Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review
Abstract
:1. Introduction
1.1. Frontotemporal Dementia: A Brief History
1.2. Clinical Spectrum
1.3. Genetic Associations
1.4. Neuropathology
1.5. Diagnosis of Frontotemporal Dementia
2. Methods
3. Exploring Blood Biomarkers
3.1. Neurofilament Light Chain (NfL)
3.2. Phosphorylated Neurofilament Heavy Chain (pNfH)
3.3. Tau
3.4. Phosphorylated Tau (pTau)
3.5. Progranulin (PGRN)
3.6. Glial Fibrillary Acidic Protein (GFAP)
3.7. TAR DNA-Binding Protein-43 (TDP-43)
3.8. Other Biomarkers and Interesting Insights
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bang, J.; Spina, S.; Miller, B.L. Frontotemporal dementia. Lancet Lond Engl. 2015, 386, 1672–1682. [Google Scholar] [CrossRef] [PubMed]
- Bott, N.T.; Radke, A.; Stephens, M.L.; Kramer, J.H. Frontotemporal dementia: Diagnosis, deficits and management. Neurodegener. Dis. Manag. 2014, 4, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Boxer, A.L.; Kumfor, F.; Pijnenburg, Y.; Rohrer, J.D. Advances and controversies in frontotemporal dementia: Diagnosis, biomarkers, and therapeutic considerations. Lancet Neurol. 2022, 21, 258–272. [Google Scholar] [CrossRef]
- Olney, N.T.; Spina, S.; Miller, B.L. Frontotemporal Dementia. Neurol. Clin. 2017, 35, 339–374. [Google Scholar] [CrossRef]
- Onyike, C.U.; Diehl-Schmid, J. The epidemiology of frontotemporal dementia. Int. Rev. Psychiatry 2013, 25, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J. Neurol. Neurosurg. Psychiatry 1994, 57, 416–418. [Google Scholar] [CrossRef]
- Hodges, J.R.; Piguet, O. Progress and Challenges in Frontotemporal Dementia Research: A 20-Year Review. J. Alzheimers Dis. JAD 2018, 62, 1467–1480. [Google Scholar] [CrossRef]
- Thibodeau, M.-P.; Miller, B.L. ‘Limits and current knowledge of Pick’s disease: Its differential diagnosis’ A translation of the 1957 Delay, Brion, Escourolle article. Neurocase 2013, 19, 417–422. [Google Scholar] [CrossRef]
- Constantinidis, J.; Richard, J.; Tissot, R. Pick’s disease. Histological and clinical correlations. Eur. Neurol. 1974, 11, 208–217. [Google Scholar] [CrossRef]
- Neary, D.; Snowden, J.S.; Gustafson, L.; Passant, U.; Stuss, D.; Black, S.; Freedman, M.; Kertesz, A.; Robert, P.H.; Albert, M.; et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998, 51, 1546–1554. [Google Scholar] [CrossRef]
- Rascovsky, K.; Hodges, J.R.; Knopman, D.; Mendez, M.F.; Kramer, J.H.; Neuhaus, J.; van Swieten, J.C.; Seelaar, H.; Dopper, E.G.P.; Onyike, C.U.; et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain J. Neurol. 2011, 134, 2456–2477. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lippa, C.F. Clinical Subtypes of Frontotemporal Dementia. Am. J. Alzheimers Dis. Other Dement. 2015, 30, 653–661. [Google Scholar] [CrossRef]
- Bonner, M.F.; Ash, S.; Grossman, M. The new classification of primary progressive aphasia into semantic, logopenic, or nonfluent/agrammatic variants. Curr. Neurol. Neurosci. Rep. 2010, 10, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Song, L. Logopenic Variant Primary Progressive Aphasia. In The Palgrave Encyclopedia of Critical Perspectives on Mental Health; Lester, J.N., O’Reilly, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Lanata, S.C.; Miller, B.L. The behavioural variant frontotemporal dementia (bvFTD) syndrome in psychiatry. J. Neurol. Neurosurg. Psychiatry 2016, 87, 501–511. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Paterson, R.W.; Warren, J.D.; Zetterberg, H.; O’Brien, J.T.; Fox, N.C.; Halliday, G.M.; Schott, J.M. Biomarkers in dementia: Clinical utility and new directions. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1426–1434. [Google Scholar] [CrossRef] [PubMed]
- Gorno-Tempini, M.L.; Hillis, A.E.; Weintraub, S.; Kertesz, A.; Mendez, M.; Cappa, S.F.; Ogar, J.M.; Rohrer, J.D.; Black, S.; Boeve, B.F.; et al. Classification of primary progressive aphasia and its variants. Neurology 2011, 76, 1006–1014. [Google Scholar] [CrossRef]
- Kirshner, H.S. Frontotemporal dementia and primary progressive aphasia, a review. Neuropsychiatr. Dis. Treat. 2014, 10, 1045–1055. [Google Scholar] [CrossRef]
- Burrell, J.R.; Halliday, G.M.; Kril, J.J.; Ittner, L.M.; Götz, J.; Kiernan, M.C.; Hodges, J.R. The frontotemporal dementia-motor neuron disease continuum. Lancet Lond Engl. 2016, 388, 919–931. [Google Scholar] [CrossRef]
- Ferrari, R.; Kapogiannis, D.; Huey, E.D.; Momeni, P. FTD and ALS: A tale of two diseases. Curr. Alzheimer Res. 2011, 8, 273–294. [Google Scholar] [CrossRef]
- Olszewska, D.A.; Lonergan, R.; Fallon, E.M.; Lynch, T. Genetics of Frontotemporal Dementia. Curr. Neurol. Neurosci. Rep. 2016, 16, 107. [Google Scholar] [CrossRef]
- Buccellato, F.R.; D’Anca, M.; Tartaglia, G.M.; Del Fabbro, M.; Galimberti, D. Frontotemporal dementia: From genetics to therapeutic approaches. Expert. Opin. Investig. Drugs 2024, 33, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, S.; Dols, A.; Laforce, R.; Devenney, E.; Kumfor, F.; van den Stock, J.; Dallaire-Théroux, C.; Seelaar, H.; Gossink, F.; Vijverberg, E.; et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain J. Neurol. 2020, 143, 1632–1650. [Google Scholar] [CrossRef]
- Ciani, M.; Bonvicini, C.; Scassellati, C.; Carrara, M.; Maj, C.; Fostinelli, S.; Binetti, G.; Ghidoni, R.; Benussi, L. The Missing Heritability of Sporadic Frontotemporal Dementia: New Insights from Rare Variants in Neurodegenerative Candidate Genes. Int. J. Mol. Sci. 2019, 20, 3903. [Google Scholar] [CrossRef]
- Espay, A.J. Models of precision medicine for neurodegeneration. Handb. Clin. Neurol. 2023, 192, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Herrup, K.; Kepp, K.P.; Daly, T. The proteinopenia hypothesis: Loss of Aβ42 and the onset of Alzheimer’s Disease. Ageing Res. Rev. 2023, 92, 102112. [Google Scholar] [CrossRef]
- Ezzat, K.; Sturchio, A.; Espay, A.J. The shift to a proteinopenia paradigm in neurodegeneration. Handb. Clin. Neurol. 2023, 193, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Espay, A.J.; Vizcarra, J.A.; Marsili, L.; Lang, A.E.; Simon, D.K.; Merola, A.; Josephs, K.A.; Fasano, A.; Morgante, F.; Savica, R.; et al. Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 2019, 92, 329–337. [Google Scholar] [CrossRef]
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; et al. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J. Alzheimers Dis. 2018, 64 (Suppl. 1), S611–S631. [Google Scholar] [CrossRef]
- Corsi, A.; Bombieri, C.; Valenti, M.T.; Romanelli, M.G. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int. J. Mol. Sci. 2022, 23, 15383. [Google Scholar] [CrossRef]
- Shi, L.; Baird, A.L.; Westwood, S.; Hye, A.; Dobson, R.; Thambisetty, M.; Lovestone, S. A Decade of Blood Biomarkers for Alzheimer’s Disease Research: An Evolving Field, Improving Study Designs, and the Challenge of Replication. J. Alzheimers Dis. JAD 2018, 62, 1181–1198. [Google Scholar] [CrossRef]
- Ntymenou, S.; Tsantzali, I.; Kalamatianos, T.; Voumvourakis, K.I.; Kapaki, E.; Tsivgoulis, G.; Stranjalis, G.; Paraskevas, G.P. Blood Biomarkers in Frontotemporal Dementia: Review and Meta-Analysis. Brain Sci. 2021, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H.; et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. CCLM 2016, 54, 1655–1661. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, Y.; Sehrawat, A.; Lee, J.; Lafferty, T.K.; Kofler, J.; Berman, S.B.; Sweet, R.A.; Tudorascu, D.L.; Klunk, W.E.; et al. Alzheimer blood biomarkers: Practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol. Neurodegener. 2024, 19, 40. [Google Scholar] [CrossRef]
- Li, D.; Mielke, M.M. An Update on Blood-Based Markers of Alzheimer’s Disease Using the SiMoA Platform. Neurol. Ther. 2019, 8, 73–82. [Google Scholar] [CrossRef]
- van der Ende, E.L.; Bron, E.E.; Poos, J.M.; Jiskoot, L.C.; Panman, J.L.; Papma, J.M.; Meeter, L.H.; Dopper, E.G.P.; Wilke, C.; Synofzik, M.; et al. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain J. Neurol. 2022, 145, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Shanker, A.; Khera, T.; Subramaniam, B. Neurofilament light: A narrative review on biomarker utility. Fac. Rev. 2021, 10, 46. [Google Scholar] [CrossRef] [PubMed]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Forgrave, L.M.; Ma, M.; Best, J.R.; DeMarco, M.L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Alzheimer’s Dement. 2019, 11, 730–743. [Google Scholar] [CrossRef]
- Karantali, E.; Kazis, D.; Chatzikonstantinou, S.; Petridis, F.; Mavroudis, I. The role of neurofilament light chain in frontotemporal dementia: A meta-analysis. Aging Clin. Exp. Res. 2021, 33, 869–881. [Google Scholar] [CrossRef]
