The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency
Abstract
:1. Introduction
2. Modifications of Chloroplast RNA
2.1. Chloroplast RNA Methylation
2.2. Enzymes Involved in Chloroplast RNA Methylation
2.2.1. PFC1
2.2.2. CMAL
2.2.3. RSMD
2.2.4. CP31A
2.2.5. CP33A
2.3. Chloroplast RNA Pseudouridylation
2.4. Enzymes Involved in Chloroplast RNA Pseudouridylation
2.4.1. SVR1
2.4.2. TCD3
2.4.3. OsPUS1
3. Extrachloroplastic RNA Modifications Influencing Chloroplast Functioning and Photosynthesis Performance
3.1. Extrachloroplastic RNA Methylation
3.2. Enzymes Involved in Extrachloroplastic RNA Methylation
3.2.1. FIP37
3.2.2. VIR
3.2.3. ALKBH10B
3.2.4. OsNSUN2
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajieghrari, B.; Farrokhi, N. Plant RNA-mediated gene regulatory network. Genomics 2022, 114, 409–442. [Google Scholar] [CrossRef] [PubMed]
- Floris, M.; Mahgoub, H.; Lanet, E.; Robaglia, C.; Menand, B. Post-transcriptional regulation of gene expression in plants during abiotic stress. Int. J. Mol. Sci. 2009, 10, 3168–3185. [Google Scholar] [CrossRef] [PubMed]
- Merchante, C.; Stepanova, A.N.; Alonso, J.M. Translation regulation in plants: An interesting past, an exciting present and a promising future. Plant J. 2019, 98, 1157. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Prall, W.; Bhatia, G.; Gregory, B.D. The Diversity and Functions of Plant RNA Modifications: What We Know and Where We Go from Here. Annu. Rev. Plant Biol. 2023, 74, 53–85. [Google Scholar] [CrossRef]
- Shen, L.; Ma, J.; Li, P.; Wu, Y.; Yu, W. Recent advances in the plant epitranscriptome. Genome Biol. 2023, 24, 43. [Google Scholar] [CrossRef]
- Manavski, N.; Vicente, A.; Chi, W.; Meurer, J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes 2021, 12, 1121. [Google Scholar] [CrossRef]
- Hu, J.; Manduzio, S.; Kang, H. Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses. Front. Plant Sci. 2019, 10, 500. [Google Scholar] [CrossRef]
- Sun, L.; Xu, Y.; Bai, S.; Bai, X.; Zhu, H.; Dong, H.; Wang, W.; Zhu, X.; Hao, F.; Song, C.P. Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in Arabidopsis. J. Exp. Bot. 2019, 70, 5089–5600. [Google Scholar] [CrossRef]
- Lin, D.; Kong, R.; Chen, L.; Wang, Y.; Wu, L.; Xu, J.; Piao, Z.; Lee, G.; Dong, Y. Chloroplast development at low temperature requires the pseudouridine synthase gene TCD3 in rice. Sci. Rep. 2020, 10, 8518. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Qu, W.T.; Mei, T.; Zhang, N.; Yang, N.Y.; Xu, X.F.; Xiong, H.B.; Yang, Z.N.; Yu, Q.B. AtRsmD Is Required for Chloroplast Development and Chloroplast Function in Arabidopsis thaliana. Front. Plant Sci. 2022, 13, 860945. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, K.; Zhang, D.; Wan, Y.; Wen, Y.; Lu, Q.; Wang, L. High-throughput m6A-seq reveals RNA m6A methylation patterns in the chloroplast and mitochondria transcriptomes of Arabidopsis thaliana. PLoS ONE 2017, 12, e0185612. [Google Scholar] [CrossRef] [PubMed]
- Zybailov, B.; Rutschow, H.; Friso, G.; Rudella, A.; Emanuelsson, O.; Sun, Q.; van Wijk, K.J. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 2008, 3, e1994. [Google Scholar] [CrossRef] [PubMed]
- Manduzio, S.; Kang, H. RNA methylation in chloroplasts or mitochondria in plants. RNA Biol. 2021, 18, 2127–2135. [Google Scholar] [CrossRef]
- Berardini, T.Z.; Reiser, L.; Li, D.; Mezheritsky, Y.; Muller, R.; Strait, E.; Huala, E. The Arabidopsis information resource: Making and mining the “gold standard” annotated reference plant genome. Genesis 2015, 53, 474–485. [Google Scholar] [CrossRef]
