Molecular Pathophysiology of Parathyroid Tumorigenesis—The Lesson from a Rare Disease: The “MEN1 Model”
Abstract
:1. Introduction
2. Multiple Endocrine Neoplasia Type 1 (MEN1) Syndrome and MEN1 Gene
3. MEN1-PHPT
4. Epidemiological Aspects
5. Clinical Presentation
6. MEN1 Gene
7. MEN1 Gene’s Role in Parathyroid Tumorigenesis
8. Molecular Genetic Studies of MEN1-PHPT Tissues
8.1. Before the MEN1 Gene Cloning
8.2. After the MEN1 Gene Cloning
8.3. Beyond the MEN1 Gene: Lessons from MEN1 Phenocopies
9. Menin and Epigenetics
10. Haploinsufficiency of Menin and the Role of Micro-RNAs
11. Long Non-Coding RNAs (lncRNAs)
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adami, S.; Marcocci, C.; Gatti, D. Epidemiology of primary hyperparathyroidism in Europe. J. Bone Miner. Res. 2002, 17 (Suppl. 2), N18-23. [Google Scholar] [PubMed]
- Bilezikian, J.P.; Cusano, N.E.; Khan, A.A.; Liu, J.-M.; Marcocci, C.; Bandeira, F. Primary hyperparathyroidism. Nat. Rev. Dis. Primers 2016, 2, 16033. [Google Scholar] [CrossRef] [PubMed]
- Falchetti, A. Genetics of parathyroids disorders: Overview. Best. Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 781–790. [Google Scholar] [CrossRef]
- Falchetti, A. New Perspective on the Genetic Dissection Underlying the Development of Parathyroid Cancer. J. Clin. Endocrinol. Metab. 2023, 108, e1751–e1752. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Gagel, R.F.; Angeli, A.; Bilezikian, J.P.; Beck-Peccoz, P.; Bordi, C.; Conte-Devolx, B.; Falchetti, A.; Gheri, R.G.; Libroia, A.; et al. Guidelines for diagnosis and therapy of MEN type 1 and type 2. J. Clin. Endocrinol. Metab. 2001, 86, 5658–5671. [Google Scholar] [CrossRef]
- Falchetti, A.; Marini, F.; Tonelli, F.; Brandi, M.L. Lessons from genes mutated in multiple endocrine neoplasia (MEN) syndromes. Ann. Endocrinol. 2005, 66, 195–205. [Google Scholar] [CrossRef]
- Agarwal, S.K. Multiple endocrine neoplasia type 1. Front. Horm. Res. 2013, 41, 1–15. [Google Scholar] [CrossRef]
- Marx, S.; Spiegel, A.M.; Skarulis, M.C.; Doppman, J.L.; Collins, F.S.; Liotta, L.A. Multiple endocrine neoplasia type 1: Clinical and genetic topics. Ann. Intern. Med. 1998, 129, 484–494. [Google Scholar] [CrossRef]
- Langer, P.; Cupisti, K.; Bartsch, D.K.; Nies, C.; Goretzki, P.E.; Rothmund, M.; Röher, H.D. Adrenal involvement in multiple endocrine neoplasia type 1. World J. Surg. 2002, 26, 891–896. [Google Scholar] [CrossRef]
- Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol. Cell Endocrinol. 2014, 386, 2–15. [Google Scholar] [CrossRef]
- Chandrasekharappa, S.C.; Guru, S.C.; Manickam, P.; Olufemi, S.-E.; Collins, F.S.; Emmert-Buck, M.R.; Debelenko, L.V.; Zhuang, Z.; Lubensky, I.A.; Liotta, L.A.; et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997, 276, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Lemmens, I.; Van de Ven, W.J.; Kas, K.; Zhang, C.X.; Giraud, S.; Wautot, V.; Buisson, N.; De Witte, K.; Salandre, J.; Lenoir, G.; et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum. Mol. Genet. 1997, 6, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Lemos, M.C.; Thakker, R.V. Multiple endocrine neoplasia type 1 (MEN1): Analysis of 1336 mutations reported in the first decade following identification of the gene. Hum. Mutat. 2008, 29, 22–32. [Google Scholar] [CrossRef]