- Gu, L.; Shu, H.; Wang, Y.; Wang, P. Blood Neurofilament Light Chain in Different Types of Dementia. Curr. Alzheimer Res. 2023, 20, 149–160. [Google Scholar] [CrossRef]
- Verde, F.; Licaj, S.; Soranna, D.; Ticozzi, N.; Silani, V.; Zambon, A. Cerebrospinal fluid and blood neurofilament light chain levels in amyotrophic lateral sclerosis and frontotemporal degeneration: A meta-analysis. Eur. J. Neurol. 2024, 31, e16371. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Cantoni, V.; Rivolta, J.; Archetti, S.; Micheli, A.; Ashton, N.; Zetterberg, H.; Blennow, K.; Borroni, B. Classification accuracy of blood-based and neurophysiological markers in the differential diagnosis of Alzheimer’s disease and frontotemporal lobar degeneration. Alzheimers Res. Ther. 2022, 14, 155. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Karikari, T.K.; Ashton, N.; Gazzina, S.; Premi, E.; Benussi, L.; Ghidoni, R.; Rodriguez, J.L.; Emeršič, A.; Simrén, J.; et al. Diagnostic and prognostic value of serum NfL and p-Tau181 in frontotemporal lobar degeneration. J. Neurol. Neurosurg. Psychiatry 2020, 91, 960–967. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, L.; Peña-Bautista, C.; Ferré-González, L.; Balaguer, A.; Baquero, M.; Casanova-Estruch, B.; Cháfer-Pericá, C. Assessment of Plasma and Cerebrospinal Fluid Biomarkers in Different Stages of Alzheimer’s Disease and Frontotemporal Dementia. Int. J. Mol. Sci. 2023, 24, 1226. [Google Scholar] [CrossRef]
- Matías-Guiu, J.A.; Gómez-Pinedo, U.; Forero, L.; Pytel, V.; Cano, F.; Moreno-Ramos, T.; Moreno-Ramos, T.; Cabrera-Martín, M.N.; Matías-Guiu, J.; González-Rosa, J.J.; et al. Plasma Neurofilament Light Chain in Primary Progressive Aphasia and Related Disorders: Clinical Significance and Metabolic Correlates. J. Alzheimers Dis. JAD 2019, 72, 773–782. [Google Scholar] [CrossRef]
- Baiardi, S.; Quadalti, C.; Mammana, A.; Dellavalle, S.; Zenesini, C.; Sambati, L.; Pantieri, R.; Polischi, B.; Romano, L.; Suffritti, M.; et al. Diagnostic value of plasma p-tau181, NfL, and GFAP in a clinical setting cohort of prevalent neurodegenerative dementias. Alzheimers Res. Ther. 2022, 14, 153. [Google Scholar] [CrossRef]
- Hüper, L.; Steinacker, P.; Polyakova, M.; Mueller, K.; Godulla, J.; Herzig, S.; Danek, A.; Engel, A.; Diehl-Schmid, J.; Classen, J.; et al. Neurofilaments and progranulin are related to atrophy in frontotemporal lobar degeneration—A transdiagnostic study cross-validating atrophy and fluid biomarkers. Alzheimers Dement. 2024, 20, 4461–4475. [Google Scholar] [CrossRef]
- Steinacker, P.; Semler, E.; Anderl-Straub, S.; Diehl-Schmid, J.; Schroeter, M.L.; Uttner, I.; Foerstl, H.; Landwehrmeyer, B.; von Arnim, C.A.F.; Kassubek, J.; et al. Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 2017, 88, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Rohrer, J.D.; Woollacott, I.O.C.; Dick, K.M.; Brotherhood, E.; Gordon, E.; Fellows, A.; Toombs, J.; Druyeh, R.; Cardoso, M.J.; Ourselin, S.; et al. Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 2016, 87, 1329–1336. [Google Scholar] [CrossRef]
- Saracino, D.; Dorgham, K.; Camuzat, A.; Rinaldi, D.; Rametti-Lacroux, A.; Houot, M.; Clot, F.; Martin-Hardy, P.; Jornea, L.; Azuar, C.; et al. Plasma NfL levels and longitudinal change rates in C9orf72 and GRN-associated diseases: From tailored references to clinical applications. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1278–1288. [Google Scholar] [CrossRef]
- Meeter, L.H.; Dopper, E.G.; Jiskoot, L.C.; Sanchez-Valle, R.; Graff, C.; Benussi, L.; Ghidoni, R.; Pijnenburg, Y.A.; Borroni, B.; Galimberti, D.; et al. Neurofilament light chain: A biomarker for genetic frontotemporal dementia. Ann. Clin. Transl. Neurol. 2016, 3, 623–636. [Google Scholar] [CrossRef] [PubMed]
- van der Ende, E.L.; Meeter, L.H.; Poos, J.M.; Panman, J.L.; Jiskoot, L.C.; Dopper, E.G.P.; Papma, J.M.; Jan de Jong, F.; Verberk, I.M.W.; Teunissen, C.; et al. Serum neurofilament light chain in genetic frontotemporal dementia: A longitudinal, multicentre cohort study. Lancet Neurol. 2019, 18, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Heller, C.; Foiani, M.S.; Moore, K.; Convery, R.; Bocchetta, M.; Neason, M.; Cash, D.M.; Thomas, D.; Greaves, C.V.; Oc Woollacott, I.; et al. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 2020, 91, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Wilke, C.; Reich, S.; van Swieten, J.C.; Borroni, B.; Sanchez-Valle, R.; Moreno, F.; Laforce, R.; Graff, C.; Galimberti, D.; Rowe, J.B.; et al. Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum NfL and pNfH: A Longitudinal Multicentre Study. Ann. Neurol. 2022, 91, 33–47. [Google Scholar] [CrossRef]
- Silva-Spínola, A.; Lima, M.; Leitão, M.J.; Durães, J.; Tábuas-Pereira, M.; Almeida, M.R.; Santana, I.; Baldeiras, I. Serum neurofilament light chain as a surrogate of cognitive decline in sporadic and familial frontotemporal dementia. Eur. J. Neurol. 2022, 29, 36–46. [Google Scholar] [CrossRef]
- Rojas, J.C.; Wang, P.; Staffaroni, A.M.; Heller, C.; Cobigo, Y.; Wolf, A.; Goh, S.-Y.M.; Ljubenkov, P.A.; Heuer, H.W.; Fong, J.C.; et al. Plasma Neurofilament Light for Prediction of Disease Progression in Familial Frontotemporal Lobar Degeneration. Neurology 2021, 96, e2296–e2312. [Google Scholar] [CrossRef]
- Benussi, A.; Ashton, N.J.; Karikari, T.K.; Alberici, A.; Saraceno, C.; Ghidoni, R.; Benussi, L.; Zetterberg, H.; Blennow, K.; Borroni, B.; et al. Prodromal frontotemporal dementia: Clinical features and predictors of progression. Alzheimers Res. Ther. 2021, 13, 188. [Google Scholar] [CrossRef]
- Martinez, J.R.; Wang, P.; Staffaroni, A.; Cobigo, Y.; Wolf, A.; Heuer, H.; Fong, J.; Taylor, J.; Jeromin, A.; Rosen, H.; et al. Plasma neurofilament light chain predicts disease progression in asymptomatic genetic frontotemporal dementia (P5.1-007). Neurology 2019, 92, P5.1-007. [Google Scholar] [CrossRef]
- Benussi, A.; Premi, E.; Grassi, M.; Alberici, A.; Cantoni, V.; Gazzina, S.; Archetti, S.; Gasparotti, R.; Fumagalli, G.G.; Bouzigues, A.; et al. Diagnostic accuracy of research criteria for prodromal frontotemporal dementia. Alzheimers Res. Ther. 2024, 16, 10. [Google Scholar] [CrossRef]
- Gendron, T.F.; Heckman, M.G.; White, L.J.; Veire, A.M.; Pedraza, O.; Burch, A.R.; Bozoki, A.C.; Dickerson, B.C.; Domoto-Reilly, K.; Foroud, T.; et al. Comprehensive cross-sectional and longitudinal analyses of plasma neurofilament light across FTD spectrum disorders. Cell Rep. Med. 2022, 3, 100607. [Google Scholar] [CrossRef]
- Giannini, L.A.A.; Seelaar, H.; Van Der Ende, E.L.; Poos, J.M.; Jiskoot, L.C.; Dopper, E.G.P.; Pijnenburg, Y.A.L.; Willemse, E.A.J.; Vermunt, L.; Teunissen, C.E.; et al. Clinical Value of Longitudinal Serum Neurofilament Light Chain in Prodromal Genetic Frontotemporal Dementia. Neurology 2023, 101, e1069–e1082. [Google Scholar] [CrossRef] [PubMed]
- Illán-Gala, I.; Lleo, A.; Karydas, A.; Staffaroni, A.M.; Zetterberg, H.; Sivasankaran, R.; Grinberg, L.T.; Spina, S.; Kramer, J.H.; Ramos, E.M.; et al. Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease. Neurology 2021, 96, e671–e683. [Google Scholar] [CrossRef] [PubMed]
- Chouliaras, L.; Thomas, A.; Malpetti, M.; Donaghy, P.; Kane, J.; Mak, E.; Savulich, G.; Prats-Sedano, M.A.; Heslegrave, A.J.; Zetterberg, H.; et al. Differential levels of plasma biomarkers of neurodegeneration in Lewy body dementia, Alzheimer’s disease, frontotemporal dementia and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 2022, 93, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Ooi, S.; Patel, S.K.; Eratne, D.; Kyndt, C.; Reidy, N.; Lewis, C.; Lee, S.C.M.; Darby, D.; Brodtmann, A. Plasma Neurofilament Light Chain and Clinical Diagnosis in Frontotemporal Dementia Syndromes. J. Alzheimers Dis. JAD 2022, 89, 1221–1231. [Google Scholar] [CrossRef] [PubMed]
- Steinacker, P.; Anderl-Straub, S.; Diehl-Schmid, J.; Semler, E.; Uttner, I.; von Arnim, C.A.F.; Barthel, H.; Danek, A.; Fassbender, K.; Fliessbach, K.; et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 2018, 91, e1390–e1401. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397. [Google Scholar] [CrossRef]
- Spotorno, N.; Lindberg, O.; Nilsson, C.; Landqvist Waldö, M.; van Westen, D.; Nilsson, K.; Vestberg, S.; Englund, E.; Zetterberg, H.; Blennow, K.; et al. Plasma neurofilament light protein correlates with diffusion tensor imaging metrics in frontotemporal dementia. PLoS ONE 2020, 15, e0236384. [Google Scholar] [CrossRef]