- Zou, M.; Mu, Y.; Chai, X.; Ouyang, M.; Yu, L.J.; Zhang, L.; Meurer, J.; Chi, W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res. 2020, 48, 3195–3210. [Google Scholar] [CrossRef]
- Tokuhisa, J.G.; Vijayan, P.; Feldmann, K.A.; Browse, J.A. Chloroplast development at low temperatures requires a homolog of DIM1, a yeast gene encoding the 18S rRNA dimethylase. Plant Cell 1998, 10, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Ngoc, L.N.T.; Park, S.J.; Cai, J.; Huong, T.T.; Lee, K.; Kang, H. RsmD, a Chloroplast rRNA m2G Methyltransferase, Plays a Role in Cold Stress Tolerance by Possibly Affecting Chloroplast Translation in Arabidopsis. Plant Cell Physiol. 2021, 62, 948–958. [Google Scholar] [CrossRef]
- Tillich, M.; Hardel, S.L.; Kupsch, C.; Armbruster, U.; Delannoy, E.; Gualberto, J.M.; Lehwark, P.; Leister, D.; Small, I.D.; Schmitz-Linneweber, C. Chloroplast ribonucleoprotein CP31A is required for editing and stability of specific chloroplast mRNAs. Proc. Natl. Acad. Sci. USA 2009, 106, 6002–6007. [Google Scholar] [CrossRef]
- Okuzaki, A.; Rühle, T.; Leister, D.; Schmitz-Linneweber, C. The acidic domain of the chloroplast RNA-binding protein CP31A supports cold tolerance in Arabidopsis thaliana. J. Exp. Bot. 2021, 72, 4904–4914. [Google Scholar] [CrossRef]
- Lenzen, B.; Rühle, T.; Lehniger, M.K.; Okuzaki, A.; Labs, M.; Muino, J.M.; Ohler, U.; Leister, D.; Schmitz-Linneweber, C. The Chloroplast RNA Binding Protein CP31A Has a Preference for mRNAs Encoding the Subunits of the Chloroplast NAD(P)H Dehydrogenase Complex and Is Required for Their Accumulation. Int. J. Mol. Sci. 2020, 21, 5633. [Google Scholar] [CrossRef]
- Kupsch, C.; Ruwe, H.; Gusewski, S.; Tillich, M.; Small, I.; Schmitz-Linneweber, C. Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 2012, 24, 4266–4280. [Google Scholar] [CrossRef] [PubMed]
- Teubner, M.; Fuß, J.; Kühn, K.; Krause, K.; Schmitz-Linneweber, C. The RNA recognition motif protein CP33A is a global ligand of chloroplast mRNAs and is essential for plastid biogenesis and plant development. Plant J. 2017, 89, 472–485. [Google Scholar] [CrossRef]
- Adachi, H.; De Zoysa, M.D.; Yu, Y.T. Post-transcriptional pseudouridylation in mRNA as well as in some major types of noncoding RNAs. Biochim. Biophys. Acta 2019, 1862, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.A.; Lovejoy, A.F.; Cygan, A.M.; Boothroyd, J.C. mRNA pseudouridylation affects RNA metabolism in the parasite Toxoplasma gondii. RNA 2017, 23, 1834–1849. [Google Scholar] [CrossRef]
- Rajan, K.S.; Adler, K.; Madmoni, H.; Peleg-Chen, D.; Cohen-Chalamish, S.; Doniger, T.; Galili, B.; Gerber, D.; Unger, R.; Tschudi, C.; et al. Pseudouridines on Trypanosoma brucei mRNAs are developmentally regulated: Implications to mRNA stability and protein binding. Mol. Microbiol. 2021, 116, 808–826. [Google Scholar] [CrossRef]
- Greenberg, B.M.; Gruissem, W.; Hallick, R.B. Accurate processing and pseudouridylation of chloroplast transfer RNA in a chloroplast transcription system. Plant Mol. Biol. 1984, 3, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Gu, Y.; Shi, G.; He, J.; Hu, W.; Zhang, Z. Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize. Int. J. Mol. Sci. 2022, 23, 2680. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, J.; Zu, X.; Gong, J.; Deng, H.; Hang, R.; Zhang, X.; Liu, C.; Deng, X.; Luo, L.; et al. Pseudouridylation of chloroplast ribosomal RNA contributes to low temperature acclimation in rice. New Phytol. 2022, 236, 1708–1720. [Google Scholar] [CrossRef]