- Concolino, P.; Costella, A.; Capoluongo, E. Multiple endocrine neoplasia type 1 (MEN1): An update of 208 new germline variants reported in the last nine years. Cancer Genet. 2016, 209, 36–41. [Google Scholar] [CrossRef]
- Marini, F.; Falchetti, A.; Del Monte, F.; Sala, S.C.; Gozzini, A.; Luzi, E.; Brandi, M.L. Multiple endocrine neoplasia type 1. Orphanet J. Rare Dis. 2006, 1, 38. [Google Scholar] [CrossRef]
- Arnold, A.M.; Levine, M.A. The Parathyroids: Basic and Clinical Concepts; Bilezikian, J.P., Ed.; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Christakis, I.; Busaidy, N.L.; Cote, G.J.; Williams, M.D.; Hyde, S.M.; Figueroa, A.M.S.; Kwatampora, L.J.; Clarke, C.N.; Qiu, W.; Lee, J.E.; et al. Parathyroid carcinoma and atypical parathyroid neoplasms in MEN1 patients; A clinico-pathologic challenge. The MD Anderson case series and review of the literature. Int. J. Surg. 2016, 31, 10–16. [Google Scholar] [CrossRef]
- Goudet, P.; Dalac, A.; Le Bras, M.; Cardot-Bauters, C.; Niccoli, P.; Lévy-Bohbot, N.; du Boullay, H.; Bertagna, X.; Ruszniewski, P.; Borson-Chazot, F.; et al. MEN1 disease occurring before 21 years old: A 160-patient cohort study from the Groupe d’étude des Tumeurs Endocrines. J. Clin. Endocrinol. Metab. 2015, 100, 1568–1577. [Google Scholar] [CrossRef]
- Eller-Vainicher, C.; Chiodini, I.; Battista, C.; Viti, R.; Mascia, M.L.; Massironi, S.; Peracchi, M.; D’Agruma, L.; Minisola, S.; Corbetta, S.; et al. Sporadic and MEN1-related primary hyperparathyroidism: Differences in clinical expression and severity. J. Bone Miner. Res. 2009, 24, 1404–1410. [Google Scholar] [CrossRef]
- Lourenço, D.M.; Coutinho, F.L.; Toledo, R.A.; Montenegro, F.L.M.; Correia-Deur, J.E.M.; Toledo, S.P.A. Early-onset, progressive, frequent, extensive, and severe bone mineral and renal complications in multiple endocrine neoplasia type 1-associated primary hyperparathyroidism. J. Bone Miner. Res. 2010, 25, 2382–2391. [Google Scholar] [CrossRef]
- Marini, F.; Giusti, F.; Iantomasi, T.; Cioppi, F.; Brandi, M.L. Bone phenotypes in multiple endocrine neoplasia type 1: Survey on the MEN1 Florentine database. Endocr. Connect. 2022, 11, e210456. [Google Scholar] [CrossRef]
- Christopoulos, C.; Antoniou, N.; Thempeyioti, A.; Calender, A.; Economopoulos, P. Familial multiple endocrine neoplasia type I: The urologist is first on the scene. BJU Int. 2005, 96, 884–887. [Google Scholar] [CrossRef] [PubMed]
- Eller Vainicher, C.; Falchetti, A. Management of familial hyperparathyroidism syndromes: MEN1, MEN2, MEN4, HPT-Jaw tumour, Familial isolated hyperparathyroidism, FHH, and neonatal severe hyperparathyroidism. Best. Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 861–875. [Google Scholar] [CrossRef]
- Lassen, T.; Friis-Hansen, L.; Rasmussen, A.K.; Knigge, U.; Feldt-Rasmussen, U. Primary hyperparathyroidism in young people. When should we perform genetic testing for multiple endocrine neoplasia 1 (MEN-1)? J. Clin. Endocrinol. Metab. 2014, 99, 3983–3987. [Google Scholar] [CrossRef] [PubMed]
- Larsson, C.; Skogseid, B.; Oberg, K.; Nakamura, Y.; Nordenskjöld, M. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988, 332, 85–87. [Google Scholar] [CrossRef]
