Folate Receptor Alpha—A Secret Weapon in Ovarian Cancer Treatment?
Abstract
:1. Introduction
2. FRα as a Biomarker in EOC
3. FRα—A Promising Molecular Target in EOC
4. Therapeutic Strategies Based on FRα
4.1. Monoclonal Antibodies (MABs)
4.2. Antibody–Drug Conjugates (ADCs) Targeting FRα
4.3. Folate–Drug Conjugates (FDCs)
4.4. Vaccines and Small Molecule–Drug Conjugates (SMDCs)
4.5. FRα-Specific Chimeric Antigen Receptor T (CAR-T) Cell Therapy
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-mTHF | 5-methyltetrahydrofolate |
ABCG2 | Transporter protein member 2 of ATP-binding cassette superfamily G |
ADCC | Antibody-dependent cellular cytotoxicity |
ADCP | Antibody-dependent cellular phagocytosis |
ADCs | Antibody–drug conjugates |
APOA1 | Apolipoprotein AI |
B2M | β2-microglobulin |
BiTE | Bispecific T cell engager |
CA-125/MUC16 | Carbohydrate antigen 125 |
CAR-T | Chimeric antigen receptor T cells |
CCC | Clear cell carcinoma |
CDC | Complement-dependent cytotoxicity |
DAVLBH | Desacetylvinblastine hydrazide |
DM1 and DM4 | Maytansinoids |
E-cadherin | Epithelial cadherin |
EGFR | Epidermal growth factor receptor |
EnOC | Endometrioid ovarian cancer |
EOC | Epithelial ovarian cancer |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
FA | Folic acid |
FDA | Food and Drug Administration |
FDCs | Folate–drug conjugates |
Fgfr4 | Fibroblast growth factor receptor 4 |
Fis | Encapsulated with fisetin |
FITC | Fluorescein isothiocyanate |
FRα | Folate receptor alpha |
FRTACs | Folate receptor targeting chimeras |
GPI | Glycophosphatidylinositol |
HE4 | Human epididymis secretory protein 4 |
Hes1 | Hairy and enhancer of split 1 |
HGSOC | High-grade serous ovarian cancer |
IOTA | The International Ovarian Tumor Analysis |
JAK/STAT3 | Janus kinase/signal transducer and activator of the transcription 3 |
KD | Dissociation constant |
Klf4 | Krüppel-like factor 4 |
LGSOC | Low-grade serous ovarian cancer |
MABs | Monoclonal antibodies |
MDR | Multidrug resistance |
MHC | Major histocompatibility complex |
MIAs | Multivariate index assays |
MOC | Mucinous carcinoma |
MSLN | Mesothelin nanoparticles |
OAd-BiTE | Oncolytic adenovirus with an epidermal growth factor receptor-targeted bispecific T cell engager |
OC | Ovarian cancer |
Oct4 | Octamer-binding transcription factor 4 |
ORR | Objective response rate |
OS | Overall survival |
PARP | Poly (ADP-ribose) polymerase |
PBD | Pyrrolobenzodiazepine |
PBM | Planetary ball milling |
PCFT | Proton-coupled folate transporter |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed cell death ligand 1 |
PFS | Progression-free survival |
PLD | Pegylated liposomal doxorubicin |
PR | Platinum-resistance |
PS | Platinum-sensitive |
PTX | Paclitaxel |
RFC | Reduced folate carrier |
RMI | The risk of malignant indices |
ROCA | The risk of ovarian cancer algorithm |
SC209 | Cytotoxin 3-aminophenyl hemiasterlin |
scFv | Single-chain variable fragment |
sFRα | Soluble folate receptor |
SMDCs | Small molecule–drug conjugates |
Sox2 | Sex-determining region Y-box 2 |
Sulfo-SPDB | [N-succinimidyl 4-(2-pyridyldithio)-2-sulfobutanoate] |
TCBs | T cell bispecific antibodies |
TCR | T cell receptor |
TF | Transferrin |
TMA | Tissue microarrays |
TRAE | Treatment-related adverse events |
TTR | Transthyretin |
References
- Webb, P.M.; Jordan, S.J. Global Epidemiology of Epithelial Ovarian Cancer. Nat. Rev. Clin. Oncol. 2024, 21, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Lliberos, C.; Richardson, G.; Papa, A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024, 14, 585. [Google Scholar] [CrossRef] [PubMed]