- Thijssen, E.H.; Verberk, I.M.W.; Kindermans, J.; Abramian, A.; Vanbrabant, J.; Ball, A.J.; Pijnenburg, Y.; Lemstra, A.W.; van der Flier, W.M.; Stoops, E.; et al. Differential diagnostic performance of a panel of plasma biomarkers for different types of dementia. Alzheimers Dement. 2022, 14, e12285. [Google Scholar] [CrossRef]
- Meeter, L.H.H.; Vijverberg, E.G.; Del Campo, M.; Rozemuller, A.J.M.; Donker Kaat, L.; de Jong, F.J.; van der Flier, W.M.; Teunissen, C.E.; van Swieten, J.C.; Pijnenburg, J.A.L.; et al. Clinical value of neurofilament and phospho-tau/tau ratio in the frontotemporal dementia spectrum. Neurology 2018, 90, e1231–e1239. [Google Scholar] [CrossRef]
- Götze, K.; Vrillon, A.; Bouaziz-Amar, E.; Mouton-Liger, F.; Hugon, J.; Martinet, M.; Dumurgier, J.; Cognat, E.; Zetterberg, H.; Blennow, K.; et al. Plasma neurofilament light chain in memory clinic practice: Evidence from a real-life study. Neurobiol. Dis. 2023, 176, 105937. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Tao, Q.; Lu, P.; Meng, F.; Zhuang, L.; Qiao, S.; Zhang, Y.; Luo, B.; Liu, Y.; et al. Diagnostic value of isolated plasma biomarkers and its combination in neurodegenerative dementias: A multicenter cohort study. Clin. Chim. Acta Int. J. Clin. Chem. 2024, 558, 118784. [Google Scholar] [CrossRef] [PubMed]
- Verde, F.; Steinacker, P.; Weishaupt, J.H.; Kassubek, J.; Oeckl, P.; Halbgebauer, S.; Tumani, H.; von Arnim, C.A.F.; Dorst, J.; Feneberg, E.; et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Al Shweiki, M.R.; Steinacker, P.; Oeckl, P.; Hengerer, B.; Danek, A.; Fassbender, K.; Diehl-Schmid, J.; Jahn, H.; Anderl-Straub, S.; Ludolph, A.C.; et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J. Psychiatr. Res. 2019, 113, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Katisko, K.; Cajanus, A.; Jääskeläinen, O.; Kontkanen, A.; Hartikainen, P.; Korhonen, V.E.; Helisalmi, S.; Haapasalo, A.; Koivumaa-Honkanen, H.; Herukka, S.-K.; et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J. Neurol. 2020, 267, 162–167. [Google Scholar] [CrossRef]
- Escal, J.; Fourier, A.; Formaglio, M.; Zimmer, L.; Bernard, E.; Mollion, H.; Bost, M.; Herrmann, M.; Ollagnon-Roman, E.; Quadrio, I.; et al. Comparative diagnosis interest of NfL and pNfH in CSF and plasma in a context of FTD-ALS spectrum. J. Neurol. 2022, 269, 1522–1529. [Google Scholar] [CrossRef]
- Eratne, D.; Kang, M.; Malpas, C.; Simpson-Yap, S.; Lewis, C.; Dang, C.; Grewal, J.; Coe, A.; Dobson, H.; Keem, M.; et al. Plasma neurofilament light in behavioural variant frontotemporal dementia compared to mood and psychotic disorders. Aust. N. Z. J. Psychiatry 2024, 58, 70–81. [Google Scholar] [CrossRef]
- Tüzün, E.; Şanli, E.; Akbayir, E.; Türkoğlu, R. Phosphorylated Neurofilament Heavy Chain (pNFH) in Clinically Isolated Syndrome and Multiple Sclerosis. Noro Psikiyatri Arsivi 2021, 58, 255–256. [Google Scholar] [CrossRef]
- Wilke, C.; Pujol-Calderón, F.; Barro, C.; Stransky, E.; Blennow, K.; Michalak, Z.; Deuschle, C.; Jeromin, A.; Zetterberg, H.; Schüle, R.; et al. Correlations between serum and CSF pNfH levels in ALS, FTD and controls: A comparison of three analytical approaches. Clin. Chem. Lab. Med. 2019, 57, 1556–1564. [Google Scholar] [CrossRef]
- De Schaepdryver, M.; Jeromin, A.; Gille, B.; Claeys, K.G.; Herbst, V.; Brix, B.; Van Damme, P.; Poesen, K. Comparison of elevated phosphorylated neurofilament heavy chains in serum and cerebrospinal fluid of patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 367–373. [Google Scholar] [CrossRef]
- Zecca, C.; Dell’Abate, M.T.; Pasculli, G.; Capozzo, R.; Barone, R.; Arima, S.; Pollice, A.; Brescia, V.; Tortelli, R.; Logroscino, G. Role of plasma phosphorylated neurofilament heavy chain (pNfH) in amyotrophic lateral sclerosis. J. Cell Mol. Med. 2022, 26, 3608–3615. [Google Scholar] [CrossRef]
- Behzadi, A.; Pujol-Calderón, F.; Tjust, A.E.; Wuolikainen, A.; Höglund, K.; Forsberg, K.; Portelius, E.; Blennow, K.; Zetterberg, H.; Andersen, P.M. Neurofilaments can differentiate ALS subgroups and ALS from common diagnostic mimics. Sci. Rep. 2021, 11, 22128. [Google Scholar] [CrossRef] [PubMed]
- Boylan, K.B.; Glass, J.D.; Crook, J.E.; Yang, C.; Thomas, C.S.; Desaro, P.; Johnston, A.; Overstreet, K.; Kelly, C.; Polak, M.; et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Ganesalingam, J.; An, J.; Bowser, R.; Andersen, P.M.; Shaw, C.E. pNfH is a promising biomarker for ALS. Amyotroph. Lateral Scler. Front. Degener. 2013, 14, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Zetterberg, H.; Van Swieten, J.C.; Boxer, A.L.; Rohrer, J.D. Review: Fluid biomarkers for frontotemporal dementias. Neuropathol. Appl. Neurobiol. 2019, 45, 81–87. [Google Scholar] [CrossRef]
- McCombe, P.A.; Pfluger, C.; Singh, P.; Lim, C.Y.H.; Airey, C.; Henderson, R.D. Serial measurements of phosphorylated neurofilament-heavy in the serum of subjects with amyotrophic lateral sclerosis. J. Neurol. Sci. 2015, 353, 122–129. [Google Scholar] [CrossRef]
- Falzone, Y.M.; Domi, T.; Agosta, F.; Pozzi, L.; Schito, P.; Fazio, R.; Del Carro, U.; Barbieri, A.; Comola, M.; Leocani, L.; et al. Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. J. Neurol. 2020, 267, 2272–2280. [Google Scholar] [CrossRef]
- Gendron, T.F.; C9ORF72 Neurofilament Study Group; Daughrity, L.M.; Heckman, M.G.; Diehl, N.N.; Wuu, J.; Miller, M.; Pastor, P.; Trojanowski, J.Q.; Grossman, M.; et al. Phosphorylated neurofilament heavy chain: A biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann. Neurol. 2017, 82, 139–146. [Google Scholar] [CrossRef]
- Wagner, M.; Lorenz, G.; Volk, A.E.; Brunet, T.; Edbauer, D.; Berutti, R.; Zhao, C.; Anderl-Straub, S.; Bertram, L.; Danek, A.; et al. Clinico-genetic findings in 509 frontotemporal dementia patients. Mol. Psychiatry 2021, 26, 5824–5832. [Google Scholar] [CrossRef]
- Gao, Y.-L.; Wang, N.; Sun, F.-R.; Cao, X.-P.; Zhang, W.; Yu, J.-T. Tau in neurodegenerative disease. Ann. Transl. Med. 2018, 6, 175. [Google Scholar] [CrossRef]
- Skillbäck, T.; Farahmand, B.Y.; Rosén, C.; Mattsson, N.; Nägga, K.; Kilander, L.; Religa, D.; Wimo, A.; Winblad, B.; Schott, J.M.; et al. Cerebrospinal fluid tau and amyloid-β 1-42 in patients with dementia. Brain 2015, 138, 2716–2731. [Google Scholar] [CrossRef]
- Foiani, M.S.; Woollacott, I.O.; Heller, C.; Bocchetta, M.; Heslegrave, A.; Dick, K.M.; Russell, L.L.; Marshall, C.R.; Mead, S.; Schott, J.M.; et al. Plasma tau is increased in frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 2018, 89, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.-Y.; Yang, F.-C.; Chiu, M.-J.; Lin, W.-C.; Lu, C.-H.; Yang, S.-Y. Relevance of plasma biomarkers to pathologies in Alzheimer’s disease, Parkinson’s disease and frontotemporal dementia. Sci. Rep. 2022, 12, 17919. [Google Scholar] [CrossRef] [PubMed]
- Ingelson, M.; Blomberg, M.; Benedikz, E.; Wahlund, L.-O.; Karlsson, E.; Vanmechelen, E.; Lannfelt, L. Tau immunoreactivity detected in human plasma, but no obvious increase in dementia. Dement. Geriatr. Cogn. Disord. 1999, 10, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortiz, F.; Kac, P.R.; Brum, W.S.; Zetterberg, H.; Blennow, K.; Karikari, T.K. Plasma phospho-tau in Alzheimer’s disease: Towards diagnostic and therapeutic trial applications. Mol. Neurodegener. 2023, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhang, S.; Jiang, L.; Wang, L.; Li, T.; Lei, P. Ultrasensitive assays for detection of plasma tau and phosphorylated tau 181 in Alzheimer’s disease: A systematic review and meta-analysis. Transl. Neurodegener. 2021, 10, 10. [Google Scholar] [CrossRef]
- Xu, C.; Zhao, L.; Dong, C. The performance of plasma phosphorylated tau231 in detecting Alzheimer’s disease: A systematic review with meta-analysis. Eur. J. Neurosci. 2023, 58, 3132–3149. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Z.; Zhang, Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. JAD 2024, 98, 13–32. [Google Scholar] [CrossRef]
- Zabala-Findlay, A.; Penny, L.K.; Lofthouse, R.A.; Porter, A.J.; Palliyil, S.; Harrington, C.R.; Wischik, C.M.; Arastoo, M. Utility of Blood-Based Tau Biomarkers for Mild Cognitive Impairment and Alzheimer’s Disease: Systematic Review and Meta-Analysis. Cells 2023, 12, 1184. [Google Scholar] [CrossRef]