- Knudson, A.G. Antioncogenes and human cancer. Proc. Natl. Acad. Sci. USA 1993, 90, 10914–10921. [Google Scholar] [CrossRef]
- Scarpelli, D.; D’aloiso, L.; Arturi, F.; Scillitani, A.; Presta, I.; Bisceglia, M.; Cristofaro, C.; Russo, D.; Filetti, S. Novel somatic MEN1 gene alterations in sporadic primary hyperparathyroidism and correlation with clinical characteristics. J. Endocrinol. Investig. 2004, 27, 1015–1021. [Google Scholar] [CrossRef]
- Alvelos, M.I.; Vinagre, J.; Fonseca, E.; Barbosa, E.; Teixeira-Gomes, J.; Sobrinho-Simões, M.; Soares, P. MEN1 intragenic deletions may represent the most prevalent somatic event in sporadic primary hyperparathyroidism. Eur. J. Endocrinol. 2013, 168, 119–128. [Google Scholar] [CrossRef]
- Cromer, M.K.; Starker, L.F.; Choi, M.; Udelsman, R.; Nelson-Williams, C.; Lifton, R.P.; Carling, T. Identification of somatic mutations in parathyroid tumors using whole-exome sequencing. J. Clin. Endocrinol. Metab. 2012, 97, E1774–E1781. [Google Scholar] [CrossRef]
- Hendy, G.N.; Cole, D.E.C. Genetic defects associated with familial and sporadic hyperparathyroidism. Front. Horm. Res. 2013, 41, 149–165. [Google Scholar] [CrossRef]
- Newey, P.J.; Nesbit, M.A.; Rimmer, A.J.; Attar, M.; Head, R.T.; Christie, P.T.; Gorvin, C.M.; Stechman, M.; Gregory, L.; Mihai, R.; et al. Whole-exome sequencing studies of nonhereditary (sporadic) parathyroid adenomas. J. Clin. Endocrinol. Metab. 2012, 97, E1995–E2005. [Google Scholar] [CrossRef]
- Rouleau, G.A.; Wertelecki, W.; Haines, J.L.; Hobbs, W.J.; Trofatter, J.A.; Seizinger, B.R.; Martuza, R.L.; Superneau, D.W.; Conneally, P.M.; Gusella, J.F. Genetic linkage of bilateral acoustic neurofibromatosis to a DNA marker on chromosome 22. Nature 1987, 329, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Green, J.; Marx, S.J. Primary hyperparathyroidism in familial multiple endocrine neoplasia type I. Long-term follow-up of serum calcium levels after parathyroidectomy. Am. J. Med. 1985, 78, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Brandi, M.L.; Aurbach, G.D.; Fitzpatrick, L.A.; Quarto, R.; Spiegel, A.M.; Bliziotes, M.M.; Norton, J.A.; Doppman, J.L.; Marx, S.J. Parathyroid mitogenic activity in plasma from patients with familial multiple endocrine neoplasia type 1. N. Engl. J. Med. 1986, 314, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Friedman, E.; Sakaguchi, K.; Bale, A.E.; Falchetti, A.; Streeten, E.; Zimering, M.B.; Weinstein, L.S.; McBride, W.O.; Nakamura, Y.; Brandi, M.-L.; et al. CClonality of parathyroid tumors in familial multiple endocrine neoplasia type 1. N. Engl. J. Med. 1989, 321, 213–218. [Google Scholar] [CrossRef]
- Morelli, A.; Falchetti, A.; Amorosi, A.; Tonelli, F.; Bearzi, I.; Ranaldi, R.; Tomassetti, P.; Brandi, M. Clonal analysis by chromosome 11 microsatellite-PCR of microdissected parathyroid tumors from MEN 1 patients. Biochem. Biophys. Res. Commun. 1996, 227, 736–742. [Google Scholar] [CrossRef]
- Lubensky, I.A.; Debelenko, L.V.; Zhuang, Z.; Emmert-Buck, M.R.; Dong, Q.; Chandrasekharappa, S.; Guru, S.C.; Manickam, P.; Olufemi, S.E.; Marx, S.J.; et al. Allelic deletions on chromosome 11q13 in multiple tumors from individual MEN1 patients. Cancer Res. 1996, 56, 5272–5278. [Google Scholar]