- Bax, H.J.; Chauhan, J.; Stavraka, C.; Santaolalla, A.; Osborn, G.; Khiabany, A.; Grandits, M.; López-Abente, J.; Palhares, L.C.G.F.; Chan Wah Hak, C.; et al. Folate Receptor Alpha in Ovarian Cancer Tissue and Patient Serum Is Associated with Disease Burden and Treatment Outcomes. Br. J. Cancer 2023, 128, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Menon, U.; Gentry-Maharaj, A.; Burnell, M.; Singh, N.; Ryan, A.; Karpinskyj, C.; Carlino, G.; Taylor, J.; Massingham, S.K.; Raikou, M.; et al. Ovarian Cancer Population Screening and Mortality after Long-Term Follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): A Randomised Controlled Trial. Lancet 2021, 397, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.; Wu, L.; Yang, L.; Sun, T.; Liu, X.; Yin, R.; Jiang, Y.; Li, J.; Li, Q. Therapeutic Strategies Targeting Folate Receptor α for Ovarian Cancer. Front. Immunol. 2023, 14, 1254532. [Google Scholar] [CrossRef]
- Calo, C.A.; O’Malley, D.M. Antibody-Drug Conjugates for the Treatment of Ovarian Cancer. Expert. Opin. Biol. Ther. 2021, 21, 875–887. [Google Scholar] [CrossRef]
- Kuroki, L.; Guntupalli, S.R. Treatment of Epithelial Ovarian Cancer. BMJ 2020, 371, m3773. [Google Scholar] [CrossRef]
- Heo, Y.-A. Mirvetuximab Soravtansine: First Approval. Drugs 2023, 83, 265–273. [Google Scholar] [CrossRef]
- Roque, K.; Heredia, M.; Ruiz, R.; Galvez-Nino, M.; Castro-Mollo, M.W.; Flores, C.J.; Coanqui, O.; Valdiviezo, N.; Olivera Hurtado De Mendoza, M.; De Mello, R.A.B.; et al. Clinical and Outcome Patterns in Epithelial Ovarian Cancer (EOC) within a Latin American Cohort. JCO 2024, 42, e23308. [Google Scholar] [CrossRef]
- Gonzalez-Ochoa, E.; Veneziani, A.C.; Oza, A.M. Mirvetuximab Soravtansine in Platinum-Resistant Ovarian Cancer. Clin. Med. Insights Oncol. 2023, 17, 11795549231187264. [Google Scholar] [CrossRef]
- Yang, L.; Xie, H.-J.; Li, Y.-Y.; Wang, X.; Liu, X.-X.; Mai, J. Molecular Mechanisms of Platinum-based Chemotherapy Resistance in Ovarian Cancer (Review). Oncol. Rep. 2022, 47, 82. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.L.; Eskander, R.N.; O’Malley, D.M. Advances in Ovarian Cancer Care and Unmet Treatment Needs for Patients With Platinum Resistance: A Narrative Review. JAMA Oncol. 2023, 9, 851. [Google Scholar] [CrossRef] [PubMed]
- Birrer, M.J.; Betella, I.; Martin, L.P.; Moore, K.N. Is Targeting the Folate Receptor in Ovarian Cancer Coming of Age? Oncologist 2019, 24, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Zamarin, D.; Walderich, S.; Holland, A.; Zhou, Q.; Iasonos, A.E.; Torrisi, J.M.; Merghoub, T.; Chesebrough, L.F.; Mcdonnell, A.S.; Gallagher, J.M.; et al. Safety, Immunogenicity, and Clinical Efficacy of Durvalumab in Combination with Folate Receptor Alpha Vaccine TPIV200 in Patients with Advanced Ovarian Cancer: A Phase II Trial. J. Immunother. Cancer 2020, 8, e000829. [Google Scholar] [CrossRef] [PubMed]
- Arend, R.C.; Jackson-Fisher, A.; Jacobs, I.A.; Chou, J.; Monk, B.J. Ovarian Cancer: New Strategies and Emerging Targets for the Treatment of Patients with Advanced Disease. Cancer Biol. Ther. 2021, 22, 89–105. [Google Scholar] [CrossRef]
- Gonzalez-Martin, A. Antibody–Drug Conjugate Targeting Folate Receptor α: A New Milestone in Personalized Medicine for High-Grade Serous Ovarian Cancer. Int. J. Gynecol. Cancer 2024, 34, 1126–1127. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Lazurko, C.; Linder, R.; Pulman, K.; Lennox, G.; Feigenberg, T.; Fazelzad, R.; May, T.; Zigras, T. Bevacizumab Treatment for Low-Grade Serous Ovarian Cancer: A Systematic Review. Curr. Oncol. 2023, 30, 8159–8171. [Google Scholar] [CrossRef]
- Medscape. Available online: https://reference.medscape.com/drug/platinol-aq-cisplatin-342108 (accessed on 7 October 2024).
