan, D.S.; Cook, N.; Tuveson, D.A. The pancreas cancer microenvironment. Clin. Cancer Res. 2012, 18, 4266–4276. [Google Scholar] [CrossRef]
- Murakami, T.; Hiroshima, Y.; Matsuyama, R.; Homma, Y.; Hoffman, R.M.; Endo, I. Role of the tumor microenvironment in pancreatic cancer. Ann. Gastroenterol. Surg. 2019, 3, 130–137. [Google Scholar] [CrossRef]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef]
- Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017, 8, 59950–59964. [Google Scholar] [CrossRef]
- Son, B.; Lee, S.; Youn, H.; Kim, E.; Kim, W.; Youn, B. The role of tumor microenvironment in therapeutic resistance. Oncotarget 2017, 8, 3933–3945. [Google Scholar] [CrossRef]
- Goepfert, C.; Sundberg, C.; Sevigny, J.; Enjyoji, K.; Hoshi, T.; Csizmadia, E.; Robson, S. Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 2001, 104, 3109–3115. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, X.; Xiao, Y.; Wang, P.; Zheng, J.; Wu, X.; Jin, Z. The ectonucleotidases CD39 and CD73 on T cells: The new pillar of hematological malignancy. Front. Immunol. 2023, 14, 1110325. [Google Scholar] [CrossRef]
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Hasko, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Chen, X.; Li, L.; Li, Y.; Ping, Y.; Huang, L.; Yue, D.; Zhang, Z.; Wang, F.; et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-beta-mTOR-HIF-1 signaling in patients with non-small cell lung cancer. Oncoimmunology 2017, 6, e1320011. [Google Scholar] [CrossRef]
- Dwyer, K.M.; Deaglio, S.; Gao, W.; Friedman, D.; Strom, T.B.; Robson, S.C. CD39 and control of cellular immune responses. Purinergic Signal 2007, 3, 171–180. [Google Scholar] [CrossRef]
- Tang, T.; Huang, X.; Lu, M.; Zhang, G.; Han, X.; Liang, T. Transcriptional control of pancreatic cancer immunosuppression by metabolic enzyme CD73 in a tumor-autonomous and -autocrine manner. Nat. Commun. 2023, 14, 3364. [Google Scholar] [CrossRef]
- Jacoberger-Foissac, C.; Cousineau, I.; Bareche, Y.; Allard, D.; Chrobak, P.; Allard, B.; Pommey, S.; Messaoudi, N.; McNicoll, Y.; Soucy, G.; et al. CD73 Inhibits cGAS-STING and Cooperates with CD39 to Promote Pancreatic Cancer. Cancer Immunol. Res. 2023, 11, 56–71. [Google Scholar] [CrossRef]
- Xia, C.; Yin, S.; To, K.K.W.; Fu, L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol. Cancer 2023, 22, 44. [Google Scholar] [CrossRef]
- Zhao, J.; Soto, L.M.S.; Wang, H.; Katz, M.H.; Prakash, L.R.; Kim, M.; Tzeng, C.D.; Lee, J.E.; Wolff, R.A.; Huang, Y.; et al. Overexpression of CD73 in pancreatic ductal adenocarcinoma is associated with immunosuppressive tumor microenvironment and poor survival. Pancreatology 2021, 21, 942–949. [Google Scholar] [CrossRef]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood 2018, 131, 58–67. [Google Scholar] [CrossRef]
- Pandey, V.; Storz, P. Targeting the tumor microenvironment in pancreatic ductal adenocarcinoma. Expert. Rev. Anticancer. Ther. 2019, 19, 473–482. [Google Scholar] [CrossRef]
- Deng, D.; Patel, R.; Chiang, C.Y.; Hou, P. Role of the Tumor Microenvironment in Regulating Pancreatic Cancer Therapy Resistance. Cells 2022, 11, 2952. [Google Scholar] [CrossRef]
- Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet 2011, 378, 607–620. [Google Scholar] [CrossRef]
- Hruban, R.H.; Maitra, A.; Goggins, M. Update on pancreatic intraepithelial neoplasia. Int. J. Clin. Exp. Pathol. 2008, 1, 306–316. [Google Scholar]
- Hwang, R.F.; Moore, T.; Arumugam, T.; Ramachandran, V.; Amos, K.D.; Rivera, A.; Ji, B.; Evans, D.B.; Logsdon, C.D. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 2008, 68, 918–926. [Google Scholar] [CrossRef]