- Brandi, M.L.; Falchetti, A.; Tonelli, F.; Bordi, C. Are allelic losses at 11q13 universal in MEN 1 tumors? J. Clin. Endocrinol. Metab. 1996, 81, 3162–3163. [Google Scholar] [CrossRef]
- Erickson, L.A.; Mete, O.; Juhlin, C.C.; Perren, A.; Gill, A.J. Overview of the 2022 WHO Classification of Parathyroid Tumors. Endocr. Pathol. 2022, 33, 64–89. [Google Scholar] [CrossRef]
- Nelakurti, D.D.; Pappula, A.L.; Rajasekaran, S.; Miles, W.O.; Petreaca, R.C. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers 2020, 12, 2616. [Google Scholar] [CrossRef]
- Yaguchi, H.; Ohkura, N.; Takahashi, M.; Nagamura, Y.; Kitabayashi, I.; Tsukada, T. Menin Missense Mutants Associated with Multiple Endocrine Neoplasia Type 1 Are Rapidly Degraded via the Ubiquitin-Proteasome Pathway. Mol. Cell Biol. 2004, 24, 6569–6580. [Google Scholar] [CrossRef]
- Turner, J.J.O.; Christie, P.T.; Pearce, S.H.S.; Turnpenny, P.D.; Thakker, R.V. Diagnostic challenges due to phenocopies: Lessons from multiple endocrine neoplasia type1 (MEN1). Hum. Mutat. 2010, 31, E1089–E1101. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, A.; Mougel, G.; Coppin, L.; Haissaguerre, M.; Le Collen, L.; Mohamed, A.; Klein, M.; Odou, M.F.; Tabarin, A.; Brixi, H.; et al. Systematic detection of mosaicism by using digital NGS reveals three new MEN1 mosaicisms. Endocr. Connect. 2022, 11, e220093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pellegata, N.S.; Quintanilla-Martinez, L.; Siggelkow, H.; Samson, E.; Bink, K.; Höfler, H.; Fend, F.; Graw, J.; Atkinson, M.J. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl. Acad. Sci. USA 2006, 103, 15558–15563. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, B.; Coppin, L.; Romanet, P.; Cuny, T.; Maiza, J.-C.; Abeillon, J.; Forestier, J.; Walter, T.; Gilly, O.; Le Bras, M.; et al. Beyond MEN1, When to Think About MEN4? Retrospective Study on 5600 Patients in the French Population and Literature Review. J. Clin. Endocrinol. Metab. 2024, 109, e1482–e1493, Erratum in J. Clin. Endocrinol. Metab. 2024, 109, e1563. [Google Scholar] [CrossRef] [PubMed]
- Singeisen, H.; Renzulli, M.M.; Pavlicek, V.; Probst, P.; Hauswirth, F.; Muller, M.K.; Adamczyk, M.; Weber, A.; Kaderli, R.M.; Renzulli, P. Multiple endocrine neoplasia type 4: A new member of the MEN family. Endocr. Connect. 2023, 12, e220411. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lavezzi, E.; Brunetti, A.; Smiroldo, V.; Nappo, G.; Pedicini, V.; Vitali, E.; Trivellin, G.; Mazziotti, G.; Lania, A. Case Report: New CDKN1B Mutation in Multiple Endocrine Neoplasia Type 4 and Brief Literature Review on Clinical Management. Front. Endocrinol. 2022, 13, 773143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sheaff, R.J.; Groudine, M.; Gordon, M.; Roberts, J.M.; Clurman, B.E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes. Dev. 1997, 11, 1464–1478. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Mateo, C.M.; Marx, S.J. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab. 2009, 94, 1826–1834. [Google Scholar] [CrossRef]