- Kopacz-Bednarska, A.; Król, T. Cisplatin—Properties and Clinical Application. Oncol. Clin. Pr. 2022, 18, 166–176. [Google Scholar] [CrossRef]
- Drugs.Com. Available online: https://www.drugs.com/dosage/carboplatin.html (accessed on 7 October 2024).
- Sousa, G.F.D.; Wlodarczyk, S.R.; Monteiro, G. Carboplatin: Molecular Mechanisms of Action Associated with Chemoresistance. Braz. J. Pharm. Sci. 2014, 50, 693–701. [Google Scholar] [CrossRef]
- Medscape. Available online: https://reference.medscape.com/drug/taxol-paclitaxel-342187 (accessed on 7 October 2024).
- Lim, P.T.; Goh, B.H.; Lee, W.-L. Taxol: Mechanisms of Action against Cancer, an Update with Current Research. In Paclitaxel; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–71. ISBN 978-0-323-90951-8. [Google Scholar]
- Medscape. Available online: https://reference.medscape.com/drug/lynparza-olaparib-999934 (accessed on 3 November 2024).
- Product Monograph. Available online: https://ca.gsk.com/media/6229/zejula_pm_en.pdf (accessed on 10 January 2024).
- Drugs.Com. Available online: https://www.drugs.com/dosage/rucaparib.html (accessed on 13 January 2024).
- MVASI®. Available online: https://www.mvasi.com/hcp/biosimilar-dosing (accessed on 3 November 2024).
- Arora, T.; Mullangi, S.; Vadakekut, E.S.; Lekkala, M.R. Epithelial Ovarian Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Yoon, J.-K.; Kim, B.; Kim, S.; Kim, M.A.; Lim, H.; Bang, D.; Song, Y.-S. Tumor Evolution and Intratumor Heterogeneity of an Epithelial Ovarian Cancer Investigated Using Next-Generation Sequencing. BMC Cancer 2015, 15, 85. [Google Scholar] [CrossRef] [PubMed]
- Bast, R.C.; Lu, Z.; Han, C.Y.; Lu, K.H.; Anderson, K.S.; Drescher, C.W.; Skates, S.J. Biomarkers and Strategies for Early Detection of Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2504–2512. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cheng, S.; Jin, Y.; Zhao, Y.; Wang, Y. Roles of CA125 in Diagnosis, Prediction, and Oncogenesis of Ovarian Cancer. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer 2021, 1875, 188503. [Google Scholar] [CrossRef]
- Zhang, R.; Siu, M.K.Y.; Ngan, H.Y.S.; Chan, K.K.L. Molecular Biomarkers for the Early Detection of Ovarian Cancer. IJMS 2022, 23, 12041. [Google Scholar] [CrossRef]
- Bhadra, M.; Sachan, M.; Nara, S. Current Strategies for Early Epithelial Ovarian Cancer Detection Using miRNA as a Potential Tool. Front. Mol. Biosci. 2024, 11, 1361601. [Google Scholar] [CrossRef]
- Rajapaksha, W.; Khetan, R.; Johnson, I.R.D.; Blencowe, A.; Garg, S.; Albrecht, H.; Gillam, T.A. Future Theranostic Strategies: Emerging Ovarian Cancer Biomarkers to Bridge the Gap between Diagnosis and Treatment. Front. Drug Deliv. 2024, 4, 1339936. [Google Scholar] [CrossRef]
