A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients
Abstract
:1. Introduction
2. Results
2.1. Gating Strategy and Assessment of PMN and MO Marker Modulation
2.2. Modulation of PMN Index and MO Markers
3. Discussion
4. Materials and Methods
4.1. Patient Accrual and Ethics Statement
4.2. Study Population
4.3. Sample Collection
4.4. Monoclonal Antibodies and Staining Procedure
4.5. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Baron, E.J.; Miller, J.M.; Weinstein, M.P.; Richter, S.S.; Gilligan, P.H.; Thomson, R.B., Jr.; Bourbeau, P.; Carroll, K.C.; Kehl, S.C.; Dunne, W.M.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2013 Recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM). Clin. Infect. Dis. 2013, 57, e22–e121. [Google Scholar] [CrossRef] [PubMed]
- Faix, J.D. Biomarkers of sepsis. Crit. Rev. Clin. Lab. Sci. 2013, 50, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, M.; Blasi, F.; Ewig, S.; Garau, J.; Huchon, G.; Ieven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; van der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clin. Microbiol. Infect. 2011, 17 (Suppl. S6), E1–E59. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance—The need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Machen, A.; Drake, T.; Wang, Y.F. Same Day Identification and Full Panel Antimicrobial Susceptibility Testing of Bacteria from Positive Blood Culture Bottles Made Possible by a Combined Lysis-Filtration Method with MALDI-TOF VITEK Mass Spectrometry and the VITEK2 System. PLoS ONE 2014, 9, e87870. [Google Scholar] [CrossRef]
- Connell, T.G.; Rele, M.; Cowley, D.; Buttery, J.P.; Curtis, N. How Reliable Is a Negative Blood Culture Result? Volume of Blood Submitted for Culture in Routine Practice in a Children’s Hospital. Pediatrics 2007, 119, 891–896. [Google Scholar] [CrossRef]
- Rhedin, S.; Lindstrand, A.; Rotzén-Östlund, M.; Tolfvenstam, T.; Öhrmalm, L.; Rinder, M.R.; Zweygberg-Wirgart, B.; Ortqvist, A.; Henriques-Normark, B.; Broliden, K.; et al. Clinical Utility of PCR for Common Viruses in Acute Respiratory Illness. Pediatrics 2014, 133, e538–e545. [Google Scholar] [CrossRef]
- Murphy, K.; Weaver, C. Janeway’s Immunobiology, 9th ed.; Garland Science: New York, NY, USA, 2016. [Google Scholar]
- Nimmerjahn, F.; Ravetch, J.V. Fcγ Receptors: Old Friends and New Family Members. Immunity 2006, 24, 19–28. [Google Scholar] [CrossRef]
- Hoffmeyer, F.; Witte, K.; Schmidt, R.E. The high-affinity FcγRI on PMN: Regulation of expression and signal transduction. Immunology 1997, 92, 544–552. [Google Scholar] [CrossRef]
- Wagner, C.; Deppisch, R.; Denefleh, B.; Hug, F.; Andrassy, K.; Hänsch, G.M. Expression Patterns of the Lipopolysaccharide Receptor CD14, and the Fcγ Receptors CD16 and CD64 on Polymorphonuclear Neutrophils: Data from Patients with Severe Bacterial Infections and Lipopolysaccharide-Exposed Cells. Shock 2003, 19, 5–12. [Google Scholar] [CrossRef]
- Repp, R.; Valerius, T.; Sendler, A.; Gramatzki, M.; Iro, H.; Kalden, J.; Platzer, E. Neutrophils express the high affinity receptor for IgG (Fc gamma RI, CD64) after in vivo application of recombinant human granulocyte colony-stimulating factor. Blood 1991, 78, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Kerst, J.; de Haas, M.; van der Schoot, C.; Slaper-Cortenbach, I.; Kleijer, M.; Borne, A.v.D.; van Oers, R. Recombinant granulocyte colony-stimulating factor administration to healthy volunteers: Induction of immunophenotypically and functionally altered neutrophils via an effect on myeloid progenitor cells. Blood 1993, 82, 3265–3272. [Google Scholar] [CrossRef] [PubMed]