- Haber, P.S.; Keogh, G.W.; Apte, M.V.; Moran, C.S.; Stewart, N.L.; Crawford, D.H.; Pirola, R.C.; McCaughan, G.W.; Ramm, G.A.; Wilson, J.S. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. Am. J. Pathol. 1999, 155, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Montemagno, C.; Cassim, S.; Pouyssegur, J.; Broisat, A.; Pages, G. From Malignant Progression to Therapeutic Targeting: Current Insights of Mesothelin in Pancreatic Ductal Adenocarcinoma. Int. J. Mol. Sci. 2020, 21, 4067. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, U.; Marin-Muller, C.; Li, M.; Chen, C.; Yao, Q. Mesothelin confers pancreatic cancer cell resistance to TNF-alpha-induced apoptosis through Akt/PI3K/NF-kappaB activation and IL-6/Mcl-1 overexpression. Mol. Cancer 2011, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Kluza, J.; Corazao-Rozas, P.; Touil, Y.; Jendoubi, M.; Maire, C.; Guerreschi, P.; Jonneaux, A.; Ballot, C.; Balayssac, S.; Valable, S.; et al. Inactivation of the HIF-1alpha/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res. 2012, 72, 5035–5047. [Google Scholar] [CrossRef]
- Truong, L.H.; Pauklin, S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers 2021, 13, 5028. [Google Scholar] [CrossRef]
- Efthymiou, G.; Saint, A.; Ruff, M.; Rekad, Z.; Ciais, D.; Van Obberghen-Schilling, E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front. Oncol. 2020, 10, 641. [Google Scholar] [CrossRef]
- Pastan, I.; Hassan, R. Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res. 2014, 74, 2907–2912. [Google Scholar] [CrossRef]
- Dauer, P.; Nomura, A.; Saluja, A.; Banerjee, S. Microenvironment in determining chemo-resistance in pancreatic cancer: Neighborhood matters. Pancreatology 2017, 17, 7–12. [Google Scholar] [CrossRef]
- Goydel, R.S.; Rader, C. Antibody-based cancer therapy. Oncogene 2021, 40, 3655–3664. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Yao, X.; Luo, W.; Qu, Y.; Yu, D.; Li, X.; Fang, J.; Huang, C. Development of a Novel EGFR-Targeting Antibody-Drug Conjugate for Pancreatic Cancer Therapy. Target. Oncol. 2019, 14, 93–105. [Google Scholar] [CrossRef]
- Cardillo, T.M.; Govindan, S.V.; Sharkey, R.M.; Trisal, P.; Arrojo, R.; Liu, D.; Rossi, E.A.; Chang, C.H.; Goldenberg, D.M. Sacituzumab Govitecan (IMMU-132), an Anti-Trop-2/SN-38 Antibody-Drug Conjugate: Characterization and Efficacy in Pancreatic, Gastric, and Other Cancers. Bioconjug Chem. 2015, 26, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Forster, T.; Huettner, F.J.; Springfeld, C.; Loehr, M.; Kalkum, E.; Hackbusch, M.; Hackert, T.; Diener, M.K.; Probst, P. Cetuximab in Pancreatic Cancer Therapy: A Systematic Review and Meta-Analysis. Oncology 2020, 98, 53–60. [Google Scholar] [CrossRef]
- Ott, P.A.; Bang, Y.J.; Piha-Paul, S.A.; Razak, A.R.A.; Bennouna, J.; Soria, J.C.; Rugo, H.S.; Cohen, R.B.; O’Neil, B.H.; Mehnert, J.M.; et al. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J. Clin. Oncol. 2019, 37, 318–327. [Google Scholar] [CrossRef]
- Kwok, G.; Yau, T.C.; Chiu, J.W.; Tse, E.; Kwong, Y.L. Pembrolizumab (Keytruda). Hum. Vaccin. Immunother. 2016, 12, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- Palecki, J.; Bhasin, A.; Bernstein, A.; Mille, P.J.; Tester, W.J.; Kelly, W.K.; Zarrabi, K.K. T-Cell redirecting bispecific antibodies: A review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol. Ther. 2024, 25, 2356820. [Google Scholar] [CrossRef] [PubMed]
- Administration, U.S.F.D. FDA Grants Accelerated Approval to Tarlatamab-Dlle for Extensive Stage Small Cell Lung Cancer. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-tarlatamab-dlle-extensive-stage-small-cell-lung-cancer (accessed on 20 October 2024).