- Nebgen, D.R.; Lu, K.H.; Bast, R.C. Novel Approaches to Ovarian Cancer Screening. Curr. Oncol. Rep. 2019, 21, 75. [Google Scholar] [CrossRef]
- Miao, K.; Zhao, N.; Lv, Q.; He, X.; Xu, M.; Dong, X.; Li, D.; Shao, X. Prediction of Benign and Malignant Ovarian Tumors Using Resnet34 on Ultrasound Images. J. Obs. Gynaecol. 2023, 49, 2910–2917. [Google Scholar] [CrossRef]
- Kryzhanivska, A.; Hrytsyk, R.; Teren, T.; Savchuk, Y. Role of Computed Tomography in the Diagnosis of Ovarian Cancer. Arch. Clin. Med. 2023, 29, 21–23. [Google Scholar] [CrossRef]
- Zhang, T.; Yi, X.; Lu, J.; Fu, A. Clinical Evaluation of MRI in the Differential Diagnosis between Benign and Malignant Ovarian Tumors. Eur. J. Gynaecol. Oncol. 2017, 38, 257–262. [Google Scholar] [PubMed]
- Bukowski, K. Figure 1. Schematic Diagram Showing the Current Methods Used in the Diagnostic of Ovarian Cancer. Created in BioRender. 2024. Available online: https://www.biorender.com/b98n034 (accessed on 3 November 2024).
- Cheung, A.; Opzoomer, J.; Ilieva, K.M.; Gazinska, P.; Hoffmann, R.M.; Mirza, H.; Marlow, R.; Francesch-Domenech, E.; Fittall, M.; Dominguez Rodriguez, D.; et al. Anti-Folate Receptor Alpha–Directed Antibody Therapies Restrict the Growth of Triple-Negative Breast Cancer. Clin. Cancer Res. 2018, 24, 5098–5111. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.; Bax, H.J.; Josephs, D.H.; Ilieva, K.M.; Pellizzari, G.; Opzoomer, J.; Bloomfield, J.; Fittall, M.; Grigoriadis, A.; Figini, M.; et al. Targeting Folate Receptor Alpha for Cancer Treatment. Oncotarget 2016, 7, 52553–52574. [Google Scholar] [CrossRef] [PubMed]
- Walters, C.L.; Arend, R.C.; Armstrong, D.K.; Naumann, R.W.; Alvarez, R.D. Folate and Folate Receptor Alpha Antagonists Mechanism of Action in Ovarian Cancer. Gynecol. Oncol. 2013, 131, 493–498. [Google Scholar] [CrossRef]
- Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the Folate Receptor α in Oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359. [Google Scholar] [CrossRef]
- Elnakat, H. Distribution, Functionality and Gene Regulation of Folate Receptor Isoforms: Implications in Targeted Therapy. Adv. Drug Deliv. Rev. 2004, 56, 1067–1084. [Google Scholar] [CrossRef]
- Holm, J.; Hansen, S.I. Characterization of Soluble Folate Receptors (Folate Binding Proteins) in Humans. Biological Roles and Clinical Potentials in Infection and Malignancy. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2020, 1868, 140466. [Google Scholar] [CrossRef]
- Dharmatti, R.; Miyatake, H.; Nandakumar, A.; Ueda, M.; Kobayashi, K.; Kiga, D.; Yamamura, M.; Ito, Y. Enhancement of Binding Affinity of Folate to Its Receptor by Peptide Conjugation. Int. J. Mol. Sci. 2019, 20, 2152. [Google Scholar] [CrossRef]