- Uchil, P.D.; Pi, R.; Haugh, K.A.; Ladinsky, M.S.; Ventura, J.D.; Barrett, B.S.; Santiago, M.L.; Bjorkman, P.J.; Kassiotis, G.; Sewald, X.; et al. A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus. Cell Host Microbe 2019, 25, 87–100.e10. [Google Scholar] [CrossRef] [PubMed]
- Shinde, P.V.; Xu, H.C.; Maney, S.K.; Kloetgen, A.; Namineni, S.; Zhuang, Y.; Honke, N.; Shaabani, N.; Bellora, N.; Doerrenberg, M.; et al. Tumor Necrosis Factor-Mediated Survival of CD169+ Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection. J. Virol. 2018, 92, e01637-17. [Google Scholar] [CrossRef]
- Kim, W.-K.; McGary, C.M.; Holder, G.E.; Filipowicz, A.R.; Kim, M.M.; Beydoun, H.A.; Cai, Y.; Liu, X.; Sugimoto, C.; Kuroda, M.J. Increased Expression of CD169 on Blood Monocytes and Its Regulation by Virus and CD8 T Cells in Macaque Models of HIV Infection and AIDS. AIDS Res. Hum. Retroviruses 2015, 31, 696–706. [Google Scholar] [CrossRef]
- Van der Kuyl, A.C.; Burg, R.v.D.; Zorgdrager, F.; Groot, F.; Berkhout, B.; Cornelissen, M. Sialoadhesin (CD169) Expression in CD14+ Cells Is Upregulated Early after HIV-1 Infection and Increases during Disease Progression. PLoS ONE 2007, 2, e257. [Google Scholar] [CrossRef]
- Michlmayr, D.; Kim, E.-Y.; Rahman, A.H.; Raghunathan, R.; Kim-Schulze, S.; Che, Y.; Kalayci, S.; Gümüş, Z.H.; Kuan, G.; Balmaseda, A.; et al. Comprehensive Immunoprofiling of Pediatric Zika Reveals Key Role for Monocytes in the Acute Phase and No Effect of Prior Dengue Virus Infection. Cell Rep. 2020, 31, 107569. [Google Scholar] [CrossRef]
- Bedin, A.-S.; Makinson, A.; Picot, M.-C.; Mennechet, F.; Malergue, F.; Pisoni, A.; Nyiramigisha, E.; Montagnier, L.; Bollore, K.; Debiesse, S.; et al. Monocyte CD169 Expression as a Biomarker in the Early Diagnosis of Coronavirus Disease 2019. J. Infect. Dis. 2021, 223, 562–567. [Google Scholar] [CrossRef]
- Minutolo, A.; Petrone, V.; Fanelli, M.; Iannetta, M.; Giudice, M.; Belkacem, I.A.; Zordan, M.; Vitale, P.; Rasi, G.; Sinibaldi-Vallebona, P.; et al. High CD169 Monocyte/Lymphocyte Ratio Reflects Immunophenotype Disruption and Oxygen Need in COVID-19 Patients. Pathogens 2021, 10, 1639. [Google Scholar] [CrossRef]
- Comins-Boo, A.; Gutiérrez-Larrañaga, M.; Roa-Bautista, A.; Foz, S.G.; García, M.R.; López, E.G.; Ventura, J.I.; Fariñas-Álvarez, M.C.; Segundo, D.S.; Hoyos, M.L. Validation of a Quick Flow Cytometry-Based Assay for Acute Infection Based on CD64 and CD169 Expression. New Tools for Early Diagnosis in COVID-19 Pandemic. Front. Med. 2021, 8, 655785. [Google Scholar] [CrossRef]
- Gatti, A.; Fassini, P.; Mazzone, A.; Rusconi, S.; Brando, B.; Mistraletti, G. Kinetics of CD169, HLA-DR, and CD64 expression as predictive biomarkers of SARS-CoV2 outcome. J. Anesth. Analg. Crit. Care 2023, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Dean, L.S.; Jiyarom, B.; Gangcuangco, L.M.; Shah, P.; Awamura, T.; Ching, L.L.; Nerurkar, V.R.; Chow, D.C.; Igno, F.; et al. Elevated circulating monocytes and monocyte activation in COVID-19 convalescent individuals. Front. Immunol. 2023, 14, 1151780. [Google Scholar] [CrossRef] [PubMed]