- Tsai, H.J. Clinical cancer chemoprevention: From the hepatitis B virus (HBV) vaccine to the human papillomavirus (HPV) vaccine. Taiwan. J. Obstet. Gynecol. 2015, 54, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Senzer, N.N.; Kaufman, H.L.; Amatruda, T.; Nemunaitis, M.; Reid, T.; Daniels, G.; Gonzalez, R.; Glaspy, J.; Whitman, E.; Harrington, K.; et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 2009, 27, 5763–5771. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Rocconi, R.P.; Grosen, E.A.; Ghamande, S.A.; Chan, J.K.; Barve, M.A.; Oh, J.; Tewari, D.; Morris, P.C.; Stevens, E.E.; Bottsford-Miller, J.N.; et al. Gemogenovatucel-T (Vigil) immunotherapy as maintenance in frontline stage III/IV ovarian cancer (VITAL): A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Oncol. 2020, 21, 1661–1672. [Google Scholar] [CrossRef]
- Wang, B.; Pei, J.; Xu, S.; Liu, J.; Yu, J. Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front. Immunol. 2023, 14, 1246682. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, G.; Tang, T.Y.; Gao, X.; Liang, T.B. Personalized pancreatic cancer therapy: From the perspective of mRNA vaccine. Mil. Med. Res. 2022, 9, 53. [Google Scholar] [CrossRef]
- Fan, T.; Zhang, M.; Yang, J.; Zhu, Z.; Cao, W.; Dong, C. Therapeutic cancer vaccines: Advancements, challenges, and prospects. Signal Transduct. Target. Ther. 2023, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Scaggiante, B.; Morris, R.; Chai, D.; Catalano, M.; Tardiel-Cyril, D.R.; Neeli, P.; Roviello, G.; Mondani, G.; Li, Y. Therapeutic cancer vaccines: From biological mechanisms and engineering to ongoing clinical trials. Cancer Treat. Rev. 2022, 109, 102429. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fu, M.; Wang, M.; Wan, D.; Wei, Y.; Wei, X. Cancer vaccines as promising immuno-therapeutics: Platforms and current progress. J. Hematol. Oncol. 2022, 15, 28. [Google Scholar] [CrossRef]
- Hanna, M.G., Jr. Immunotherapy with autologous tumor cell vaccines for treatment of occult disease in early stage colon cancer. Hum. Vaccin. Immunother. 2012, 8, 1156–1160. [Google Scholar] [CrossRef]
- Watkins, D.E.; Craig, D.J.; Vellani, S.D.; Hegazi, A.; Fredrickson, K.J.; Walter, A.; Stanbery, L.; Nemunaitis, J. Advances in Targeted Therapy for the Treatment of Cervical Cancer. J. Clin. Med. 2023, 12, 5992. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, A.; Zheng, S.; Chen, C.; Lyu, J. Recent Estimates and Predictions of 5-Year Survival in Patients with Gastric Cancer: A Model-Based Period Analysis. Cancer Control 2022, 29, 10732748221099227. [Google Scholar] [CrossRef]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- El-Kadiry, A.E.; Rafei, M.; Shammaa, R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front. Med. 2021, 8, 756029. [Google Scholar] [CrossRef]
- Titov, A.; Zmievskaya, E.; Ganeeva, I.; Valiullina, A.; Petukhov, A.; Rakhmatullina, A.; Miftakhova, R.; Fainshtein, M.; Rizvanov, A.; Bulatov, E. Adoptive Immunotherapy beyond CAR T-Cells. Cancers 2021, 13, 743. [Google Scholar] [CrossRef]
- Okur, F.V.; Brenner, M.K. Cellular immunotherapy of cancer. Methods Mol. Biol. 2010, 651, 319–345. [Google Scholar] [PubMed]
- Administration, U.S.F.D. Oncology (Cancer)/Hematologic Malignancies Approval Notifications. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancerhematologic-malignancies-approval-notifications?randparam=629674 (accessed on 20 October 2024).