- Yu, F.; Liu, X.; Alsheikh, M.; Park, S.; Rodermel, S. Mutations in SUPPRESSOR OF VARIEGATION1, a factor required for normal chloroplast translation, suppress var2-mediated leaf variegation in Arabidopsis. Plant Cell 2008, 20, 1786–1804. [Google Scholar] [CrossRef]
- Lu, S.; Li, C.; Zhang, Y.; Zheng, Z.; Liu, D. Functional Disruption of a Chloroplast Pseudouridine Synthase Desensitizes Arabidopsis Plants to Phosphate Starvation. Front. Plant Sci. 2017, 8, 1421. [Google Scholar] [CrossRef]
- Zhang, M.; Bodi, Z.; Mackinnon, K.; Zhong, S.; Archer, N.; Mongan, N.P.; Simpson, G.G.; Fray, R.G. Two zinc finger proteins with functions in m6A writing interact with HAKAI. Nat. Commun. 2022, 13, 1127. [Google Scholar] [CrossRef] [PubMed]
- Růžička, K.; Zhang, M.; Campilho, A.; Bodi, Z.; Kashif, M.; Saleh, M.; Eeckhout, D.; El-Showk, S.; Li, H.; Zhong, S.; et al. Identification of factors required for m6 A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. New Phytol. 2017, 215, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Vicente, A.M.; Manavski, N.; Rohn, P.T.; Schmid, L.M.; Garcia-Molina, A.; Leister, D.; Seydel, C.; Bellin, L.; Möhlmann, T.; Ammann, G.; et al. The plant cytosolic m6A RNA methylome stabilizes photosynthesis in the cold. Plant Commun. 2023, 4, 100634. [Google Scholar] [CrossRef]
- Armbruster, U.; Labs, M.; Pribil, M.; Viola, S.; Xu, W.; Scharfenberg, M.; Hertle, A.P.; Rojahn, U.; Jensen, P.E.; Rappaport, F.; et al. Arabidopsis CURVATURE THYLAKOID1 proteins modify thylakoid architecture by inducing membrane curvature. Plant Cell 2013, 25, 2661–2678. [Google Scholar] [CrossRef]
- Zhang, M.; Zeng, Y.; Peng, R.; Dong, J.; Lan, Y.; Duan, S.; Chang, Z.; Ren, J.; Luo, G.; Liu, B.; et al. N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants. Nat. Commun. 2022, 13, 7441. [Google Scholar] [CrossRef]
- Tang, J.; Yang, J.; Duan, H.; Jia, G. ALKBH10B, an mRNA m6A Demethylase, Modulates ABA Response During Seed Germination in Arabidopsis. Front. Plant Sci. 2021, 12, 712713. [Google Scholar] [CrossRef]
- Duan, H.C.; Wei, L.H.; Zhang, C.; Wang, Y.; Chen, L.; Lu, Z.; Chen, P.R.; He, C.; Jia, G. ALKBH10B Is an RNA N6-Methyladenosine Demethylase Affecting Arabidopsis Floral Transition. Plant Cell 2017, 29, 2995–3011. [Google Scholar] [CrossRef] [PubMed]
- Waese, J.; Fan, J.; Pasha, A.; Yu, H.; Fucile, G.; Shi, R.; Cumming, M.; Kelley, L.A.; Sternberg, M.J.; Krishnakumar, V.; et al. ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell 2017, 29, 1806–1821. [Google Scholar] [CrossRef]
- Shoaib, Y.; Hu, J.; Manduzio, S.; Kang, H. Alpha-ketoglutarate-dependent dioxygenase homolog 10B, an N6-methyladenosine mRNA demethylase, plays a role in salt stress and abscisic acid responses in Arabidopsis thaliana. Physiol. Plant 2021, 173, 1078–1089. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Q.; Cao, S.; Tian, Y.; Han, K.; Sun, Y.; Li, J.; Yang, Q.; Ji, Q.; Sederoff, R.; et al. Genome-wide identification of the AlkB homologs gene family, PagALKBH9B and PagALKBH10B regulated salt stress response in Populus. Front. Plant Sci. 2022, 13, 994154. [Google Scholar] [CrossRef]
- Cui, C.; Ma, Z.; Wan, H.; Gao, J.; Zhou, B. GhALKBH10 negatively regulates salt tolerance in cotton. Plant Physiol. Biochem. 2022, 192, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhou, Y.; Liao, C.; Xie, Q.; Chen, G.; Hu, Z.; Wu, T. The AlkB Homolog SlALKBH10B Negatively Affects Drought and Salt Tolerance in Solanum lycopersicum. Int. J. Mol. Sci. 2023, 25, 173. [Google Scholar] [CrossRef]