- Marini, F.; Giusti, F.; Iantomasi, T.; Brandi, M.L. Parathyroid Tumors: Molecular Signatures. Int. J. Mol. Sci. 2021, 22, 11206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karnik, S.K.; Hughes, C.M.; Gu, X.; Rozenblatt-Rosen, O.; McLean, G.W.; Xiong, Y.; Meyerson, M.; Kim, S.K. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl. Acad. Sci. USA 2005, 102, 14659–14664. [Google Scholar] [CrossRef]
- Alrezk, R.; Hannah-Shmouni, F.; Stratakis, C.A. MEN4 and CDKN1B mutations: The latest of the MEN syndromes. Endocr. Relat. Cancer 2017, 24, T195–T208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Conemans, E.B.; Lodewijk, L.; Moelans, C.B.; Offerhaus, G.J.A.; Pieterman, C.R.C.; Morsink, F.H.; Dekkers, O.M.; de Herder, W.W.; Hermus, A.R.; van der Horst-Schrivers, A.N.; et al. DNA methylation profiling in MEN1-related pancreatic neuroendocrine tumors reveals a potential epigenetic target for treatment. Eur. J. Endocrinol. 2018, 179, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Ma, J.; Hua, X. Epigenetic regulation by the menin pathway. Endocr. Relat. Cancer 2017, 24, T147–T159. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Tognarini, I.; Sala, S.C.; Galli, G.; Falchetti, A.; Brandi, M.L. Ribozyme-mediated compensatory induction of menin-oncosuppressor function in primary fibroblasts from MEN1 patients. Cancer Gene Ther. 2010, 17, 814–825. [Google Scholar] [CrossRef]
- Rahbari, R.; Holloway, A.K.; He, M.; Khanafshar, E.; Clark, O.H.; Kebebew, E. Identification of differentially expressed microRNA in parathyroid tumors. Ann. Surg. Oncol. 2011, 18, 1158–1165. [Google Scholar] [CrossRef]
- Sadowski, S.M.; Pusztaszeri, M.; Brulhart-Meynet, M.-C.; Petrenko, V.; De Vito, C.; Sobel, J.; Delucinge-Vivier, C.; Kebebew, E.; Regazzi, R.; Philippe, J.; et al. Identification of Differential Transcriptional Patterns in Primary and Secondary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 2189–2198. [Google Scholar] [CrossRef]
- Corbetta, S.; Vaira, V.; Guarnieri, V.; Scillitani, A.; Eller-Vainicher, C.; Ferrero, S.; Vicentini, L.; Chiodini, I.; Bisceglia, M.; Beck-Peccoz, P.; et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr. Relat. Cancer 2010, 17, 135–146. [Google Scholar] [CrossRef]
- Vaira, V.; Elli, F.; Forno, I.; Guarnieri, V.; Verdelli, C.; Ferrero, S.; Scillitani, A.; Vicentini, L.; Cetani, F.; Mantovani, G.; et al. The microRNA cluster C19MC is deregulated in parathyroid tumours. J. Mol. Endocrinol. 2012, 49, 115–124. [Google Scholar] [CrossRef]
- Verdelli, C.; Forno, I.; Morotti, A.; Creo, P.; Guarnieri, V.; Scillitani, A.; Cetani, F.; Vicentini, L.; Balza, G.; Beretta, E.; et al. The aberrantly expressed miR-372 partly impairs sensitivity to apoptosis in parathyroid tumor cells. Endocr. Relat. Cancer 2018, 25, 761–771. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Zhao, T.; Liu, X.; Bai, G.; Xin, Y.; Shen, H.; Wei, B. Expression profile of serum-related exosomal miRNAs from parathyroid tumor. Endocrine 2021, 72, 239–248. [Google Scholar] [CrossRef]
- Costa-Guda, J.; Marinoni, I.; Molatore, S.; Pellegata, N.S.; Arnold, A. Somatic mutation and germline sequence abnormalities in CDKN1B, encoding p27Kip1, in sporadic parathyroid adenomas. J. Clin. Endocrinol. Metab. 2011, 96, E701–E706. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Marini, F.; Giusti, F.; Galli, G.; Cavalli, L.; Brandi, M.L. The negative feedback-loop between the oncomir Mir-24-1 and menin modulates the Men1 tumorigenesis by mimicking the “Knudson’s second hit”. PLoS ONE 2012, 7, e39767. [Google Scholar] [CrossRef] [PubMed]