- Majzner, R.G.; Mackall, C.L. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018, 8, 1219–1226. [Google Scholar] [CrossRef] [PubMed]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Brentjens, R.; Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013, 3, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Asmamaw Dejenie, T.; Tiruneh, G.M.M.; Dessie Terefe, G.; Tadele Admasu, F.; Wale Tesega, W.; Chekol Abebe, E. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum. Vaccin. Immunother. 2022, 18, 2114254. [Google Scholar] [CrossRef]
- Yeo, D.; Giardina, C.; Saxena, P.; Rasko, J.E.J. The next wave of cellular immunotherapies in pancreatic cancer. Mol. Ther. Oncolytics 2022, 24, 561–576. [Google Scholar] [CrossRef]
- Tomasik, J.; Jasinski, M.; Basak, G.W. Next generations of CAR-T cells—New therapeutic opportunities in hematology? Front. Immunol. 2022, 13, 1034707. [Google Scholar] [CrossRef]
- Mehrabadi, A.Z.; Ranjbar, R.; Farzanehpour, M.; Shahriary, A.; Dorostkar, R.; Hamidinejad, M.A.; Ghaleh, H.E.G. Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomed. Pharmacother. 2022, 146, 112512. [Google Scholar] [CrossRef]
- Tang, L.; Pan, S.; Wei, X.; Xu, X.; Wei, Q. Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development. Mol. Ther. 2023, 31, 3146–3162. [Google Scholar] [CrossRef]
- Yang, M.; Tang, X.; Zhang, Z.; Gu, L.; Wei, H.; Zhao, S.; Zhong, K.; Mu, M.; Huang, C.; Jiang, C.; et al. Tandem CAR-T cells targeting CD70 and B7-H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics 2020, 10, 7622–7634. [Google Scholar] [CrossRef]
- Heymach, J.V.; Harpole, D.; Mitsudomi, T.; Taube, J.M.; Galffy, G.; Hochmair, M.; Winder, T.; Zukov, R.; Garbaos, G.; Gao, S.; et al. Perioperative Durvalumab for Resectable Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2023, 389, 1672–1684. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, E.M.; Oh, D.Y.; Dhani, N.; Renouf, D.J.; Lee, M.A.; Sun, W.; Fisher, G.; Hezel, A.; Chang, S.C.; Vlahovic, G.; et al. Durvalumab With or Without Tremelimumab for Patients With Metastatic Pancreatic Ductal Adenocarcinoma: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Bendell, J.; LoRusso, P.; Overman, M.; Noonan, A.M.; Kim, D.W.; Strickler, J.H.; Kim, S.W.; Clarke, S.; George, T.J.; Grimison, P.S.; et al. First-in-human study of oleclumab, a potent, selective anti-CD73 monoclonal antibody, alone or in combination with durvalumab in patients with advanced solid tumors. Cancer Immunol. Immunother. 2023, 72, 2443–2458. [Google Scholar] [CrossRef] [PubMed]
- Munster, P.; Iannotti, N.; Cho, D.C.; Kirkwood, J.M.; Villaruz, L.C.; Gibney, G.T.; Hodi, F.S.; Mettu, N.B.; Jones, M.; Bowman, J.; et al. Combination of Itacitinib or Parsaclisib with Pembrolizumab in Patients with Advanced Solid Tumors: A Phase I Study. Cancer Res. Commun. 2023, 3, 2572–2584. [Google Scholar] [CrossRef]
- A Clinical Trial of Entinostat in Combination with Nivolumab for Patients with Previously Treated Unresectable or Metastatic Cholangiocarcinoma and Pancreatic Adenocarcinoma. Available online: https://clinicaltrials.gov/study/NCT03250273 (accessed on 20 October 2024).