- Chen, C.; Ke, J.; Zhou, X.E.; Yi, W.; Brunzelle, J.S.; Li, J.; Yong, E.-L.; Xu, H.E.; Melcher, K. Structural Basis for Molecular Recognition of Folic Acid by Folate Receptors. Nature 2013, 500, 486–489. [Google Scholar] [CrossRef]
- Zhao, R.; Goldman, I.D. Folate and Thiamine Transporters Mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors. Mol. Asp. Med. 2013, 34, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Young, O.; Ngo, N.; Lin, L.; Stanbery, L.; Creeden, J.F.; Hamouda, D.; Nemunaitis, J. Folate Receptor as a Biomarker and Therapeutic Target in Solid Tumors. Curr. Probl. Cancer 2023, 47, 100917. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Kolb, E.A.; Qin, J.; Chou, A.; Sowers, R.; Hoang, B.; Healey, J.H.; Huvos, A.G.; Meyers, P.A.; Gorlick, R. The Folate Receptor α Is Frequently Overexpressed in Osteosarcoma Samples and Plays a Role in the Uptake of the Physiologic Substrate 5-Methyltetrahydrofolate. Clin. Cancer Res. 2007, 13, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- O’Shannessy, D.J.; Somers, E.B.; Palmer, L.M.; Thiel, R.P.; Oberoi, P.; Heath, R.; Marcucci, L. Serum Folate Receptor Alpha, Mesothelin and Megakaryocyte Potentiating Factor in Ovarian Cancer: Association to Disease Stage and Grade and Comparison to CA125 and HE4. J. Ovarian Res. 2013, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- O’Shannessy, D.J.; Somers, E.B.; Maltzman, J.; Smale, R.; Fu, Y.-S. Folate Receptor Alpha (FRA) Expression in Breast Cancer: Identification of a New Molecular Subtype and Association with Triple Negative Disease. SpringerPlus 2012, 1, 22. [Google Scholar] [CrossRef]
- Bueno, R.; Appasani, K.; Mercer, H.; Lester, S.; Sugarbaker, D. The α Folate Receptor Is Highly Activated in Malignant Pleural Mesothelioma. J. Thorac. Cardiovasc. Surg. 2001, 121, 225–233. [Google Scholar] [CrossRef]
- Allard, J.; Risinger, J.; Morrison, C.; Young, G.; Rose, G.; Fowler, J.; Berchuck, A.; Maxwell, G. Overexpression of Folate Binding Protein Is Associated with Shortened Progression-Free Survival in Uterine Adenocarcinomas. Gynecol. Oncol. 2007, 107, 52–57. [Google Scholar] [CrossRef]
- Shi, H.; Guo, J.; Li, C.; Wang, Z. A Current Review of Folate Receptor Alpha as A Potential Tumor Target in Non-Small-Cell Lung Cancer. DDDT 2015, 9, 4989–4996. [Google Scholar] [CrossRef]
- Boogerd, L.S.F.; Boonstra, M.C.; Beck, A.-J.; Charehbili, A.; Hoogstins, C.E.S.; Prevoo, H.A.J.M.; Singhal, S.; Low, P.S.; Van De Velde, C.J.H.; Vahrmeijer, A.L. Concordance of Folate Receptor-α Expression between Biopsy, Primary Tumor and Metastasis in Breast Cancer and Lung Cancer Patients. Oncotarget 2016, 7, 17442–17454. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 2. Various Examples of Cancer Types with Elevated FRα Expression Levels. Created in BioRender. 2024. Available online: https://www.biorender.com/t22d344 (accessed on 3 November 2024).