- Affandi, A.J.; Olesek, K.; Grabowska, J.; Twilhaar, M.K.N.; Rodríguez, E.; Saris, A.; Zwart, E.S.; Nossent, E.J.; Kalay, H.; de Kok, M.; et al. CD169 Defines Activated CD14+ Monocytes with Enhanced CD8+ T Cell Activation Capacity. Front. Immunol. 2021, 12, 697840. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, P.; Biéchelé, G.; Belkacem, I.A.; Morange, P.; Malergue, F. Role of the interferons in CD64 and CD169 expressions in whole blood: Relevance in the balance between viral- or bacterial-oriented immune responses. Immun. Inflamm. Dis. 2020, 8, 106–123. [Google Scholar] [CrossRef] [PubMed]
- Sakumura, N.; Yokoyama, T.; Usami, M.; Hosono, Y.; Inoue, N.; Matsuda, Y.; Tasaki, Y.; Wada, T. CD169 expression on monocytes as a marker for assessing type I interferon status in pediatric inflammatory diseases. Clin. Immunol. 2023, 250, 109329. [Google Scholar] [CrossRef]
- Volk, H.D.; Reinke, P.; Krausch, D.; Zuckermann, H.; Asadullah, K.; Müller, J.M.; Döcke, W.D.; Kox, W.J. Monocyte deactivation-rationale for a new therapeutic strategy in sepsis. Intensiv. Care Med. 1996, 22, S474–S481. [Google Scholar] [CrossRef]
- Monneret, G.; Lepape, A.; Voirin, N.; Bohé, J.; Venet, F.; Debard, A.-L.; Thizy, H.; Bienvenu, J.; Gueyffier, F.; Vanhems, P. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock. Intensiv. Care Med. 2006, 32, 1175–1183. [Google Scholar] [CrossRef]
- Garlanda, C.; Riva, F.; Bonavita, E.; Mantovani, A. Negative regulatory receptors of the IL-1 family. Semin. Immunol. 2013, 25, 408–415. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, K.; Guo, M.; Yang, Y.; Zhang, H. Negative regulator IL-1 receptor 2 (IL-1R2) and its roles in immune regulation of autoimmune diseases. Int. Immunopharmacol. 2024, 136, 112400. [Google Scholar] [CrossRef]
- Reyes, M.; Filbin, M.R.; Bhattacharyya, R.P.; Billman, K.; Eisenhaure, T.; Hung, D.T.; Levy, B.D.; Baron, R.M.; Blainey, P.C.; Goldberg, M.B.; et al. An immune-cell signature of bacterial sepsis. Nat. Med. 2020, 26, 333–340. [Google Scholar] [CrossRef]
- Bourgoin, P.; Soliveres, T.; Ahriz, D.; Arnoux, I.; Meisel, C.; Unterwalder, N.; Morange, P.-E.; Michelet, P.; Malergue, F.; Markarian, T. Clinical research assessment by flow cytometry of biomarkers for infectious stratification in an Emergency Department. Biomark. Med. 2019, 13, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, P.; Soliveres, T.; Barbaresi, A.; Loundou, A.; Belkacem, I.A.; Arnoux, I.; Bernot, D.; Loosveld, M.; Morange, P.; Michelet, P.; et al. CD169 and CD64 could help differentiate bacterial from COVID-19 or other viral infections in the Emergency Department. Cytom. Part A 2021, 99, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.E.; Mostafa, S.M.; Wenstone, R.; Shenkin, A.; McLaughlin, P.J. Is low monocyte HLA-DR expression helpful to predict outcome in severe sepsis? Intensiv. Care Med. 2003, 29, 1245–1252. [Google Scholar] [CrossRef] [PubMed]
- Hiesmayr, M.J.; Spittler, A.; Lassnigg, A.; Berger, R.; Laufer, G.; Kocher, A.; Artemiou, O.; Boltz-Nitulescu, G.; Roth, E. Alterations in the number of circulating leucocytes, phenotype of monocyte and cytokine production in patients undergoing cardiothoracic surgery. Clin. Exp. Immunol. 1999, 115, 315–323. [Google Scholar] [CrossRef]