- Mahalingam, D.; Chen, S.; Xie, P.; Loghmani, H.; Heineman, T.; Kalyan, A.; Kircher, S.; Helenowski, I.B.; Mi, X.; Maurer, V.; et al. Combination of pembrolizumab and pelareorep promotes anti-tumour immunity in advanced pancreatic adenocarcinoma (PDAC). Br. J. Cancer 2023, 129, 782–790. [Google Scholar] [CrossRef]
- Fu, S.; Banerji, U.; Bedard, P.L.; Ferrándiz, A.C.; Chiappori, A.; Desai, J.; Jamal, R.; Perez, D.R.; Yamamoto, N.; Vieira, E.; et al. Abstract CT503: A phase I/Ib study of the safety and preliminary efficacy of NZV930 alone and in combination with spartalizumab and/or taminadenant in patients (pts) with advanced malignancies. Cancer Res. 2022, 82, CT503. [Google Scholar] [CrossRef]
- Zhen, D.B.; Whittle, M.; Ritch, P.S.; Hochster, H.S.; Coveler, A.L.; George, B.; Hendifar, A.H.; Dragovich, T.; Green, S.; Dion, B.; et al. Phase II study of PEGPH20 plus pembrolizumab for patients (pts) with hyaluronan (HA)-high refractory metastatic pancreatic adenocarcinoma (mPC): PCRT16-001. J. Clin. Oncol. 2022, 40 (Suppl. S4), 576. [Google Scholar] [CrossRef]
- Rasco, D.W.; Bendell, J.C.; Wang-Gillam, A.; Park, W.; O’Reilly, E.M.; Zhou, L.; Galkin, A.; Carter, L.C.; Nickle, D.; Li, J.; et al. A phase I/II study of GB1275, a first-in-class oral CD11b modulator, alone, and combined with pembrolizumab in specified advanced solid tumors or with chemotherapy in metastatic pancreatic cancer (KEYNOTE-A36). J. Clin. Oncol. 2020, 38 (Suppl. S15), 3085. [Google Scholar] [CrossRef]
- Lemech, C.; Dredge, K.; Bampton, D.; Hammond, E.; Clouston, A.; Waterhouse, N.J.; Stanley, A.C.; Leveque-El Mouttie, L.; Chojnowski, G.M.; Haydon, A.; et al. Phase Ib open-label, multicenter study of pixatimod, an activator of TLR9, in combination with nivolumab in subjects with microsatellite-stable metastatic colorectal cancer, metastatic pancreatic ductal adenocarcinoma and other solid tumors. J. Immunother. Cancer 2023, 11, e006136. [Google Scholar] [CrossRef]
- O’Hara, M.H.; O’Reilly, E.M.; Varadhachary, G.; Wolff, R.A.; Wainberg, Z.A.; Ko, A.H.; Fisher, G.; Rahma, O.; Lyman, J.P.; Cabanski, C.R.; et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: An open-label, multicentre, phase 1b study. Lancet Oncol. 2021, 22, 118–131. [Google Scholar] [CrossRef]
- Kamath, S.D.; Kalyan, A.; Kircher, S.; Nimeiri, H.; Fought, A.J.; Benson, A., 3rd; Mulcahy, M. Ipilimumab and Gemcitabine for Advanced Pancreatic Cancer: A Phase Ib Study. Oncologist 2020, 25, e808–e815. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.H.G.; Petroni, G.R.; Bauer, T.; Reilley, M.J.; Wolpin, B.M.; Stucky, C.C.; Bekaii-Saab, T.S.; Elias, R.; Merchant, N.; Dias Costa, A.; et al. Multicenter randomized controlled trial of neoadjuvant chemoradiotherapy alone or in combination with pembrolizumab in patients with resectable or borderline resectable pancreatic adenocarcinoma. J. Immunother. Cancer 2023, 11, e007586. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sohn, J.; Shin, S.J.; Oh, D.Y.; Keam, B.; Lee, H.J.; Gizzi, M.; Kalinka, E.; de Vos, F.; Ruscica, D.; et al. Efficacy and Tolerability of Tremelimumab in Locally Advanced or Metastatic Urothelial Carcinoma Patients Who Have Failed First-Line Platinum-Based Chemotherapy. Clin. Cancer Res. 2020, 26, 61–70. [Google Scholar] [CrossRef]
- Sun, Z. Phase Ib/II Study of MEDI4736 Evaluated in Different Combinations in Metastatic Pancreatic Ductal Carcinoma. Available online: https://clinicaltrials.gov/ct2/show/study/NCT02583477 (accessed on 20 October 2024).
