What Is a Biofilm? Lessons Learned from Interactions with Immune Cells
Abstract
:1. Introduction
2. The Complexity of Biofilm Composition
3. Biofilm—Prey or Predator?
Author [Reference] | Model Microorganism | Type of Experiment | Type of the Biofilm Cytotoxicity | Interpretation |
---|---|---|---|---|
Jensen et al. [37] | Pseudomonas aeruginosa | In vitro + In vivo (murine lung model) | Rhamnolipids accumulate in the biofilm EPS and are toxic against neutrophils | Rhamnolipids participate in the lysis of immune cells and lead to the immune evasion |
Alhede et al. [35] | ||||
van Gennip et al. [11] | In vivo (murine model with silicone implants) | |||
van Gennip et al. [36] | In vitro + In vivo (murine lung model and murine model with silicone implants) | |||
Watters et al. [14] | In vivo (murine chronic wound model) | Rhamnolipids participate in the lysis of immune cells and allow for stimulation of biofilm formation and antibiotic resistance | ||
Caiazza et al. [38] | Staphylococcus aureus | In vitro | α-hemolysin stabilizes biofilm structure | α-hemolysin in a biofilm helps to colonize plastic surfaces |
Anderson et al. [39] | In vitro + Ex vivo (porcine vaginal explants) | α-hemolysin stabilizes biofilm structure and is toxic against vaginal mucosal tissue | α-hemolysin in a biofilm helps to colonize vaginal mucosal tissue | |
Ong et al. [40] | In vitro | α-hemolysin accumulates in a biofilm and is toxic against cancerous human skin cells | α-hemolysin can be used as a good alternative candidate for cancerous human skin treatment | |
Vidakovic et al. [41] | Vibrio cholerae | In vitro, including an enteroid-derived human gut model | Direct attack and biofilm formation on the surface of immune cells | Biofilm formation as a predatory mechanism on immune cells |
4. Conclusions
Funding
Conflicts of Interest
References
- Høiby, N. A Short History of Microbial Biofilms and Biofilm Infections. APMIS 2017, 125, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Nickel, J.C.; Ruseska, I.; Wright, J.B.; Costerton, J.W. Tobramycin Resistance of Pseudomonas aeruginosa Cells Growing as a Biofilm on Urinary Catheter Material. Antimicrob. Agents Chemother. 1985, 27, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Sun, J.; Liu, Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yrastorza, J.T.; Matis, M.; Cusick, J.; Zhao, S.; Wang, G.; Xie, J. Biofilms: Formation, Research Models, Potential Targets, and Methods for Prevention and Treatment. Adv. Sci. 2022, 9, 2203291. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wuertz, S. Bacteria and Archaea on Earth and Their Abundance in Biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. [Google Scholar] [CrossRef]
- Penesyan, A.; Paulsen, I.T.; Kjelleberg, S.; Gillings, M.R. Three Faces of Biofilms: A Microbial Lifestyle, a Nascent Multicellular Organism, and an Incubator for Diversity. NPJ Biofilms Microbiomes 2021, 7, 80. [Google Scholar] [CrossRef]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The Biofilm Life Cycle—Expanding the Conceptual Model of Biofilm Formation. Nat. Rev. Microbiol. 2022, 20, 620. [Google Scholar] [CrossRef]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Walker, T.S.; Tomlin, K.L.; Worthen, G.S.; Poch, K.R.; Lieber, J.G.; Saavedra, M.T.; Fessler, M.B.; Malcolm, K.C.; Vasil, M.L.; Nick, J.A. Enhanced Pseudomonas aeruginosa Biofilm Development Mediated by Human Neutrophils. Infect. Immun. 2005, 73, 3693–3701. [Google Scholar] [CrossRef]
- van Gennip, M.; Christensen, L.D.; Alhede, M.; Qvortrup, K.; Jensen, P.Ø.; Høiby, N.; Givskov, M.; Bjarnsholt, T. Interactions between Polymorphonuclear Leukocytes and Pseudomonas aeruginosa Biofilms on Silicone Implants In Vivo. Infect. Immun. 2012, 80, 2607. [Google Scholar] [CrossRef] [PubMed]