- Oczenski, W.; Krenn, H.; Jilch, R.; Watzka, H.; Waldenberger, F.; Schwarz, S.; Fitzgerald, R.D.; Köller, U. HLA-DR as a marker for increased risk for systemic inflammation and septic complications after cardiac surgery. Intensiv. Care Med. 2003, 29, 1253–1257. [Google Scholar] [CrossRef]
- Döcke, W.-D.; Höflich, C.; A Davis, K.; Röttgers, K.; Meisel, C.; Kiefer, P.; Weber, S.U.; Hedwig-Geissing, M.; Kreuzfelder, E.; Tschentscher, P.; et al. Monitoring Temporary Immunodepression by Flow Cytometric Measurement of Monocytic HLA-DR Expression: A Multicenter Standardized Study. Clin. Chem. 2005, 51, 2341–2347. [Google Scholar] [CrossRef]
- Krabbe, J.; Beilmann, V.; Alamzad-Krabbe, H.; Böll, S.; Seifert, A.; Ruske, N.; Kraus, T.; Martin, C. Blood collection technique, anticoagulants and storing temperature have minor effects on the isolation of polymorphonuclear neutrophils. Sci. Rep. 2020, 10, 14646. [Google Scholar] [CrossRef]
- Mosiman, V.L.; Patterson, B.K.; Canterero, L.; Goolsby, C.L. Reducing Cellular Autofluorescence in Flow Cytometry: An In Situ Method. Cytom. J. Int. Soc. Anal. Cytol. 1997, 30, 151–156. [Google Scholar] [CrossRef]
- Kwok, A.J.; Allcock, A.; Ferreira, R.C.; Cano-Gamez, E.; Smee, M.; Burnham, K.L.; Zurke, Y.-X.; Emergency Medicine Research Oxford (EMROx); Novak, A.; Darwent, M.; et al. Neutrophils and emergency granulopoiesis drive immune suppression and an extreme response endotype during sepsis. Nat. Immunol. 2023, 24, 767–779. [Google Scholar] [CrossRef]
- McMahan, C.; Slack, J.; Mosley, B.; Cosman, D.; Lupton, S.; Brunton, L.; Grubin, C.; Wignall, J.; Jenkins, N.; Brannan, C. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J. 1991, 10, 2821–2832. [Google Scholar] [CrossRef]
- Doehn, J.-M.; Tabeling, C.; Biesen, R.; Saccomanno, J.; Madlung, E.; Pappe, E.; Gabriel, F.; Kurth, F.; Meisel, C.; Corman, V.M.; et al. CD169/SIGLEC1 is expressed on circulating monocytes in COVID-19 and expression levels are associated with disease severity. Infection 2021, 49, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.; Eberhardt, C.S.; Meyer, B.; Murillo, P.A.M.; Torriani, G.; Pigny, F.; Lemeille, S.; Cordey, S.; Laubscher, F.; Vu, D.-L.; et al. Daily Viral Kinetics and Innate and Adaptive Immune Response Assessment in COVID-19: A Case Series. mSphere 2020, 5, e00827-20. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. Lancet Infect. Dis. 2013, 13, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewicz, A.-C.; Grienay, M.; Resche-Rigon, M.; Pirracchio, R.; Faivre, V.; Boval, B.; Payen, D. Monocytic HLA-DR expression in intensive care patients: Interest for prognosis and secondary infection prediction. Crit. Care Med. 2009, 37, 2746–2752. [Google Scholar] [CrossRef]
- Chen, Y.; Zhuang, Y.; Peng, H.; Chen, Y.; Zhou, S. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis prognosis and prediction of sepsis. Front. Biosci. 2017, 22, 1344–1354. [Google Scholar] [CrossRef]
- Monneret, G.; Venet, F. Sepsis-induced immune alterations monitoring by flow cytometry as a promising tool for individualized therapy. Cytom. Part B Clin. Cytom. 2016, 90, 376–386. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Boudousquie, C.; Bossi, G.; Hurst, J.M.; Rygiel, K.A.; Jakobsen, B.K.; Hassan, N.J. Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells. Immunology 2017, 152, 425–438. [Google Scholar] [CrossRef]