- Padron, L.J.; Maurer, D.M.; O’Hara, M.H.; O’Reilly, E.M.; Wolff, R.A.; Wainberg, Z.A.; Ko, A.H.; Fisher, G.; Rahma, O.; Lyman, J.P.; et al. Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: Clinical and immunologic analyses from the randomized phase 2 PRINCE trial. Nat. Med. 2022, 28, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Coveler, A.L.; Reilley, M.J.; Zalupski, M.; Macarulla, T.; Fountzilas, C.; Ponz-Sarvise, M.; Nagrial, A.; Uboha, N.V.; Frentzas, S.; Overman, M.; et al. A Phase Ib/II Randomized Clinical Trial of Oleclumab with or without Durvalumab plus Chemotherapy in Patients with Metastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2024, 30, 4609–4617. [Google Scholar] [CrossRef]
- Hopkins, A.C.; Yarchoan, M.; Durham, J.N.; Yusko, E.C.; Rytlewski, J.A.; Robins, H.S.; Laheru, D.A.; Le, D.T.; Lutz, E.R.; Jaffee, E.M. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight 2018, 3, e122092. [Google Scholar] [CrossRef]
- Wu, A.A.; Bever, K.M.; Ho, W.J.; Fertig, E.J.; Niu, N.; Zheng, L.; Parkinson, R.M.; Durham, J.N.; Onners, B.; Ferguson, A.K.; et al. A Phase II Study of Allogeneic GM-CSF-Transfected Pancreatic Tumor Vaccine (GVAX) with Ipilimumab as Maintenance Treatment for Metastatic Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 5129–5139. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Crocenzi, T.; Durham, J.N.; Sugar, E.A.; Wu, A.A.; Onners, B.; Nauroth, J.M.; Anders, R.A.; Fertig, E.J.; Laheru, D.A.; et al. Evaluation of Cyclophosphamide/GVAX Pancreas Followed by Listeria-Mesothelin (CRS-207) with or without Nivolumab in Patients with Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 3578–3588. [Google Scholar] [CrossRef]
- Agarwal, P.; Qi, H.; Munjal, K.; Gai, J.; Ferguson, A.; Parkinson, R.; Harrison, J.; Rodriguez, C.; Anders, R.A.; Thompson, E.D.; et al. Overall survival (OS) and pathologic response rate from a phase II clinical trial of neoadjuvant GVAX pancreas vaccine (with cyclophosphamide) in combination with nivolumab and stereotactic body radiation therapy (SBRT) followed by definitive resection for patients with borderline resectable pancreatic adenocarcinoma (BR-PDAC). J. Clin. Oncol. 2023, 41 (Suppl. S16), e16309. [Google Scholar]
- Lutz, E.; Yeo, C.J.; Lillemoe, K.D.; Biedrzycki, B.; Kobrin, B.; Herman, J.; Sugar, E.; Piantadosi, S.; Cameron, J.L.; Solt, S.; et al. A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann. Surg. 2011, 253, 328–335. [Google Scholar]
- Adjuvant GVAX Vaccine Therapy in Patients with Pancreatic Cancer. Available online: https://clinicaltrials.gov/study/NCT00389610 (accessed on 20 October 2024).