- Parks, Q.M.; Young, R.L.; Poch, K.R.; Malcolm, K.C.; Vasil, M.L.; Nick, J.A. Neutrophil Enhancement of Pseudomonas aeruginosa Biofilm Development: Human F-actin and DNA as Targets for Therapy. J. Med. Microbiol. 2009, 58, 502. [Google Scholar] [CrossRef] [PubMed]
- Caceres, S.M.; Malcolm, K.C.; Taylor-Cousar, J.L.; Nichols, D.P.; Saavedra, M.T.; Bratton, D.L.; Moskowitz, S.M.; Burns, J.L.; Nick, J.A. Enhanced In Vitro Formation and Antibiotic Resistance of Nonattached Pseudomonas aeruginosa Aggregates through Incorporation of Neutrophil Products. Antimicrob. Agents Chemother. 2014, 58, 6860. [Google Scholar] [CrossRef] [PubMed]
- Watters, C.; Everett, J.A.; Haley, C.; Clinton, A.; Rumbaugh, K.P. Insulin Treatment Modulates the Host Immune System to Enhance Pseudomonas aeruginosa Wound Biofilms. Infect. Immun. 2014, 82, 92–100. [Google Scholar] [CrossRef]
- Alhede, M.; Alhede, M.; Qvortrup, K.; Kragh, K.N.; Jensen, P.Ø.; Stewart, P.S.; Bjarnsholt, T. The Origin of Extracellular DNA in Bacterial Biofilm Infections In Vivo. Pathog. Dis. 2020, 78, ftaa018. [Google Scholar] [CrossRef]
- Thanabalasuriar, A.; Scott, B.N.V.; Peiseler, M.; Willson, M.E.; Zeng, Z.; Warrener, P.; Keller, A.E.; Surewaard, B.G.J.; Dozier, E.A.; Korhonen, J.T.; et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019, 25, 536.e4. [Google Scholar] [CrossRef]
- Reyne, N.; McCarron, A.; Cmielewski, P.; Parsons, D.; Donnelley, M. To Bead or Not to Bead: A Review of Pseudomonas aeruginosa Lung Infection Models for Cystic Fibrosis. Front. Physiol. 2023, 14, 1104856. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Montgomery, M. Dornase Alfa for Cystic Fibrosis. Cochrane Database Syst. Rev. 2021, 3, CD001127. [Google Scholar]
- Kwiecinski, J.; Peetermans, M.; Liesenborghs, L.; Na, M.; Björnsdottir, H.; Zhu, X.; Jacobsson, G.; Johansson, B.R.; Geoghegan, J.A.; Foster, T.J.; et al. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation. J. Infect. Dis. 2016, 213, 139–148. [Google Scholar] [CrossRef]
- Zapotoczna, M.; McCarthy, H.; Rudkin, J.K.; O’Gara, J.P.; O’Neill, E. An Essential Role for Coagulase in Staphylococcus aureus Biofilm Development Reveals New Therapeutic Possibilities for Device-Related Infections. J. Infect. Dis. 2015, 212, 1883–1893. [Google Scholar] [CrossRef]
- Loof, T.G.; Goldmann, O.; Naudin, C.; Mörgelin, M.; Neumann, Y.; Pils, M.C.; Foster, S.J.; Medina, E.; Herwald, H. Staphylococcus aureus-Induced Clotting of Plasma is an Immune Evasion Mechanism for Persistence within the Fibrin Network. Microbiology 2015, 161, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Oukrich, S.; Hong, J.; Leon-Grooters, M.; Van Cappellen, W.; Slotman, J.A.; Koenderink, G.H.; Van Wamel, W.J.B.; De Maat, M.P.M.; Kooiman, K.; Lattwein, K.R.; et al. Early Fibrin Biofilm Development in Cardiovascular Infections. bioRxiv 2024. bioRxiv:2024.09.02.610803. [Google Scholar]
- Scull, G.; Aligwekwe, A.; Rey, Y.; Koch, D.; Nellenbach, K.; Sheridan, A.; Pandit, S.; Sollinger, J.; Pierce, J.G.; Flick, M.J.; et al. Fighting Fibrin with Fibrin: Vancomycin Delivery into Coagulase-Mediated Staphylococcus aureus Biofilms via Fibrin-Based Nanoparticle Binding. J. Biomed. Mater. Res. A 2024, 112, 2071–2085. [Google Scholar] [CrossRef] [PubMed]
- Kragh, K.N.; Hutchison, J.B.; Melaugh, G.; Rodesney, C.; Roberts, A.E.L.; Irie, Y.; Jensen, P.; Diggle, S.P.; Allen, R.J.; Gordon, V.; et al. Role of Multicellular Aggregates in Biofilm Formation. mBio 2016, 7, e00237-16. [Google Scholar] [CrossRef] [PubMed]