- Markert, S.; Lassmann, S.; Gabriel, B.; Klar, M.; Werner, M.; Gitsch, G.; Kratz, F.; Hasenburg, A. Alpha-Folate Receptor Expression in Epithelial Ovarian Carcinoma and Non-Neoplastic Ovarian Tissue. Anticancer Res. 2008, 28, 3567–3572. [Google Scholar]
- Kalli, K.R.; Oberg, A.L.; Keeney, G.L.; Christianson, T.J.H.; Low, P.S.; Knutson, K.L.; Hartmann, L.C. Folate Receptor Alpha as a Tumor Target in Epithelial Ovarian Cancer. Gynecol. Oncol. 2008, 108, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Köbel, M.; Madore, J.; Ramus, S.J.; Clarke, B.A.; Pharoah, P.D.P.; Deen, S.; Bowtell, D.D.; Odunsi, K.; Menon, U.; Morrison, C.; et al. Evidence for a Time-Dependent Association between FOLR1 Expression and Survival from Ovarian Carcinoma: Implications for Clinical Testing. An Ovarian Tumour Tissue Analysis Consortium Study. Br. J. Cancer 2014, 111, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.P.; Konner, J.A.; Moore, K.N.; Seward, S.M.; Matulonis, U.A.; Perez, R.P.; Su, Y.; Berkenblit, A.; Ruiz-Soto, R.; Birrer, M.J. Characterization of Folate Receptor Alpha (FRα) Expression in Archival Tumor and Biopsy Samples from Relapsed Epithelial Ovarian Cancer Patients: A Phase I Expansion Study of the FRα-Targeting Antibody-Drug Conjugate Mirvetuximab Soravtansine. Gynecol. Oncol. 2017, 147, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Basal, E.; Eghbali-Fatourechi, G.Z.; Kalli, K.R.; Hartmann, L.C.; Goodman, K.M.; Goode, E.L.; Kamen, B.A.; Low, P.S.; Knutson, K.L. Functional Folate Receptor Alpha Is Elevated in the Blood of Ovarian Cancer Patients. PLoS ONE 2009, 4, e6292. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, L.E. The Role of Folate Receptor α in Cancer Development, Progression and Treatment: Cause, Consequence or Innocent Bystander? Int. J. Cancer 2006, 119, 243–250. [Google Scholar] [CrossRef]
- Antony, A.C.; Tang, Y.-S.; Khan, R.A.; Biju, M.P.; Xiao, X.; Li, Q.-J.; Sun, X.-L.; Jayaram, H.N.; Stabler, S.P. Translational Upregulation of Folate Receptors Is Mediated by Homocysteine via RNA-Heterogeneous Nuclear Ribonucleoprotein E1 Interactions. J. Clin. Investig. 2004, 113, 285–301. [Google Scholar] [CrossRef]
- Notaro, S.; Reimer, D.; Fiegl, H.; Schmid, G.; Wiedemair, A.; Rössler, J.; Marth, C.; Zeimet, A.G. Evaluation of Folate Receptor 1 (FOLR1) mRNA Expression, Its Specific Promoter Methylation and Global DNA Hypomethylation in Type I and Type II Ovarian Cancers. BMC Cancer 2016, 16, 589. [Google Scholar] [CrossRef]
- Ebel, W.; Routhier, E.L.; Foley, B.; Jacob, S.; McDonough, J.M.; Patel, R.K.; Turchin, H.A.; Chao, Q.; Kline, J.B.; Old, L.J.; et al. Preclinical Evaluation of MORAb-003, a Humanized Monoclonal Antibody Antagonizing Folate Receptor-Alpha. Cancer Immun. 2007, 7, 6. [Google Scholar]
- Leung, F.; Dimitromanolakis, A.; Kobayashi, H.; Diamandis, E.P.; Kulasingam, V. Folate-Receptor 1 (FOLR1) Protein Is Elevated in the Serum of Ovarian Cancer Patients. Clin. Biochem. 2013, 46, 1462–1468. [Google Scholar] [CrossRef]
- Kurosaki, A.; Hasegawa, K.; Kato, T.; Abe, K.; Hanaoka, T.; Miyara, A.; O’Shannessy, D.J.; Somers, E.B.; Yasuda, M.; Sekino, T.; et al. Serum Folate Receptor Alpha as a Biomarker for Ovarian Cancer: Implications for Diagnosis, Prognosis and Predicting Its Local Tumor Expression. Int. J. Cancer 2016, 138, 1994–2002. [Google Scholar] [CrossRef]