- Whiting, C.; Lutz, E.; Nair, N.; Chang, S.; Lemmens, E.; Chen, S.Y.; Solt, S.; Ferber, S.; Maecker, H.; Murphy, A.; et al. Phase II, randomized study of GVAX pancreas and CRS-207 immunotherapy in patients with metastatic pancreatic cancer: Clinical update on long term survival and biomarker correlates to overall survival. J. Clin. Oncol. 2015, 33 (Suppl. S3), 261. [Google Scholar] [CrossRef]
- Le, D.T.; Picozzi, V.J.; Ko, A.H.; Wainberg, Z.A.; Kindler, H.; Wang-Gillam, A.; Oberstein, P.; Morse, M.A.; Zeh, H.J., 3rd; Weekes, C.; et al. Results from a Phase IIb, Randomized, Multicenter Study of GVAX Pancreas and CRS-207 Compared with Chemotherapy in Adults with Previously Treated Metastatic Pancreatic Adenocarcinoma (ECLIPSE Study). Clin. Cancer Res. 2019, 25, 5493–5502. [Google Scholar] [CrossRef] [PubMed]
- Study of CRS-207, Nivolumab, and Ipilimumab With or Without GVAX Pancreas Vaccine (With Cy) in Patients with Pancreatic Cancer. Available online: https://clinicaltrials.gov/study/NCT03190265 (accessed on 20 October 2024).
- GV1001 and Gemcitabine in Sequential Combination to Gemcitabine Monotherapy in Pancreatic Cancer. Available online: https://clinicaltrials.gov/study/NCT00358566 (accessed on 20 October 2024).
- Middleton, G.W.; Valle, J.W.; Wadsley, J.; Propper, D.; Coxon, F.Y.; Ross, P.J.; Madhusudan, S.; Roques, T.; Cunningham, D.; Corrie, P.; et al. A phase III randomized trial of chemoimmunotherapy comprising gemcitabine and capecitabine with or without telomerase vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer. J. Clin. Oncol. 2013, 31 (Suppl. S18), LBA4004. [Google Scholar] [CrossRef]
- Cossarizza, A.; Chang, H.D.; Radbruch, A.; Abrignani, S.; Addo, R.; Akdis, M.; Andra, I.; Andreata, F.; Annunziato, F.; Arranz, E.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur. J. Immunol. 2021, 51, 2708–3145. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.H.; Valle, J.W.; Ma, Y.T.; Faluyi, O.; Neoptolemos, J.P.; Jensen Gjertsen, T.; Iversen, B.; Amund Eriksen, J.; Moller, A.S.; Aksnes, A.K.; et al. TG01/GM-CSF and adjuvant gemcitabine in patients with resected RAS-mutant adenocarcinoma of the pancreas (CT TG01-01): A single-arm, phase 1/2 trial. Br. J. Cancer 2020, 122, 971–977. [Google Scholar] [CrossRef]
- DeSelm, C.J.; Tano, Z.E.; Varghese, A.M.; Adusumilli, P.S. CAR T-cell therapy for pancreatic cancer. J. Surg. Oncol. 2017, 116, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; O’Hara, M.H.; Lacey, S.F.; Torigian, D.A.; Nazimuddin, F.; Chen, F.; Kulikovskaya, I.M.; Soulen, M.C.; McGarvey, M.; Nelson, A.M.; et al. Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology 2018, 155, 29–32. [Google Scholar] [CrossRef]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Xianbao, Z.; Bin, W.; Zonghai, L.; Jie, L.; Huamao, W.; Longpei, C.; Hua, J.; Meihong, W.; Jun, X.; Xiaobo, P.; et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol. 2019, 37 (Suppl. 15), 2509. [Google Scholar]
- Chung, M.J.; Park, J.Y.; Bang, S.; Park, S.W.; Song, S.Y. Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol. Immunother. 2014, 63, 939–946. [Google Scholar] [CrossRef]