- Telser, J.; Risch, L.; Saely, C.H.; Grossmann, K.; Werner, P. P-tau217 in Alzheimer’s disease. Clin. Chim. Acta Int. J. Clin. Chem. 2022, 531, 100–111. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Strom, A.; Fonseca, C.; Iaccarino, L.; Wolf, A.; Spina, S.; Allen, I.E.; Cobigo, Y.; Heuer, H.; et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021, 20, 739–752. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Chiu, M.-J.; Yang, S.-Y.; Chen, T.-F.; Lin, C.-H.; Yang, F.-C.; Chen, W.-P.; Zetterberg, H.; Blennow, K. Synergistic Association between Plasma Aβ1-42 and p-tau in Alzheimer’s Disease but Not in Parkinson’s Disease or Frontotemporal Dementia. ACS Chem. Neurosci. 2021, 12, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.; Cabreira, V.; Rocha, S.; Massano, J. Blood Biomarkers for the Diagnosis of Neurodegenerative Dementia: A Systematic Review. J. Geriatr. Psychiatry Neurol. 2023, 36, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Arechavaleta-Velasco, F.; Perez-Juarez, C.E.; Gerton, G.L.; Diaz-Cueto, L. Progranulin and its biological effects in cancer. Med. Oncol. Northwood Lond Engl. 2017, 34, 194. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Li, G.; Hettinghouse, A.; Liu, C. Progranulin: A key player in autoimmune diseases. Cytokine 2018, 101, 48–55. [Google Scholar] [CrossRef]
- Yu, C.-E.; Bird, T.D.; Bekris, L.M.; Montine, T.J.; Leverenz, J.B.; Steinbart, E.; Galloway, N.M.; Feldman, H.; Woltjer, R.; Miller, C.A.; et al. The spectrum of mutations in progranulin: A collaborative study screening 545 cases of neurodegeneration. Arch. Neurol. 2010, 67, 161–170. [Google Scholar] [CrossRef]
- Finch, N.; Baker, M.; Crook, R.; Swanson, K.; Kuntz, K.; Surtees, R.; Bisceglio, G.; Rovelet-Lecrux, A.; Boeve, B.; Petersen, R.C.; et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain J. Neurol. 2009, 132, 583–591. [Google Scholar] [CrossRef]
- Ghidoni, R.; Benussi, L.; Glionna, M.; Franzoni, M.; Binetti, G. Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 2008, 71, 1235–1239. [Google Scholar] [CrossRef]
- Sellami, L.; Rucheton, B.; Ben Younes, I.; Camuzat, A.; Saracino, D.; Rinaldi, D.; Epelbaum, S.; Azuar, C.; Levy, R.; Auriacombe, S.; et al. Plasma progranulin levels for frontotemporal dementia in clinical practice: A 10-year French experience. Neurobiol. Aging 2020, 91, e1–e167. [Google Scholar] [CrossRef]
- Gibbons, L.; Rollinson, S.; Thompson, J.C.; Robinson, A.; Davidson, Y.S.; Richardson, A.; Neary, D.; Pickering-Brown, S.M.; Snowden, J.S.; Mann, D.M.A. Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol. Aging 2015, 36, 1603.e1–1603.e4. [Google Scholar] [CrossRef]
- Hsiung, G.-Y.R.; Fok, A.; Feldman, H.H.; Rademakers, R.; Mackenzie, I.R.A. rs5848 polymorphism and serum progranulin level. J. Neurol. Sci. 2011, 300, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Sleegers, K.; Brouwers, N.; Van Damme, P.; Engelborghs, S.; Gijselinck, I.; van der Zee, J.; Peeters, K.; Mattheijssens, M.; Cruts, M.; Vandenberghe, R.; et al. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann. Neurol. 2009, 65, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Antonell, A.; Gil, S.; Sánchez-Valle, R.; Balasa, M.; Bosch, B.; Prat, M.C.; Chiollaz, A.-C.; Fernández, M.; Yagüe, J.; Molinuevo, J.L.; et al. Serum progranulin levels in patients with frontotemporal lobar degeneration and Alzheimer’s disease: Detection of GRN mutations in a Spanish cohort. J. Alzheimers Dis. JAD 2012, 31, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Meeter, L.H.H.; Patzke, H.; Loewen, G.; Dopper, E.G.P.; Pijnenburg, Y.A.L.; van Minkelen, R.; van Swieten, J.C. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 330–340. [Google Scholar] [CrossRef]
- Meda, F.; Simrén, J.; Borroni, B.; Cantoni, V.; Archetti, S.; Biasiotto, G.; Andreasson, U.; Blennow, K.; Kvartsberg, H.; Zetterberg, H. Analytical and clinical validation of a blood progranulin ELISA in frontotemporal dementias. Clin. Chem. Lab. Med. CCLM 2023, 61, 2195–2204. [Google Scholar] [CrossRef]
- Galimberti, D.; Fumagalli, G.G.; Fenoglio, C.; Cioffi, S.M.G.; Arighi, A.; Serpente, M.; Borroni, B.; Padovani, A.; Tagliavini, F.; Masellis, M.; et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: Results from the GENFI study. Neurobiol. Aging 2018, 62, e9–e245. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tortosa, E.; Guerrero-López, R.; Gil-Neciga, E.; Franco, E.; Del Ser, T.; Jiménez Escrig, A.; Pérez-Pérez, J.; Sainz, M.J. Plasma progranulin levels in cortical dementia phenotypes with asymmetric perisylvian atrophy. Eur. J. Neurol. 2013, 20, 1319–1324. [Google Scholar] [CrossRef]
- Wilke, C.; Gillardon, F.; Deuschle, C.; Dubois, E.; Hobert, M.A.; Müller vom Hagen, J.; Krüger, S.; Biskup, S.; Blauwendraat, C.; Hruscha, M.; et al. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease. Curr. Alzheimer Res. 2016, 13, 654–662. [Google Scholar] [CrossRef]
- Miller, Z.; Mitic, L.; Tran, J.; Lobach, I.; Karydas, A.; Serrero, G.; Pearlman, R.; Rosen, H.; Miller, B.; Boxer, A. Progranulin protein plasma and CSF levels in a large well-characterized dementia and healthy aging cohort. (S33.004). Neurology 2015, 84, S33.004. [Google Scholar] [CrossRef]
- Nicholson, A.M.; Finch, N.A.; Thomas, C.S.; Wojtas, A.; Rutherford, N.J.; Mielke, M.M.; Roberts, R.O.; Boeve, B.F.; Knopman, D.S.; Petersen, R.C.; et al. Progranulin protein levels are differently regulated in plasma and CSF. Neurology 2014, 82, 1871–1878. [Google Scholar] [CrossRef]
- Feneberg, E.; Steinacker, P.; Volk, A.E.; Weishaupt, J.H.; Wollmer, M.A.; Boxer, A.; Tumani, H.; Ludolph, A.C.; Otto, M. Progranulin as a candidate biomarker for therapeutic trial in patients with ALS and FTLD. J. Neural Transm. Vienna Austria 1996 2016, 123, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Bongcam-Rudloff, E.; Nistér, M.; Betsholtz, C.; Wang, J.L.; Stenman, G.; Huebner, K.; Croce, C.M.; Westermark, B. Human glial fibrillary acidic protein: Complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res. 1991, 51, 1553–1560. [Google Scholar]
- Middeldorp, J.; Hol, E.M. GFAP in health and disease. Prog. Neurobiol. 2011, 93, 421–443. [Google Scholar] [CrossRef] [PubMed]
- Benussi, A.; Ashton, N.J.; Karikari, T.K.; Gazzina, S.; Premi, E.; Benussi, L.; Ghidoni, R.; Rodriguez, J.L.; Emeršič, A.; Binetti, G.; et al. Serum Glial Fibrillary Acidic Protein (GFAP) Is a Marker of Disease Severity in Frontotemporal Lobar Degeneration. J. Alzheimers Dis. 2020, 77, 1129–1141. [Google Scholar] [CrossRef]
- Zhu, N.; Santos-Santos, M.; Illán-Gala, I.; Montal, V.; Estellés, T.; Barroeta, I.; Altuna, M.; Arranz, J.; Muñoz, L.; Belbin, O.; et al. Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl. Neurodegener. 2021, 10, 50. [Google Scholar] [CrossRef]
- Bolsewig, K.; Hok-A-Hin, Y.S.; Sepe, F.N.; Boonkamp, L.; Jacobs, D.; Bellomo, G.; Paoletti, F.P.; Vanmechelen, E.; Teunissen, C.E.; Parnetti, L.; et al. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J. Alzheimers Dis. 2022, 90, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Oeckl, P.; Anderl-Straub, S.; Von Arnim, C.A.F.; Baldeiras, I.; Diehl-Schmid, J.; Grimmer, T.; Halbgebauer, S.; Kort, A.M.; Lima, M.; Marques, T.M.; et al. Serum GFAP differentiates Alzheimer’s disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J. Neurol. Neurosurg. Psychiatry 2022, 93, 659–667. [Google Scholar] [CrossRef]
- Marelli, C.; Hourregue, C.; Gutierrez, L.-A.; Paquet, C.; Menjot de Champfleur, N.; De Verbizier, D.; Jacob, M.; Dubois, J.; Maleska, A.M.; Hirtz, C.; et al. Cerebrospinal Fluid and Plasma Biomarkers do not Differ in the Presenile and Late-Onset Behavioral Variants of Frontotemporal Dementia. J. Alzheimers Dis. JAD 2020, 74, 903–911. [Google Scholar] [CrossRef]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; Steinacker, P.; Huss, A.M.; Neugebauer, H.; von Arnim, C.A.F.; Diehl-Schmid, J.; Grimmer, T.; Kornhuber, J.; et al. Glial Fibrillary Acidic Protein in Serum is Increased in Alzheimer’s Disease and Correlates with Cognitive Impairment. J. Alzheimers Dis. JAD 2019, 67, 481–488. [Google Scholar] [CrossRef]
- Shen, X.-N.; Huang, S.-Y.; Cui, M.; Zhao, Q.-H.; Guo, Y.; Huang, Y.-Y.; Zhang, W.; Ma, Y.-H.; Chen, S.-D.; Zhang, Y.-R.; et al. Plasma Glial Fibrillary Acidic Protein in the Alzheimer Disease Continuum: Relationship to Other Biomarkers, Differential Diagnosis, and Prediction of Clinical Progression. Clin. Chem. 2023, 69, 411–421. [Google Scholar] [CrossRef]
- Cicognola, C.; Janelidze, S.; Hertze, J.; Zetterberg, H.; Blennow, K.; Mattsson-Carlgren, N.; Hansson, O. Plasma glial fibrillary acidic protein detects Alzheimer pathology and predicts future conversion to Alzheimer dementia in patients with mild cognitive impairment. Alzheimers Res. Ther. 2021, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Katisko, K.; Cajanus, A.; Huber, N.; Jääskeläinen, O.; Kokkola, T.; Kärkkäinen, V.; Rostalski, H.; Hartikainen, P.; Koivisto, A.M.; Hannonen, S.; et al. GFAP as a biomarker in frontotemporal dementia and primary psychiatric disorders: Diagnostic and prognostic performance. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Hsiao-Nakamoto, J.; Chiu, C.-L.; VandeVrede, L.; Ravi, R.; Vandenberg, B.; De Groot, J.; Tsogtbaatar, B.; Fang, M.; Auger, P.; Gould, N.S.; et al. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. bioRxiv 2024, 2024.02.09.579529. [Google Scholar] [CrossRef]