- Costa-Guda, J.; Soong, C.-P.; Parekh, V.I.; Agarwal, S.K.; Arnold, A. Germline and somatic mutations in cyclin-dependent kinase inhibitor genes CDKN1A, CDKN2B, and CDKN2C in sporadic parathyroid adenomas. Horm. Cancer 2013, 4, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Luzi, E.; Ciuffi, S.; Marini, F.; Mavilia, C.; Galli, G.; Brandi, M.L. Analysis of differentially expressed microRNAs in MEN1 parathyroid adenomas. Am. J. Transl. Res. 2017, 9, 1743–1753. [Google Scholar] [PubMed]
- Morotti, A.; Cetani, F.; Passoni, G.; Borsari, S.; Pardi, E.; Guarnieri, V.; Verdelli, C.; Tavanti, G.S.; Valenti, L.; Bianco, C.; et al. The Long Non-Coding BC200 Is a Novel Circulating Biomarker of Parathyroid Carcinoma. Front. Endocrinol. 2022, 13, 869006. [Google Scholar] [CrossRef]
Disorder | Gene | Chromosomal Locus | Heredity |
---|---|---|---|
Syndromic | |||
MEN1 | MEN1 | 11q13.1 | AD |
MEN2A | RET | 10q11.21 | AD |
MEN4 | CDKN1B | 12p13.1 | AD |
HPT-JT | CDC73 (HRPT2) | 1q31.2 | AD |
Non-syndromic | |||
FIHP | MEN1, CDC73, CaSR (and others still unknown) | 11q13.1, 1q31.2, and 3q13.3–q21.1 | AD |
FHH type 1 | CaSR | 3q13.3–q21.1 | AD |
FHH type 2 | GNA11 | 19p13.3 | AD |
FHH type 3 | AP2S1 | 19q13.32 | AD |
NSHPT | CaSR | 3q13.3–q21.1 | AR |
Epigenetic Function | Description |
---|---|
Histone Modification | Menin interacts with histone-modifying complexes (e.g., MLL1/2) to regulate histone methylation status. |
Chromatin Remodeling | Menin participates in chromatin-remodeling complexes, influencing chromatin structure and gene expression. |
Transcription Regulation | Menin modulates gene transcription by interacting with transcription factors and regulating their activity. |
DNA Repair | Menin plays a role in DNA damage processes, impacting genome stability and integrity. |
Cell Cycle Regulation | Menin contributes to cell cycle control by regulating various genes involved in cell division. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brunetti, A.; Cosso, R.; Vescini, F.; Falchetti, A. Molecular Pathophysiology of Parathyroid Tumorigenesis—The Lesson from a Rare Disease: The “MEN1 Model”. Int. J. Mol. Sci. 2024, 25, 11586. https://doi.org/10.3390/ijms252111586
Brunetti A, Cosso R, Vescini F, Falchetti A. Molecular Pathophysiology of Parathyroid Tumorigenesis—The Lesson from a Rare Disease: The “MEN1 Model”. International Journal of Molecular Sciences. 2024; 25(21):11586. https://doi.org/10.3390/ijms252111586
Chicago/Turabian StyleBrunetti, Alessandro, Roberta Cosso, Fabio Vescini, and Alberto Falchetti. 2024. "Molecular Pathophysiology of Parathyroid Tumorigenesis—The Lesson from a Rare Disease: The “MEN1 Model”" International Journal of Molecular Sciences 25, no. 21: 11586. https://doi.org/10.3390/ijms252111586
APA StyleBrunetti, A., Cosso, R., Vescini, F., & Falchetti, A. (2024). Molecular Pathophysiology of Parathyroid Tumorigenesis—The Lesson from a Rare Disease: The “MEN1 Model”. International Journal of Molecular Sciences, 25(21), 11586. https://doi.org/10.3390/ijms252111586