- Beatty, G.L.; O’Hara, M.H.; Nelson, A.M.; McGarvey, M.; Torigian, D.A.; Lacey, S.F.; Melenhorst, J.J.; Levine, B.; Plesa, G.; June, C.H. Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer. J. Clin. Oncol. 2015, 33 (Suppl. S15), 3007. [Google Scholar] [CrossRef]
- Lin, M.; Liang, S.; Wang, X.; Liang, Y.; Zhang, M.; Chen, J.; Niu, L.; Xu, K. Short-term clinical efficacy of percutaneous irreversible electroporation combined with allogeneic natural killer cell for treating metastatic pancreatic cancer. Immunol. Lett. 2017, 186, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Zhang, X.; Liang, S.; Luo, H.; Alnaggar, M.; Liu, A.; Yin, Z.; Chen, J.; Niu, L.; Jiang, Y. Irreversible electroporation plus allogenic Vgamma9Vdelta2 T cells enhances antitumor effect for locally advanced pancreatic cancer patients. Signal Transduct. Target. Ther. 2020, 5, 215. [Google Scholar] [CrossRef] [PubMed]
- Hancharou, A.; Timohina, O.; Prokhorov, A.; Romanovskaya, S.; Dubuske, L. Efficacy of Dendritic Cell Based Immunotherapy for Patients with Pancreatic Cancer. J. Allergy Clin. Immunol. 2020, 145 (Suppl. 2), AB242. [Google Scholar] [CrossRef]
- Striefler, J.K.; Riess, H.; Lohneis, P.; Bischoff, S.; Kurreck, A.; Modest, D.P.; Bahra, M.; Oettle, H.; Sinn, M.; Blaker, H.; et al. Mucin-1 Protein Is a Prognostic Marker for Pancreatic Ductal Adenocarcinoma: Results From the CONKO-001 Study. Front. Oncol. 2021, 11, 670396. [Google Scholar] [CrossRef] [PubMed]
- Leidner, R.; Sanjuan Silva, N.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al. Neoantigen T-Cell Receptor Gene Therapy in Pancreatic Cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [Google Scholar] [CrossRef]
- Suurs, F.V.; Lub-de Hooge, M.N.; de Vries, E.G.E.; de Groot, D.J.A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 2019, 201, 103–119. [Google Scholar] [CrossRef]
- Rai, Z.L.; Feakins, R.; Pallett, L.J.; Manas, D.; Davidson, B.R. Irreversible Electroporation (IRE) in Locally Advanced Pancreatic Cancer: A Review of Current Clinical Outcomes, Mechanism of Action and Opportunities for Synergistic Therapy. J. Clin. Med. 2021, 10, 1609. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegazi, A.; Rager, L.E.; Watkins, D.E.; Su, K.-H. Advancing Immunotherapy in Pancreatic Cancer. Int. J. Mol. Sci. 2024, 25, 11560. https://doi.org/10.3390/ijms252111560
Hegazi A, Rager LE, Watkins DE, Su K-H. Advancing Immunotherapy in Pancreatic Cancer. International Journal of Molecular Sciences. 2024; 25(21):11560. https://doi.org/10.3390/ijms252111560
Chicago/Turabian StyleHegazi, Ahmad, Lauren Elizabeth Rager, Dean Edward Watkins, and Kuo-Hui Su. 2024. "Advancing Immunotherapy in Pancreatic Cancer" International Journal of Molecular Sciences 25, no. 21: 11560. https://doi.org/10.3390/ijms252111560
APA StyleHegazi, A., Rager, L. E., Watkins, D. E., & Su, K. -H. (2024). Advancing Immunotherapy in Pancreatic Cancer. International Journal of Molecular Sciences, 25(21), 11560. https://doi.org/10.3390/ijms252111560