- Giampaolino, P.; Foreste, V.; Della Corte, L.; Di Filippo, C.; Iorio, G.; Bifulco, G. Role of Biomarkers for Early Detection of Ovarian Cancer Recurrence. Gland Surg. 2020, 9, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Farran, B.; Pavitra, E.; Kasa, P.; Peela, S.; Rama Raju, G.S.; Nagaraju, G.P. Folate-Targeted Immunotherapies: Passive and Active Strategies for Cancer. Cytokine Growth Factor Rev. 2019, 45, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Coleman, R.L.; Vergote, I.; Van Gorp, T.; Ray-Coquard, I.; Oaknin, A.; Matulonis, U.; O’Malley, D.; Raspagliesi, F.; Scambia, G.; et al. Mirvetuximab Soravtansine-Gynx: First Antibody/Antigen-Drug Conjugate (ADC) in Advanced or Recurrent Ovarian Cancer. Int. J. Gynecol. Cancer 2024, 34, 469–477. [Google Scholar] [CrossRef] [PubMed]
- James, R.L.; Sisserson, T.; Cai, Z.; Dumas, M.E.; Inge, L.J.; Ranger-Moore, J.; Mason, A.; Sloss, C.M.; McArthur, K. Development of an FRα Companion Diagnostic Immunohistochemical Assay for Mirvetuximab Soravtansine. Arch. Pathol. Lab. Med. 2024, 148, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Despierre, E.; Lambrechts, S.; Leunen, K.; Berteloot, P.; Neven, P.; Amant, F.; O’Shannessy, D.J.; Somers, E.B.; Vergote, I. Folate Receptor Alpha (FRA) Expression Remains Unchanged in Epithelial Ovarian and Endometrial Cancer after Chemotherapy. Gynecol. Oncol. 2013, 130, 192–199. [Google Scholar] [CrossRef]
- Rubinsak, L.A.; Cohen, C.; Khanna, N.; Horowitz, I.R.; Hanley, K.Z. Folate Receptor Alpha Expression in Platinum Resistant/Refractory Ovarian Carcinomas and Primary Endocervical Adenocarcinomas. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 567–572. [Google Scholar] [CrossRef]
- Wallace-Povirk, A.; Hou, Z.; Nayeen, M.J.; Gangjee, A.; Matherly, L.H. Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers 2021, 14, 191. [Google Scholar] [CrossRef]
- Siu, M.K.Y.; Kong, D.S.H.; Chan, H.Y.; Wong, E.S.Y.; Ip, P.P.C.; Jiang, L.; Ngan, H.Y.S.; Le, X.-F.; Cheung, A.N.Y. Paradoxical Impact of Two Folate Receptors, FRα and RFC, in Ovarian Cancer: Effect on Cell Proliferation, Invasion and Clinical Outcome. PLoS ONE 2012, 7, e47201. [Google Scholar] [CrossRef]
- Mohanty, V.; Shah, A.; Allender, E.; Siddiqui, M.R.; Monick, S.; Ichi, S.; Mania-Farnell, B.; McLone, D.G.; Tomita, T.; Mayanil, C.S. Folate Receptor Alpha Upregulates Oct4, Sox2 and Klf4 and Downregulates miR-138 and miR-Let-7 in Cranial Neural Crest Cells. Stem. Cells 2016, 34, 2721–2732. [Google Scholar] [CrossRef]
- Boshnjaku, V.; Shim, K.-W.; Tsurubuchi, T.; Ichi, S.; Szany, E.V.; Xi, G.; Mania-Farnell, B.; McLone, D.G.; Tomita, T.; Mayanil, C.S. Nuclear Localization of Folate Receptor Alpha: A New Role as a Transcription Factor. Sci. Rep. 2012, 2, 980. [Google Scholar] [CrossRef]
- Hansen, M.F.; Greibe, E.; Skovbjerg, S.; Rohde, S.; Kristensen, A.C.M.; Jensen, T.R.; Stentoft, C.; Kjær, K.H.; Kronborg, C.S.; Martensen, P.M. Folic Acid Mediates Activation of the Pro-Oncogene STAT3 via the Folate Receptor Alpha. Cell. Signal. 2015, 27, 1356–1368. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, F.Z.; Kipreos, E.T. Emerging Roles for Folate Receptor FOLR1 in Signaling and Cancer. Trends Endocrinol. Metab. 2022, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.-Y.; Lee, W.-R.; Su, Y.-F.; Hsu, S.-P.; Lin, H.-C.; Ho, P.-Y.; Hou, T.-C.; Chou, Y.-P.; Kuo, C.-T.; Lee, W.-S. Folic Acid Inhibits Endothelial Cell Proliferation through Activating the cSrc/ERK 2/NF-κB/P53 Pathway Mediated by Folic Acid Receptor. Angiogenesis 2012, 15, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Figini, M.; Ferri, R.; Mezzanzanica, D.; Bagnoli, M.; Luison, E.; Miotti, S.; Canevari, S. Reversion of Transformed Phenotype in Ovarian Cancer Cells by Intracellular Expression of Anti Folate Receptor Antibodies. Gene Ther. 2003, 10, 1018–1025. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 3. The Correlation Between Expression of Folate Receptor Alpha and Cancer Development. Created in BioRender. 2024. Available online: https://www.biorender.com/v72u179 (accessed on 3 November 2024).