- Comolli, G.; Torchio, M.; Lenta, E.; Franceschetti, B.; Chiesa, A.; Calarota, S.A.; Baldanti, F.; Scudeller, L.; Marone, P.; Danova, M. Neutrophil CD64 expression: A reliable diagnostic marker of infection in advanced cancer patients? New Microbiol. 2015, 38, 427–430. [Google Scholar]
- Jalava-Karvinen, P.; Hohenthal, U.; Laitinen, I.; Kotilainen, P.; Rajamäki, A.; Nikoskelainen, J.; Lilius, E.-M.; Nuutila, J. Simultaneous quantitative analysis of FcγRI (CD64) and CR1 (CD35) on neutrophils in distinguishing between bacterial infections, viral infections, and inflammatory diseases. Clin. Immunol. 2009, 133, 314–323. [Google Scholar] [CrossRef]
- Steinbach, F.; Henke, F.; Krause, B.; Thiele, B.; Burmester, G.-R.; Hiepe, F. Monocytes from systemic lupus erythematous patients are severely altered in phenotype and lineage flexibility. Ann. Rheum. Dis. 2000, 59, 283–288. [Google Scholar] [CrossRef] [PubMed]
- York, M.R.; Nagai, T.; Mangini, A.J.; Lemaire, R.; van Seventer, J.M.; Lafyatis, R. A macrophage marker, siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type i interferons and toll-like receptor agonists. Arthritis Rheum. 2007, 56, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Fiori, B.; D’Inzeo, T.; Giaquinto, A.; Menchinelli, G.; Liotti, F.M.; de Maio, F.; De Angelis, G.; Quaranta, G.; Nagel, D.; Tumbarello, M.; et al. Optimized Use of the MALDI BioTyper System and the FilmArray BCID Panel for Direct Identification of Microbial Pathogens from Positive Blood Cultures. J. Clin. Microbiol. 2016, 54, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Bourgoin, P.; Lediagon, G.; Arnoux, I.; Bernot, D.; Morange, P.-E.; Michelet, P.; Malergue, F.; Markarian, T. Flow Cytometry Evaluation of Infection-Related Biomarkers in Febrile Subjects in the Emergency Department. Futur. Microbiol. 2020, 15, 189–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Sorda, M.; De Lorenzis, D.; Battaglia, A.; Fiori, B.; Graffeo, R.; Santangelo, R.; D’Inzeo, T.; De Pascale, G.; Schinzari, G.; Pedone, R.R.; et al. A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients. Int. J. Mol. Sci. 2024, 25, 11632. https://doi.org/10.3390/ijms252111632
La Sorda M, De Lorenzis D, Battaglia A, Fiori B, Graffeo R, Santangelo R, D’Inzeo T, De Pascale G, Schinzari G, Pedone RR, et al. A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients. International Journal of Molecular Sciences. 2024; 25(21):11632. https://doi.org/10.3390/ijms252111632
Chicago/Turabian StyleLa Sorda, Marilena, Desy De Lorenzis, Alessandra Battaglia, Barbara Fiori, Rosalia Graffeo, Rosaria Santangelo, Tiziana D’Inzeo, Gennaro De Pascale, Giovanni Schinzari, Romina Rose Pedone, and et al. 2024. "A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients" International Journal of Molecular Sciences 25, no. 21: 11632. https://doi.org/10.3390/ijms252111632
APA StyleLa Sorda, M., De Lorenzis, D., Battaglia, A., Fiori, B., Graffeo, R., Santangelo, R., D’Inzeo, T., De Pascale, G., Schinzari, G., Pedone, R. R., Rossi, E., Sanguinetti, M., Sali, M., & Fattorossi, A. (2024). A New Easy-to-Perform Flow Cytometry Assay for Determining Bacterial- and Viral-Infection-Induced Polymorphonuclear Neutrophil and Monocyte Membrane Marker Modulation in Febrile Patients. International Journal of Molecular Sciences, 25(21), 11632. https://doi.org/10.3390/ijms252111632