- Sriramulu, D.D.; Lünsdorf, H.; Lam, J.S.; Römling, U. Microcolony Formation: A Novel Biofilm Model of Pseudomonas aeruginosa for the Cystic Fibrosis Lung. J. Med. Microbiol. 2005, 54, 667–676. [Google Scholar] [CrossRef]
- Davies, E.V.; James, C.E.; Brockhurst, M.A.; Winstanley, C. Evolutionary Diversification of Pseudomonas aeruginosa in an Artificial Sputum Model. BMC Microbiol. 2017, 17, 3. [Google Scholar] [CrossRef]
- Ruhluel, D.; Fothergill, J.L.; Neill, D.R.; O’Brien, S. Development of Liquid Culture Media Mimicking the Conditions of Sinuses and Lungs in Cystic Fibrosis and Health. F1000Research 2022, 11, 1007. [Google Scholar] [CrossRef]
- Bidossi, A.; Bottagisio, M.; Savadori, P.; De Vecchi, E. Identification and Characterization of Planktonic Biofilm-Like Aggregates in Infected Synovial Fluids From Joint Infections. Front. Microbiol. 2020, 11, 520034. [Google Scholar] [CrossRef] [PubMed]
- Knott, S.; Curry, D.; Zhao, N.; Metgud, P.; Dastgheyb, S.S.; Purtill, C.; Harwood, M.; Chen, A.F.; Schaer, T.P.; Otto, M.; et al. Staphylococcus aureus Floating Biofilm Formation and Phenotype in Synovial Fluid Depends on Albumin, Fibrinogen, and Hyaluronic Acid. Front. Microbiol. 2021, 12, 655873. [Google Scholar] [CrossRef] [PubMed]
- Luo, A.; Wang, F.; Sun, D.; Liu, X.; Xin, B. Formation, Development, and Cross-Species Interactions in Biofilms. Front. Microbiol. 2022, 12, 757327. [Google Scholar] [CrossRef]
- Anju, V.T.; Busi, S.; Imchen, M.; Kumavath, R.; Mohan, M.S.; Salim, S.A.; Subhaswaraj, P.; Dyavaiah, M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics 2022, 11, 1731. [Google Scholar] [CrossRef]
- Pai, L.; Patil, S.; Liu, S.; Wen, F. A Growing Battlefield in the War against Biofilm-Induced Antimicrobial Resistance: Insights from Reviews on Antibiotic Resistance. Front. Cell. Infect. Microbiol. 2023, 13, 1327069. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.E.; Caiazza, N.C.; O’Toole, G.A. Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003, 185, 1027. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xu, A.; Xie, B.; Xin, F.; Dong, W.; Zhou, J.; Jiang, M. Priority Changes between Biofilm Exopolysaccharides Synthesis and Rhamnolipids Production are Mediated by a c-di-GMP-Specific Phosphodiesterase NbdA in Pseudomonas aeruginosa. iScience 2022, 25, 105531. [Google Scholar] [CrossRef]
- Alhede, M.; Bjarnsholt, T.; Jensen, P.; Phipps, R.K.; Moser, C.; Christophersen, L.; Christensen, L.D.; van Gennip, M.; Parsek, M.; Høiby, N.; et al. Pseudomonas aeruginosa Recognizes and Responds Aggressively to the Presence of Polymorphonuclear Leukocytes. Microbiology 2009, 155, 3500–3508. [Google Scholar] [CrossRef]
- Van Gennip, M.; Christensen, L.D.; Alhede, M.; Phipps, R.; Jensen, P.Ø.; Christophersen, L.; Pamp, S.J.; Moser, C.; Mikkelsen, P.J.; Koh, A.Y.; et al. Inactivation of the rhlA Gene in Pseudomonas aeruginosa Prevents Rhamnolipid Production, Disabling the Protection against Polymorphonuclear Leukocytes. APMIS 2009, 117, 537–546. [Google Scholar] [CrossRef]
- Jensen, P.; Bjarnsholt, T.; Phipps, R.; Rasmussen, T.B.; Calum, H.; Christoffersen, L.; Moser, C.; Williams, P.; Pressler, T.; Givskov, M.; et al. Rapid Necrotic Killing of Polymorphonuclear Leukocytes is Caused by Quorum-Sensing-Controlled Production of Rhamnolipid by Pseudomonas aeruginosa. Microbiology 2007, 153, 1329–1338. [Google Scholar] [CrossRef]
- Caiazza, N.C.; O’Toole, G.A. Alpha-Toxin Is Required for Biofilm Formation by Staphylococcus aureus. J. Bacteriol. 2003, 185, 3214–3217. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.J.; Lin, Y.C.; Gillman, A.N.; Parks, P.J.; Schlievert, P.M.; Peterson, M.L. Alpha-Toxin Promotes Staphylococcus aureus Mucosal Biofilm Formation. Front. Cell. Infect. Microbiol. 2012, 2, 64. [Google Scholar] [CrossRef] [PubMed]