- Zhang, D.; Li, M.; Chen, C.; Wang, Y.; Cheng, Z.; Li, W.; Guo, W. Downregulation of GhALKBH10B improves drought tolerance through increasing the stability of photosynthesis related- and ABA signaling pathway genes in cotton. Environ. Exp. Bot. 2024, 220, 105687. [Google Scholar] [CrossRef]
- Han, R.; Shoaib, Y.; Cai, J.; Kang, H. ALKBH10B-mediated m6A demethylation is crucial for drought tolerance by affecting mRNA stability in Arabidopsis. Environ. Exp. Bot. 2023, 209, 105306. [Google Scholar] [CrossRef]
- Wu, Y.; Sanchez, J.P.; Lopez-Molina, L.; Himmelbach, A.; Grill, E.; Chua, N.H. The abi1-1 mutation blocks ABA signaling downstream of cADPR action. Plant J. 2003, 34, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Gao, C.C.; Gao, Y.; Yang, Y.; Shi, B.; Yu, J.L.; Lyu, C.; Sun, B.F.; Wang, H.L.; Xu, Y.; et al. OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. Dev. Cell 2020, 53, 272–286. [Google Scholar] [CrossRef]
- Chmielowska-Bą, J.; Arasimowicz-Jelonek, M.; Deckert, J. In search of the mRNA modification landscape in plants. BMC Plant Biol. 2019, 19, 421. [Google Scholar]
- Streit, D.; Schleiff, E. The Arabidopsis 2′-O-Ribose-methylation and pseudouridylation landscape of rRNA in comparison to human and yeast. Front. Plant Sci. 2021, 26, 684626. [Google Scholar] [CrossRef]
Chloroplast-Located Proteins Involved in RNA Modification and Participating in the Maintenance of Proper Chloroplast Function | |||
---|---|---|---|
METHYLATION | |||
Name | RNA Modification | Activity | Phenotype |
PFC1 | m6A | adenine demethylase | chlorotic phenotype during chilling stress |
CMAL | m4C | methylase | affects biogenesis and function of ribosomes |
CP31 | --- | RNA-binding protein | participates in cold stress response, RNA editing |
CP33 | --- | RNA-binding protein | chloroplast development, RNA stabilization |
RSMD | m2G | methyltransferase | participates in cold stress response |
PSEUDOURIDYLATION | |||
TCD3 | Ψ | pseudouridine synthase | temperature-sensitive chloroplast development and pigment biosynthesis |
SVR1 | Ψ | pseudouridine synthase | chloroplast rRNA processing and translation |
OsPUS | Ψ | pseudouridine synthase | chloroplast rRNA processing and translation; temperature-sensitive chloroplast development |
Extrachloroplast-Located Proteins Involved in RNA Methylation and Participating in the Maintenance of Proper Chloroplast Function | |||
FIP37 | m6A | subunit of adenine demethylase | stabilizes photosynthesis during cold stress |
VIR1 | m6A | subunit of adenine demethylase | participates in high-light stress response |
ALKBH10b | m6A | demethylase | involved in salt and drought stress response |
OsNSUN2 | m5C | methyltransferase | participates in heat stress response |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiec, M.; Luciński, R. The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. Int. J. Mol. Sci. 2024, 25, 11912. https://doi.org/10.3390/ijms252211912
Adamiec M, Luciński R. The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. International Journal of Molecular Sciences. 2024; 25(22):11912. https://doi.org/10.3390/ijms252211912
Chicago/Turabian StyleAdamiec, Małgorzata, and Robert Luciński. 2024. "The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency" International Journal of Molecular Sciences 25, no. 22: 11912. https://doi.org/10.3390/ijms252211912
APA StyleAdamiec, M., & Luciński, R. (2024). The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. International Journal of Molecular Sciences, 25(22), 11912. https://doi.org/10.3390/ijms252211912