- Wang, X.; Shi, Z.; Qiu, Y.; Sun, D.; Zhou, H. Peripheral GFAP and NfL as early biomarkers for dementia: Longitudinal insights from the UK Biobank. BMC Med. 2024, 22, 192. [Google Scholar] [CrossRef] [PubMed]
- de Boer, E.M.J.; Orie, V.K.; Williams, T.; Baker, M.R.; De Oliveira, H.M.; Polvikoski, T.; Silsby, M.; Menon, P.; van den Bos, M.; Halliday, G.M.; et al. TDP-43 proteinopathies: A new wave of neurodegenerative diseases. J. Neurol. Neurosurg. Psychiatry 2020, 92, 86–95. [Google Scholar] [CrossRef]
- Mackenzie, I.R.; Rademakers, R.; Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 2010, 9, 995–1007. [Google Scholar] [CrossRef]
- Cairns, N.J.; Neumann, M.; Bigio, E.H.; Holm, I.E.; Troost, D.; Hatanpaa, K.J.; Foong, C.; White, C.L., 3rd; Schneider, J.A.; Kretzschmar, H.A.; et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am. J. Pathol. 2007, 171, 227–240. [Google Scholar] [CrossRef]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Irwin, K.E.; Jasin, P.; Braunstein, K.E.; Sinha, I.R.; Garret, M.A.; Bowden, K.D.; Chang, K.; Troncoso, J.C.; Moghekar, A.B.; Oh, E.S.; et al. A fluid biomarker reveals loss of TDP-43 splicing repression in presymptomatic ALS–FTD. Nat. Med. 2024, 30, 382–393. [Google Scholar] [CrossRef]
- Ling, J.P.; Pletnikova, O.; Troncoso, J.C.; Wong, P.C. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 2015, 349, 650–655. [Google Scholar] [CrossRef]
- Nana, A.L.; Sidhu, M.; Gaus, S.E.; Hwang, J.-H.L.; Li, L.; Park, Y.; Kim, E.-J.; Pasquini, L.; Allen, I.E.; Rankin, K.P.; et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol. 2019, 137, 27–46. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Liu, H.-C.; Lin, C.-Y.; Chiu, M.-J.; Chen, T.-F.; Lin, C.-H.; Chen, H.-H. Development of Assaying Plasma TDP-43 Utilizing Immunomagnetic Reduction. J. Neurol. Disord. 2020, 8, 443. [Google Scholar]
- Suárez-Calvet, M.; Dols-Icardo, O.; Lladó, A.; Sánchez-Valle, R.; Hernández, I.; Amer, G.; Antón-Aguirre, S.; Alcolea, D.; Fortea, J.; Ferrer, I.; et al. Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J. Neurol. Neurosurg. Psychiatry 2014, 85, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Jamerlan, A.M.; Shim, K.H.; Youn, Y.C.; Teunissen, C.; An, S.S.A.; Scheltens, P.; Kim, S.Y. Increased oligomeric TDP-43 in the plasma of Korean frontotemporal dementia patients with semantic dementia. Alzheimers Dement. J. Alzheimers Assoc. 2023, 19, 4020–4027. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Özdemir, S.; Fritz, C.; Möbius, W.; Kleineidam, L.; Mandelkow, E.; Biernat, J.; Doğdu, C.; Peters, O.; Cosma, N.C.; et al. Plasma extracellular vesicle tau and TDP-43 as diagnostic biomarkers in FTD and ALS. Nat. Med. 2024, 30, 1771–1783. [Google Scholar] [CrossRef]
- Katisko, K.; Huber, N.; Kokkola, T.; Hartikainen, P.; Krüger, J.; Heikkinen, A.-L.; Paananen, V.; Leinonen, V.; Korhonen, V.E.; Helisalmi, S.; et al. Serum total TDP-43 levels are decreased in frontotemporal dementia patients with C9orf72 repeat expansion or concomitant motoneuron disease phenotype. Alzheimers Res. Ther. 2022, 14, 151. [Google Scholar] [CrossRef]
- Foulds, P.; McAuley, E.; Gibbons, L.; Davidson, Y.; Pickering-Brown, S.M.; Neary, D.; Snowden, J.S.; Allsop, D.; Mann, D.M.A. TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol. 2008, 116, 141–146. [Google Scholar] [CrossRef]
- Foulds, P.G.; Davidson, Y.; Mishra, M.; Hobson, D.J.; Humphreys, K.M.; Taylor, M.; Johnson, N.; Weintraub, S.; Akiyama, H.; Arai, T.; et al. Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol. 2009, 118, 647–658. [Google Scholar] [CrossRef]
- Katzeff, J.S.; Bright, F.; Phan, K.; Kril, J.J.; Ittner, L.M.; Kassiou, M.; Hodges, J.R.; Piguet, O.; Kiernan, M.C.; Halliday, G.M.; et al. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain J. Neurol. 2022, 145, 1598–1609. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, A.; Houlden, H.; Rizig, M. Novel fluid biomarkers to differentiate frontotemporal dementia and dementia with Lewy bodies from Alzheimer’s disease: A systematic review. J. Neurol. Sci. 2020, 415, 116886. [Google Scholar] [CrossRef]
- Meeter, L.H.; Kaat, L.D.; Rohrer, J.D.; van Swieten, J.C. Imaging and fluid biomarkers in frontotemporal dementia. Nat. Rev. Neurol. 2017, 13, 406–419. [Google Scholar] [CrossRef]
- Teunissen, C.E.; Elias, N.; Koel-Simmelink, M.J.A.; Durieux-Lu, S.; Malekzadeh, A.; Pham, T.V.; Piersma, S.R.; Beccari, T.; Meeter, L.H.H.; Dopper, E.G.P.; et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement. Diagn. Assess. Dis. Monit. 2016, 2, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Bourbouli, M.; Rentzos, M.; Bougea, A.; Zouvelou, V.; Constantinides, V.C.; Zaganas, I.; Evdokimidis, I.; Kapaki, E.; Paraskevas, G.P. Cerebrospinal Fluid TAR DNA-Binding Protein 43 Combined with Tau Proteins as a Candidate Biomarker for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Spectrum Disorders. Dement. Geriatr. Cogn. Disord. 2017, 44, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Liampas, I.; Dimitriou, N.; Siokas, V.; Messinis, L.; Nasios, G.; Dardiotis, E. Cognitive trajectories preluding the onset of different dementia entities: A descriptive longitudinal study using the NACC database. Aging Clin. Exp. Res. 2024, 36, 119. [Google Scholar] [CrossRef] [PubMed]
- Liampas, I.; Siokas, V.; Zoupa, E.; Lyketsos, C.G.; Dardiotis, E. Neuropsychiatric symptoms and incident Lewy body dementia in male versus female older adults with mild cognitive impairment. Psychiatry Clin. Neurosci. 2024, 78, 144–146. [Google Scholar] [CrossRef] [PubMed]
- Liampas, I.; Siokas, V.; Lyketsos, C.G.; Dardiotis, E. Cognitive Performance and Incident Alzheimer’s Dementia in Men Versus Women. J. Prev. Alzheimers Dis. 2024, 11, 162–170. [Google Scholar] [CrossRef]
- Liampas, I.; Siokas, V.; Lyketsos, C.G.; Dardiotis, E. Associations between neuropsychiatric symptoms and incident Alzheimer’s dementia in men versus women. J. Neurol. 2023, 270, 2069–2083. [Google Scholar] [CrossRef]
- Kmetzsch, V.; Latouche, M.; Saracino, D.; Rinaldi, D.; Camuzat, A.; Gareau, T.; French Research Network on FTD/ALS; Le Ber, I.; Colliot, O.; Becker, E. MicroRNA signatures in genetic frontotemporal dementia and amyotrophic lateral sclerosis. Ann. Clin. Transl. Neurol. 2022, 9, 1778–1791. [Google Scholar] [CrossRef]
- Fenoglio, C.; Serpente, M.; Visconte, C.; Arcaro, M.; Sorrentino, F.; D’Anca, M.; Arighi, A.; Rotondo, E.; Vimercati, R.; Rossi, G.; et al. Circulating Non-Coding RNA Levels Are Altered in Autosomal Dominant Frontotemporal Dementia. Int. J. Mol. Sci. 2022, 23, 14723. [Google Scholar] [CrossRef]
- Martinez, B.; Peplow, P.V. MicroRNA biomarkers in frontotemporal dementia and to distinguish from Alzheimer’s disease and amyotrophic lateral sclerosis. Neural Regen. Res. 2022, 17, 1412–1422. [Google Scholar] [CrossRef]
- Serpente, M.; Fenoglio, C.; Arcaro, M.; Carandini, T.; Sacchi, L.; Pintus, M.; Rotondo, E.; Borracci, V.; Ghezzi, L.; Genetic FTD Initiative GENFI; et al. Long Non-Coding RNA Profile in Genetic Symptomatic and Presymptomatic Frontotemporal Dementia: A GENFI Study. J. Alzheimer’s Dis. 2024, 100 (Suppl. 1), S187–S196. [Google Scholar] [CrossRef]
- Hagenaars, S.P.; Radaković, R.; Crockford, C.; Fawns-Ritchie, C.; International FTD-Genomics Consortium (IFGC); Harris, S.E.; Gale, C.R.; Deary, I.J. Genetic risk for neurodegenerative disorders, and its overlap with cognitive ability and physical function. PLoS ONE 2018, 13, e0198187. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Primary Source | Primary Function | Process Implicated in Biomarker Change | Direction of Change and Potential Use |
---|---|---|---|---|
Neurofilament light chain (NfL) and Phosphorylated neurofilament heavy chain (pNfH) | Neuroaxonal cytoskeleton | Structural stability and radial growth of the neuroaxons | Neuroaxonal breakdown | Blood NfL concentrations have been consistently determined higher in FTD patients compared to healthy individuals. This biomarker may not serve the differential diagnosis of FTD from AD but may assist in the differentiation of bvFTD from PPDs or DLB. In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), increased levels of NfL (or steeper increases in serial measurements) increase the risk of incident FTD and may distinguish between converters and non-converters. Baseline NfL levels correlate with steeper cognitive, behavioral and functional decline, as well as more rapid neuroanatomical changes, making NfL promising in monitoring disease progression. Blood pNfH may have a potential limited role in the demarcation of the conversion stage to full-blown FTD. |