- Ong, Z.X.; Kannan, B.; Phillips, A.R.J.; Becker, D.L.; Ong, Z.X.; Kannan, B.; Phillips, A.R.J.; Becker, D.L. Investigation of Staphylococcus aureus Biofilm-Associated Toxin as a Potential Squamous Cell Carcinoma Therapeutic. Microorganisms 2024, 12, 293. [Google Scholar] [CrossRef]
- Vidakovic, L.; Mikhaleva, S.; Jeckel, H.; Nisnevich, V.; Strenger, K.; Neuhaus, K.; Raveendran, K.; Ben-Moshe, N.B.; Aznaourova, M.; Nosho, K.; et al. Biofilm Formation on Human Immune Cells Is a Multicellular Predation Strategy of Vibrio cholerae. Cell 2023, 186, 2690–2704.e20. [Google Scholar] [CrossRef]
Author [Reference] | Model Microorganism | Type of Experiment | Observations | Interpretation |
---|---|---|---|---|
Walker et al. [10] | Pseudomonas aeruginosa | In vitro | F-actin and DNA from lysed neutrophils stimulate primary adhesion of bacteria | Necrotic neutrophils can serve as a biological matrix to facilitate biofilm formation |
Parks et al. [12] | ||||
Caceres et al. [13] | F-actin and DNA from lysed neutrophils stimulate autoaggregation of bacteria | Necrotic neutrophils promote bacterial autoaggregation and antibiotic resistance | ||
van Gennip et al. [11] | In vivo (murine model with silicone implants) | DNA from lysed neutrophils stimulates biofilm formation | Rhamnolipids participate in the lysis of immune cells and allow for stimulation of biofilm formation | |
Watters et al. [14] | In vivo (murine chronic wound model) | Necrotic neutrophils promote biofilm formation and antibiotic resistance | ||
Alhede et al. [15] | In vivo (murine implant model and lung tissues from cystic fibrosis patients) | DNA from lysed neutrophils creates “dead zone” around the biofilm | “Dead zone” from DNA of lysed neutrophils may protect biofilms from harsh conditions | |
Thanabalasuriar et al. [16] | In vivo (murine keratitis model) | “Dead zone” from DNA of lysed neutrophils protects against antibiotics and neutrophil killing | ||
Kwiecinski et al. [19] | Staphylococcus aureus | In vitro + In vivo (murine catheter model) | Host-derived fibrin is used to stimulate biofilm formation | Fibrin-based biofilms are better protected against antibiotics and neutrophil killing |
Zapotoczna et al. [20] | Fibrin-based biofilms are better protected against antibiotics | |||
Loof et al. [21] | In vitro + In vivo (murine skin infection model) | Host-derived fibrin is used to stimulate autoaggregation and biofilm formation | Fibrin-based biofilms are better protected against activity of immune cells | |
Oukrich et al. [22] | In vitro | Host-derived fibrin is used to stimulate biofilm formation | Fibrin strands begin to be incorporated into a biofilm after just 3 h of exposure to human plasma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzyżek, P. What Is a Biofilm? Lessons Learned from Interactions with Immune Cells. Int. J. Mol. Sci. 2024, 25, 11684. https://doi.org/10.3390/ijms252111684
Krzyżek P. What Is a Biofilm? Lessons Learned from Interactions with Immune Cells. International Journal of Molecular Sciences. 2024; 25(21):11684. https://doi.org/10.3390/ijms252111684
Chicago/Turabian StyleKrzyżek, Paweł. 2024. "What Is a Biofilm? Lessons Learned from Interactions with Immune Cells" International Journal of Molecular Sciences 25, no. 21: 11684. https://doi.org/10.3390/ijms252111684
APA StyleKrzyżek, P. (2024). What Is a Biofilm? Lessons Learned from Interactions with Immune Cells. International Journal of Molecular Sciences, 25(21), 11684. https://doi.org/10.3390/ijms252111684