Tau and Phosphorylated Tau (pTau) | Neuroaxonal cytoskeleton | Neuronal microtubule stabilization and axonal transport | Protein aggregation in a prion-like manner | Total tau levels may serve as a biomarker of neurodegeneration but probably lack applicability in the field of FTD. Higher p-tau concentrations may distinguish AD from FTD and logopenic variant PPA from FTD-related PPAs. |
Progranulin (PGRN) | A subset of brain neurons and microglia | Regulates cell growth, lysosomal functions, inflammation, stress responses and neuronal survival. | Lysosomal dysfunction | PGRN could serve as a blood biomarker to identify GRN mutation carriers in asymptomatic or symptomatic individuals. |
Glial fibrillary acidic protein (GFAP) | Astrocytes | Structural integrity, shape change and movement | Astrocytosis | GFAP exhibits stronger associations with amyloid pathology compared to other neurodegenerative alterations. Nevertheless, GFAP may assist in the differentiation of PPDs from bvFTD. GFAP may also assume a role in the detection of asymptomatic or symptomatic GRN mutation carriers. |
TAR DNA-binding protein-43 (TDP-43) | Highly expressed in CNS progenitors for neuros and glia—in later stages it is expressed in differentiated neural cells as well—as the CNS matures expression diminishes | Regulates gene expression and RNA processing | Protein aggregation in a prion-like manner | TDP-43 appears to be a promising diagnostic blood biomarker and may distinguish TDP-43 pathology from other FTD-related pathologies. |
Author—Publication Year | Settings | Participants | Participant Characteristics, N (Female %), Age | Time to Conversion | NfL Thresholds | Prognostic Metrics |
---|---|---|---|---|---|---|
Giannini 2023 | Erasmus University Medical Center (The Netherlands). | First-degree family members of patients with genetic FTD (GRN, C9orf72, MAPT or TARDBP). Participants who carry the genetic variant make up the presymptomatic or prodromal FTD group, i.e., at-risk for developing FTD. | Converters = 21 (71.4%), median age 55.7 years, IQR = 48.6–62.6 -Converted to prodromal FTD = 8 -Converted to full-blown FTD = 13 Non-converters = 61 (65.6%), median age 45.8 years, IQR = 39.2–55.0 | Median 3 years (IQR = 1.8–5.0) | >3 years before conversion = 8.9 pg/mL 3–1.5 years before conversion = 12.3 pg/mL 1.5–0 years before conversion = 12.6 pg/mL 0–1.5 years after conversion = 14.2 pg/mL | >3 years before conversion -AUC = 0.860 -sensitivity = 80.0 -specificity = 77.1 3–1.5 years before conversion -AUC = 0.900 -sensitivity = 81.3 -specificity = 93.4 1.5–0 years before conversion -AUC = 0.920 -sensitivity = 90.9 -specificity = 95.1 0–1.5 years after conversion -AUC = 0.970 -sensitivity = 94.7 -specificity = 98.4 |
Gendron 2022 | Multicenter study including participants from two North American multicenter observational studies (LEFFTDS/ARTFL). | The presymptomatic group consisted of individuals with a C9orf72 repeat expansion or GRN or MAPT mutations, kindreds of adults with FTD-causing mutations. The HC group composed of clinically normal, mutation-negative individuals, kindreds of individuals with known FTD-causing mutations. | Presymptomatic mutation carriers = 85 (51.8%), median age 49, range = 40–71 HC = 144 (66.0%), median age 53, range = 40–80 | Median 1.3 years (range: 1.0–2.8 years) | 10 pg/mL | HC vs. presymptomatic -AUC = 0.64 HC vs. converters -AUC = 0.850 Non-converters vs. converters -AUC = 0.780 |
Wilke 2021 | Participants from centers collaborating in the GENFI (Europe and Canada). | Healthy participants who carry the pathogenic FTD mutations (GRN, MAPT or C9orf72) make up the presymptomatic group. | Presymptomatic = 172 (63.0%), median age 41.2 years, IQR = 33.2–50.5 Converters = 7 (29.0%), median age 62.5 years, IQR = 52.2–65.6 | Median 3.2 years | NR | NFL distinguished converters vs. non-converters -AUC = 0.910 NfL change rates converters vs. non-converters -AUC = 0.940 |
Van der Ende 2019 | Participants from centers collaborating in the GENFI (Europe and Canada). | Healthy participants who carry the pathogenic FTD mutations (GRN, MAPT or C9orf72) make up the presymptomatic group. | Presymptomatic = 149 (65.0%), median age 45 years, IQR = 39–55 Converters = 9 | NR | 15 pg/mL | Converters vs. non-converters -AUC = 0.930 -sensitivity = 100 -specificity = 84.0 |
Author—Publication Year | Settings | Diagnostic Criteria | Participants per Group (Female %), Age in Years ± SD (Unless Stated Otherwise) | Disease Severity—CDR(-FTLD) | Time from Onset to Plasma Collection | NfL Thresholds | Diagnostic Metrics |
---|---|---|---|---|---|---|---|
Chen 2024 | Memory clinics from four hospitals affiliated with the Zhejiang University School of Medicine (China). | Clinical diagnoses were supported by Aβ-Pet and CSF Aβ investigations. | bvFTD = 16 (62.5%), 64.3 ± 9.0 AD = 64 (48.4%), 62.8 ± 10.7 PSPci = 12 (58.3%), 71.8 ± 5.9 HC = 20 (50.0%), 65.7 ± 9.1 | Median CDR bvFTD = 2.0 AD = 1.0 PSPci= 1.0 | bvFTD = mean 3.6 years AD = mean 2.3 years PSPci = mean 2.5 years | bvFTD vs. HC = 17.3 pg/mL AD vs. bvFTD/PSPci = 55.0 pg/mL | bvFTD vs. HC -AUC = 0.946 -sensitivity = 91.7 -specificity = 95.0 AD vs. bvFTD/PSPci -AUC = 0.704 -sensitivity = 98.4 -specificity = 36.0 |
Benussi 2022 | Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia (Italy). | Clinical diagnoses were supported by brain structural Imaging. CSF concentrations of tau, p-Tau181, and Aβ were measured in a subset of cases. Genetic screening for GRN, C9orf72, and MAPT mutations was performed in familial cases and early-onset sporadic cases. | FTLD = 127 (47.8%), median age 64.0, IQR = 58.0–70.0 (67bvFTD, 44 PPA, 7 CBS, 9 PSP) AD = 48 (44.3%), median age 68.5, IQR = 61.8–73.0 HC = 27 (55.6%), median age 48.0, IQR = 38.0–68.0 | Median CDR-FTLD FTLD = 4.0 AD = 2.0 | FTLD= median 2 years, IQR = 1–3 AD= median 2 years, IQR = 1–3 | NR | HC vs. disease groups -AUC = 0.940 FTLD vs. AD -AUC = 0.680 |
Gendron 2022 | Multicenter study including participants from two North American multicenter observational studies (LEFFTDS/ARTFL). | Diagnoses were established clinically. The HC group composed of clinically normal, mutation-negative individuals, kindreds of individuals with known FTD-causing mutations. | bvFTD = 289 (41.2%), median age 62, range = 32–85 nfvPPA = 72 (54.2%), median age 70, range = 49–86 svPPA = 84 (48.8%), median age 66, range = 50–88 FTD-ALS = 25 (34.0%), median age 61, range = 45–75 HC = 144 (66.0%), median age 53, range = 40–80 | Median CDR-FTLD The majority of: bvFTD = 1–2 nfvPPA = 0.5–2 svPPA = 0.5–2 FTD-ALS = 1–2 | bvFTD = median 5 years, range = 0–32 nfvPPA= median 4 years, range = 1–12 svPPA = median 6 years, range = 1–34 FTD-ALS = median 3 years, range = 1–15 | NR | bvFTD vs. HC -AUC = 0.920 nfvPPA vs. HC -AUC = 0.980 svPPA vs. HC -AUC = 0.980 FTD-ALS vs. HC -AUC = 0.970 Cases with CDR-FTLD of 0.0 or 0.5 bvFTD vs. HC -AUC = 0.880 nfvPPA vs. HC -AUC = 0.940 svPPA vs. HC -AUC = 0.940 |
Baiardi 2022 | Neuropathology Laboratory, Institute of Neurological Science of Bologna (Italy). | Clinical diagnoses were supported by neuroimaging, and CSF AD core biomarkers (tau, p-Tau181, and Aβ). | FTD = 59 (57.6%), 62.9 ± 8.9 AD = 97 (55.7%), 67.8 ± 9.3 PSP = 31 (35.5%), 69.2 ± 10.2 CBS = 29 (62.1%), 71.3 ± 7.2 | CDR score ≥ 1 FTD = 81.6% AD = 77.6% PSP = 54.8% CBS = 67.9% CDR score ≥ 2 FTD = 41.9% AD = 38.8% PSP = 19.4% CBS = 17.9% | FTD = mean 34.3 months ± 33.5 AD = mean 41.7 months ± 34.9 PSP = mean 51.5 months ± 33.1 CBS = mean 43.2 months ± 37.4 | FTD vs. other diseases = 31.3 pg/mL | FTD vs. other diseases (PSP/CBS/DLB/AD) -AUC = 0.761 -sensitivity = 72.9 -specificity = 74.3 FTD vs. AD -AUC = 0.791 FTD vs. DLB -AUC = 0.745 |
Chouliaras 2022 | Memory clinics in and around Cambridgeshire and the North of England, the DNUK-CRN, and the JDRP. | Clinical diagnoses; PET-Aβ and MRI investigations were available for a subset of participants. | FTD = 28 (43.0%), 64.5 ± 8.6 MCI + AD = 63 (32.0%), 73.9 ± 7.8 | NR | NR | MCI + AD vs. FTD = 0.58 in the log10 converted levels | MCI + AD vs. FTD -AUC = 0.850 -sensitivity = 89.0 -specificity = 75.0 |
Thijssen 2022 | Study including participants from the Amsterdam Dementia Cohort (The Netherlands). | Clinical diagnoses were supported by electroencephalography, brain MRI, and CSF AD biomarker analysis. All patients with AD were CSF amyloid positive, and all controls were CSF amyloid negative. | Cohort 1 FTD = 40 (50.0%), median age 64, IQR = 61–70 AD = 40 (50.0%), median age 58, IQR = 55–59 Cohort 2 FTD = 38 (53.0%), median age 63, IQR = 59–67 AD = 38 (53.0%), median age 63, IQR = 59–67 | NR | NR | NR | Cohort 1 FTD vs. AD -AUC = 0.790 -sensitivity = 48.0 -specificity = 98.0 Cohort 2 FTD vs. AD -AUC = 0.780 -sensitivity = 89.0 -specificity = 55.0 |
Thijssen 2021 | Data collected from two cohorts; UCSF Memory and Aging Center (U.S.A.) and ARTFL (U.S.A. and Canada). | Clinical diagnoses were supported by brain MRI, biofluid collection and genetic testing. All clinically diagnosed amnestic AD patients, lvPPA and PCA, had biomarker confirmation with either Aβ-PET, autopsy or genetic biomarker. Genetic screening was conducted to identify mutations in the C9orf72, GRN and MAPT genes. Eighty-three participants from the UCSF Memory and Aging Center had a pathology-confirmed diagnosis. | AD = 58 (56.9%), 65 ± 10.0 lvPPA = 15 (53.3%), 63 ± 9.0 PCA = 2 (100.0%), 58 ± 11.0 CBC = 79 (43.0%), 67 ± 8.0 PSP = 74 (54.1%), 69 ± 7.0 bvFTD = 62 (40.3%), 61 ± 10.0 nfvPPA = 32 (46.9%), 70 ± 7.0 svPPA = 27 (59.3%), 70 ± 7.0 | Mean CDR -sb AD = 6.0 lvPPA = 3.0 PCA = 2.0 CBC = 4.0 PSP = 4.0 bvFTD= 7.0 nfvPPA = 3.0 svPPA = 6.0 | NR | Clinical diagnostic groups: FTLD vs. AD/lvPPA/PCA = 42.5 pg/mL Autopsy confirmed cases: AD vs. FTLD-tau/TDP = 34.4 pg/mL AD vs. FTLD-tau = 45.9 pg/mL AD vs. FTLD-TDP = 67.5 pg/mL | Clinical diagnostic groups: FTLD vs. AD/lvPPA/PCA -AUC = 0.820 -sensitivity = 82.0 -specificity = 74.0 Autopsy confirmed cases: AD vs. FTLD-tau/TDP -AUC = 0.970 -sensitivity = 93.0 -specificity = 100.0 AD vs. FTLD-tau -AUC = 0.970 -sensitivity = 90.0 -specificity = 100.0 AD vs. FTLD-TDP -AUC = 0.960 -sensitivity = 88.0 -specificity = 100.0 |
Rojas 2021 | Patients were recruited through the North American multicenter observational studies (LEFFTDS and ARTFL: 19 research centers in total) and GENFI study, which involved 25 research centers across Europe and Canada. | Original cohort LEFFTDS enrolled members of families with a known C9orf72, GRN, or MAPT mutation. ARTFL enrolled participants who met research criteria for an FTLD syndrome and asymptomatic individuals with a family history of an FTLD syndrome. Validation cohort GENFI enrolled symptomatic carriers of C9orf72, GRN, or MAPT mutations and those at risk of carrying a mutation because (first-degree relatives). | Original cohort Asymptomatic carriers = 92 (53.3%), median age 44, range = 19–71 FTLD = 62 (61.3%), median age 61.5, range = 33–74 MBI/MCI = 33 (45.5%), median age 54, range = 19–50 Asymptomatic non-carriers = 90 (64.4%), median age 50, range = 24–76 Validation cohort Asymptomatic carriers = 115 (63.5%), median age 41, range = 20–73 FTLD = 51 (45.1%), median age 63, range = 39–78 MBI/MCI = 32 (43.8%), median age 52, range = 29–75 Asymptomatic non-carriers = 99 (51.5%), median age 41, range = 20–73 | Median CDR-FTLD -sb Original cohort Asymptomatic carriers = 0.0 FTLD =7.2 MBI/MCI = 1.5 Asymptomatic non-carriers = 0 ± 0.0 Validation cohort Asymptomatic carriers = 0.0 FTLD = 10.5 MBI/MCI = 1.0 Asymptomatic non-carriers = 0.0 | NR | Original cohort FTLD vs. asymptomatic/MCI/MBI= 13.6 pg/mL Validation cohort FTLD vs. asymptomatic/MCI/MBI = 19.8 pg/mL | Original cohort FTLD vs. asymptomatic/MCI/MBI -AUC = 0.901 -sensitivity = 87.5 -specificity = 82.7 Asymptomatic vs. MCI/MBI -AUC = 0.676 FTLD vs. MCI/MBI -AUC = 0.803 Validation cohort FTLD vs. asymptomatic/MCI/MBI -AUC = 0.907 -sensitivity = 8.74 -specificity = 8.43 Asymptomatic vs. MCI/MBI -AUC = 0.641 FTLD vs. MCI/MBI -AUC = 0.805 |
Illán-Gala 2021 | Memory and Aging Center, UCSF (USA). | Diagnosed at a multidisciplinary consensus conference according to clinical criteria. Clinicians were blinded to biomarker results. | FLTD (bvFTD, nfvPPA, svPPA, PSP, CBS) = 167 (50.3%), 65.8 ± 8.0 AD = 43 (62.8%), 65.2 ± 10.0 HC = 55 (54.5%), 52.2 ± 13.0 | Mean CDR-FTLD -sb FTLD = 6.8 AD = 6.6 HC = 0.0 | NR | NR | FTLD vs. HC AUC = 0.970 FTLD vs. AD AUC = 0.750 |
Benussi 2020 | Data from two cohorts: Centre for Neurodegenerative Disorders, University of Brescia (Italy) and IRCCS Istituto San Giovanni di Dio Fatebenefratelli, Brescia (Italy). | Clinical diagnoses were supported by brain structural imaging while CSF biomarkers (Aβ, p-tau 181, total tau) were measured in a subset of cases. Genetic screening for GRN, C9orf72, and MAPT mutations was performed in familial cases and early-onset sporadic cases. | bvFTD = 134 (58.2%), 64.5 ± 8.0 avPPA = 48 (43.8%), 67.7 ± 8.8 svPPA = 27 (59.3%), 64.0 ± 8.2 CBS = 51 (52.9%), 65.8 ± 7.6 PSP = 31 (51.6%), 72.9 ± 7.4 AD = 63 (31.7%), 75.5 ± 8.1 HC = 63 (20.6%), 65.4 ±12.1 | Mean CDR-FTLD -sb bvFTD = 7.9 avPPA = 6.2 svPPA = 5.7 CBS = 4.3 PSP = 4.2 AD = NR | bvFTD = mean 2.9 years ± SD = 2.8 avPPA = mean 2.8 years ± SD = 2.6 svPPA = mean 3.3 years ± SD = 2.2 CBS = mean 2.5 years ± SD = 1.8 PSP = mean 4.1 years ± SD = 2.8 AD = mean 1.5 years ± SD = 1.7 | FTLD vs. HC = 22.5 pg/mL mild FTLD vs. HC = 18.0 pg/mL | FTLD vs. HC -AUC = 0.862 -sensitivity = 71.5 -specificity = 92.1 mild FTLD (CDR-FTLD ≤ 6.5) vs. HC -AUC = 0.808 -sensitivity = 74.8 -specificity = 74.2 |
Matías-Guiu 2019 | Spain, exact settings were NR. | Clinical diagnoses were supported by FDG-PET studies. | lvPPA = 16 (37.5%), 73.81 ± 7.6 svPPA = 12 (33.3%), 74.83 ± 9.0 nfvPPA = 13 (61.5%), 71.31 ± 8.2 HC = 13 (23.1%), 75.08 ± 6.7 | Mean CDR lvPPA = 1.1 svPPA = 2.0 nfvPPA = 1.2 bvFTD = 2.2 HC = 0.0 Mean CDR-FTLD -sb lvPPA = 6.53 svPPA = 13.3 nfvPPA = 7.8 bvFTD = 14.3 HC = 0.0 | NR | NR | PPA vs. HC -AUC = 0.919 |
Steinacker 2018 | Participants from the German FTLD consortium (Germany). | Diagnoses were established clinically. | bvFTD = 74 (40.5%), 63.7 ± 9.2 AD = 26 (42.3%), 67 ± 8.1 HC = 15 (60.0%), 64.8 ± 11.3 | Mean CDR -sb bvFTD = 6.5 AD = 5.1 HC = 0.1 Mean CDR-FTLD -sb bvFTD = 8.8 AD = 6.6 HC = 0.1 | bvFTD = mean 3.9 years ± 3.4 AD = mean 3.4 years ± 2.1 | bvFTD vs. HC = 19.5 pg/mL bvFTD vs. AD = 29.5 pg/mL | bvFTD vs. HC -AUC = 0.851 -sensitivity = 91.0 -specificity = 79.0 bvFTD vs. AD -AUC = 0.676 -sensitivity = 74.0 -specificity = 58.0 |
Steinacker 2017 | Participants from the German FTLD consortium (Germany). | Clinical diagnoses were supported by imaging studies. | nfvPPA + svPPA = 78 (52.6%), median age 65.3 years, range = 45–80 lvPPA = 21 (38.1%), median age 68.6 years, range = 49–78 HC = 35 (54.3%), median age 63.6 years, range = 37–75 | Median CDR -sb nfvPPA + svPPA = 2.5 lvPPA = 2.8 Median FTLD-CDR -sb nfvPPA + svPPA = 4.5 lvPPA = 5.0 | nfvPPA + svPPA = median 2.6 years, range = 0.2–19.9 lvPPA = median 3.3 years, range = 0.5–17.7 | nfvPPA + svPPA vs. HC = 25 pg/mL nfvPPA + svPPA vs. lvPPA = 31 pg/mL | nfvPPA + svPPA vs. HC -AUC = 0.845 -sensitivity = 95.0 -specificity = 70.0 nfvPPA + svPPA vs. lvPPA -AUC = 0.767 -sensitivity = 81.0 -specificity = 67.0 |
Rohrer 2016 | Participants from the University College London FTD study. | Diagnoses were established clinically. Participants were tested for GRN, MAPT or C9orf72 mutations. | FTD = 67 (38.8%), 64.5 ± 7.9 (34bvFTD, 3 FTD-MND, 13 nfvFTD, 10 svFTD, and 10 PPA-not otherwise specified) HC = 28 (53.6%), 63.9 ± 7.2 | NR | FTD = mean 5.5 years ± 3.7 | FTD vs. HC = 33 pg/mL | FTD vs. HC -sensitivity = 84.0 -specificity = 96.0 |
Meeter 2016 | Participants from 11 centers collaborating in the GENFI (Europe and Canada). | FTD was clinically diagnosed in patients with pathogenic mutations in GRN, MAPT or C9orf72. Healthy participants who carry the genetic variant make up the presymptomatic group. Cognitively healthy subjects without a pathogenic mutation make up the HC group. | FTD = 101 (51.0%), median age 59 years, IQR = 56–65 Presymptomatic carriers = 62 (63.0%), median age 49 years, IQR = 42–57 HC = 71 (59.0%), median age 54 years, IQR = 43–61 | NR | FTD = median 2.0 years, IQR = 1.3–3.4 | FTD vs. HC = 9.3 pg/mL Presymptomatic carriers vs. HC = 8.3 pg/mL | FTD vs. HC -AUC = 0.970 -sensitivity = 91.0 -specificity = 100 Presymptomatic carriers vs. HC -AUC = 0.630 -sensitivity = 34.0 -specificity = 97.0 |
Author—Year | Country-Settings | Diagnosis | Sample (Female %), Age in Years ± SD (unless Stated Otherwise Specified) | CDR (Plus NACC FTLD) | Time from Onset to Plasma Collection | P-tau 181 Thresholds (unless P-tau 217 Values Are Specified) | Diagnostic Metrics |
---|---|---|---|---|---|---|---|
Benussi 2022 | Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia (Italy). | Clinical diagnoses were supported by brain structural imaging. CSF concentrations of tau, p-Tau181, and Aβ were measured in a subset of cases. Genetic screening for GRN, C9orf72, and MAPT mutations was performed in familial cases and early-onset sporadic cases. | FTLD = 127 (47.8%), median 64.0 years, IQR = 58.0–70.0 (67bvFTD, 44 PPA, 7 CBS, 9 PSP) AD = 48 (44.3%), median 68.5 years, IQR = 61.8–73.0 | Median CDR- FTLD FTLD = 4.0 AD = 2.0 | FTLD= median 2 years, IQR = 1–3 AD = median 2 years, IQR = 1–3 | NR | FLTD vs. AD -AUC = 0.700 |
Baiardi 2022 | Neuropathology Laboratory, Institute of Neurological Science of Bologna (Italy). | Clinical diagnoses were supported by neuroimaging, and CSF AD core biomarkers (tau, p-Tau181, and Aβ). | FTD = 59 (57.6%), 62.9 ± 8.9 AD = 97 (55.7%), 67.8 ± 9.3 PSP = 31 (35.5%), 69.2 ± 10.2 CBS = 29 (62.1%), 71.3 ± 7.2 | % CDR score ≥ 1 FTD = 82 AD = 78 PSP = 55 CBS = 68 % CDR score ≥ 2 FTD = 42 AD = 39 PSP = 19 CBS = 18 | FTD = mean 34.3 months ± 33.5 AD = mean 41.7 months ± 34.9 PSP = mean 51.5 months ± 33.1 CBS = mean 43.2 months ± 37.4 | AD vs. other diseases = 1.98 pg/mL | AD vs. PSP/CBS/DLB/FTD -AUC = 0.889 -sensitivity = 86.6 -specificity = 80.0 FTD vs. AD -AUC = 0.964 |
Chouliaras 2022 | Patients from specialist memory clinics in and around Cambridgeshire and the North of England, the DNUK-CRN, and the JDRP. | Clinical diagnoses; PET-Aβ and MRI investigations were available for a subset of participants. | FTD = 28 (43.0%), 64.5 ± 8.6 MCI + AD = 63 (32.0%), 73.9 ± 7.8 | NR | NR | MCI + AD vs. FTD = 0.65 in log10 converted levels | FTD vs. MCI + AD -AUC= 0.88 -sensitivity = 85.0 -specificity = 79.0 |
Thijssen 2022 | Study including participants from the Amsterdam Dementia Cohort (the Netherlands). | Clinical diagnoses were supported by electroencephalography, brain MRI, and CSF AD biomarker analysis. All patients with AD were CSF amyloid positive, and all controls were CSF amyloid negative. | Cohort 1 FTD = 40 (50.0%), median age 64 years, IQR = 61–70 AD = 40 (50.0%), median age 58 years, IQR = 55–59 Cohort 2 FTD = 38 (53.0%), median age 63 years, IQR = 59–67 AD = 38 (53.0%), median age 63 years, IQR = 59–67 | NR | NR | NR | Cohort 1 FTD vs. AD -AUC = 0.850 -sensitivity = 74.0 -specificity = 97.0 Cohort 2 FTD vs. AD -AUC = 0.710 -sensitivity = 66.0 -specificity = 76.0 |
Thijssen 2021 | Data collected from two cohorts; UCSF Memory and Aging Center (U.S.A.) and ARTFL (U.S.A. and Canada). | Clinical diagnoses were supported by brain MRI, biofluid collection and genetic testing. All clinically diagnosed amnestic AD patients, lvPPA and PCA, had biomarker confirmation with either Aβ-PET, autopsy or genetic biomarker. Genetic screening was conducted to identify FTLD-causing mutations in the C9orf72, GRN and MAPT genes. Eighty-three participants from the UCSF Memory and Aging Center had a pathology-confirmed diagnosis. | AD = 58 (56.9%), 65 ± 10.0 lvPPA = 15 (53.3%), 63 ± 9.0 PCA = 2 (100.0%), 58 ± 11.0 CBC = 79 (43.0%), 67 ± 8.0 PSP = 74 (54.1%), 69 ± 7.0 bvFTD = 62 (40.3%), 61 ± 10.0 nfvPPA = 32 (46.9%), 70 ± 7.0 svPPA = 27 (59.3%), 70 ± 7.0 | Mean CDR -sb AD = 6.0 lvPPA = 3.0 PCA = 2.0 CBC = 4.0 PSP = 4.0 bvFTD= 7.0 nfvPPA = 3.0 svPPA = 6.0 | NR | Clinical diagnostic groups: FTLD vs. AD/lvPPA/PCA p-tau217 = 0.19 pg/mL p-tau181 = 0.99 pg/mL Autopsy confirmed cases: AD vs. FTLD-tau/TDP p-tau217 = 0.17 pg/mL p-tau181 = 0.90 pg/mL AD vs. FTLD-tau p-tau217 = 0.18 pg/mL p-tau181 = 0.91 pg/mL AD vs. FTLD-TDP p-tau217 = 0.13 pg/mL p-tau181 = 0.77 pg/ml | Clinical diagnostic groups: FTLD vs. AD/lvPPA/PCA p-tau217 -AUC = 0.930 -sensitivity = 97.0 -specificity = 82.0 p-tau181 -AUC = 0.910 -sensitivity = 96.0 -specificity = 81.0 Autopsy confirmed cases: AD vs. FTLD-tau/TDP p-tau217 -AUC = 0.960 -sensitivity = 87.0 -specificity = 100.0 p-tau181 -AUC = 0.910 -sensitivity = 85.0 -specificity = 93.0 AD vs. FTLD-tau p-tau217 -AUC = 0.960 -sensitivity = 87.0 -specificity = 100.0 p-tau181 -AUC = 0.900 -sensitivity = 83.0 -specificity = 93.0 AD vs. FTLD-TDP p-tau217 -AUC = 0.980 -sensitivity = 94.0 -specificity = 93.0 p-tau181 -AUC = 0.950 -sensitivity = 94.0 -specificity = 93.0 |
Benussi 2020 | Data from two cohorts: Centre for Neurodegenerative Disorders, University of Brescia (Italy) and IRCCS Istituto San Giovanni di Dio Fatebenefratelli, Brescia (Italy). | Clinical diagnoses were supported by brain structural imaging while CSF biomarkers (Aβ, p-tau 181, total tau) were measured in a subset of cases. Genetic screening for GRN, C9orf72, and MAPT mutations was performed in familial cases and early-onset sporadic cases. | bvFTD = 134 (58.2%), 64.5 ± 8.0 avPPA = 48 (43.8%), 67.7 ± 8.8 svPPA = 27 (59.3%), 64.0 ± 8.2 CBS = 51 (52.9%), 65.8 ± 7.6 PSP = 31 (51.6%), 72.9 ± 7.4 AD = 63 (31.7%), 75.5 ± 8.1 | Mean CDR (-FTLD) -sb bvFTD = 7.9 avPPA = 6.2 svPPA = 5.7 CBS = 4.3 PSP = 4.2 AD = NR | bvFTD = mean 2.9 years ± 2.8 avPPA = mean 2.8 years ± 2.6 svPPA = mean 3.3 years ± 2.2 CBS = mean 2.5 years ± 1.8 PSP = mean 4.1 years ± 2.8 AD = mean 1.5 years ± 1.7 | FTLD vs. AD = 5.88 pg/mL | FTLD vs. AD -AUC = 0.930 -sensitivity = 81.4 - specificity = 93.5 Mild FTLD (CDR ≤ 6.5) vs. mild AD (MMSE ≥ 20) -AUC = 0.909 -sensitivity = 89.3 - specificity = 82.0 |
Karikari 2020 | Data from the TRIAD (McGill University, Canada) and BioFINDER-2 (Lund University, Sweeden) cohorts. | Clinical diagnoses were supported by CSF (Aβ, p-tau 181, total tau) and PET (tau, Aβ) biomarkers. | TRIAD: AD = 33 (45.0%), 64.6 ± 9.2 FTD = 8 (88.0%), 59.3 ± 8.5 BioFINDER-2: AD = 126 (53%), 74.0 ± 6.9 FTD = 18 (72%), 67.4 ± 7.4 | NR | NR | NR | TRIAD: FTD vs. AD AUC = 1.000 BioFINDER-2: FTD vs. AD AUC = 0.828 |
Thijssen 2020 | Participants from three cohorts, including the UCSF Memory and Aging Center (U.S.A.), the ARTFL consortium (U.S.A. and Canada) and Eli Lilly sponsored research study (U.S.A.). | Clinical diagnoses were supported by biomarkers or post-mortem pathological investigations in the vast majority of cases. Aβ-PET was available in 226 participants, 138 had tau-PET, 220 participants had MRI, 74 had previous CSF pTau181 concentrations available, 76 were carriers of FTLD-causing mutations (GRN, C9orf72, and MAPT) and 82 cases had an autopsy-confirmed diagnosis. All AD patients had either Aβ-PET, MRI, autopsy or genetic biomarker verification. | AD = 56 (58.9%), 65.0 ± 9.0 CBS = 39 (59.0%), 68.0 ± 8.0 PSP = 48 (56.3%), 69.4 ± 7.0 bvFTD = 50 (44.0%), 58.3 ± 9.0 nfvPPA = 27 (44.4%), 70.5 ± 7.0 svPPA = 26 (61.5%), 69.3 ± 7.0 MCI = 47 (44.7%), 60.8 ± 14.0 | Mean CDR -sb AD = 4.8 CBS = 3.3 PSP = 4.7 bvFTD = 7.8 nfvPPA = 3.4 svPPA = 6.0 MCI = 2.0 | AD = mean 6.0 years ± 3.0 CBS = mean 6.0 years ± 4.0 PSP = mean 6.7 years ± 3.0 bvFTD = mean 8.5 years ± 8.0 nfvPPA = mean 5.9 years ± 2.0 svPPA = mean 8.0 years ± 4.0 MCI = mean 5.7 years ± 3.0 | Clinical diagnostic groups: AD vs. FTLD = 8.7 pg/mL Autopsy confirmed cases: AD vs. FTLD-tau/TDP = 9.5 pg/mL AD vs. FTLD-tau = 9.6 pg/mL AD vs. FTLD-TDP = 9.4 pg/mL FTLD-TDP vs. FTLD-tau = 9.6 pg/mL | Clinical diagnostic groups: FTLD vs. AD -AUC = 0.894 - sensitivity = 98.2 -specificity = 71.1 Autopsy confirmed cases: AD vs. FTLD-tau/TDP -AUC = 0.878 - sensitivity = 100.0 -specificity = 67.2 AD vs. FTLD-tau -AUC = 0.858 - sensitivity = 100.0 -specificity = 63.5 AD vs. FTLD-TDP -AUC = 0.947 - sensitivity = 100.0 -specificity = 80.0 FTLD-tau vs. FTLD-TDP -AUC = 0.664 - sensitivity = 98.1 -specificity = 33.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liampas, I.; Kyriakoulopoulou, P.; Karakoida, V.; Kavvoura, P.A.; Sgantzos, M.; Bogdanos, D.P.; Stamati, P.; Dardiotis, E.; Siokas, V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 11838. https://doi.org/10.3390/ijms252111838
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(21):11838. https://doi.org/10.3390/ijms252111838
Chicago/Turabian StyleLiampas, Ioannis, Panagiota Kyriakoulopoulou, Vasiliki Karakoida, Panagiota Andriana Kavvoura, Markos Sgantzos, Dimitrios P. Bogdanos, Polyxeni Stamati, Efthimios Dardiotis, and Vasileios Siokas. 2024. "Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review" International Journal of Molecular Sciences 25, no. 21: 11838. https://doi.org/10.3390/ijms252111838
APA StyleLiampas, I., Kyriakoulopoulou, P., Karakoida, V., Kavvoura, P. A., Sgantzos, M., Bogdanos, D. P., Stamati, P., Dardiotis, E., & Siokas, V. (2024). Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. International Journal of Molecular Sciences, 25(21), 11838. https://doi.org/10.3390/ijms252111838