- Varaganti, P.; Buddolla, V.; Lakshmi, B.A.; Kim, Y.-J. Recent Advances in Using Folate Receptor 1 (FOLR1) for Cancer Diagnosis and Treatment, with an Emphasis on Cancers That Affect Women. Life Sci. 2023, 326, 121802. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 4. FRα-Targeting Therapies and Their Mechanisms of Action. Created in BioRender. 2024. Available online: https://www.biorender.com/k82q849 (accessed on 3 November 2024).
- Ledermann, J.A.; Canevari, S.; Thigpen, T. Targeting the Folate Receptor: Diagnostic and Therapeutic Approaches to Personalize Cancer Treatments. Ann. Oncol. 2015, 26, 2034–2043. [Google Scholar] [CrossRef]
- Ingley, E. Functions of the Lyn Tyrosine Kinase in Health and Disease. Cell Commun. Signal 2012, 10, 21. [Google Scholar] [CrossRef]
- Brian, B.F.; Freedman, T.S. The Src-Family Kinase Lyn in Immunoreceptor Signaling. Endocrinology 2021, 162, bqab152. [Google Scholar] [CrossRef]
- Konner, J.A.; Bell-McGuinn, K.M.; Sabbatini, P.; Hensley, M.L.; Tew, W.P.; Pandit-Taskar, N.; Els, N.V.; Phillips, M.D.; Schweizer, C.; Weil, S.C.; et al. Farletuzumab, a Humanized Monoclonal Antibody against Folate Receptor α, in Epithelial Ovarian Cancer: A Phase I Study. Clin. Cancer Res. 2010, 16, 5288–5295. [Google Scholar] [CrossRef]
- Kim, K.H.; Jelovac, D.; Armstrong, D.K.; Schwartz, B.; Weil, S.C.; Schweizer, C.; Alvarez, R.D. Phase 1b Safety Study of Farletuzumab, Carboplatin and Pegylated Liposomal Doxorubicin in Patients with Platinum-Sensitive Epithelial Ovarian Cancer. Gynecol. Oncol. 2016, 140, 210–214. [Google Scholar] [CrossRef]
- Armstrong, D.K.; White, A.J.; Weil, S.C.; Phillips, M.; Coleman, R.L. Farletuzumab (a Monoclonal Antibody against Folate Receptor Alpha) in Relapsed Platinum-Sensitive Ovarian Cancer. Gynecol. Oncol. 2013, 129, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Armstrong, D.; Scambia, G.; Teneriello, M.; Sehouli, J.; Schweizer, C.; Weil, S.C.; Bamias, A.; Fujiwara, K.; Ochiai, K.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase III Study to Assess Efficacy and Safety of Weekly Farletuzumab in Combination With Carboplatin and Taxane in Patients With Ovarian Cancer in First Platinum-Sensitive Relapse. JCO 2016, 34, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Somers, E.B.; Ross, E.N.; Kline, J.B.; O’Shannessy, D.J.; Schweizer, C.; Weil, S.; Grasso, L.; Nicolaides, N.C. FCGR2A and FCGR3A Genotypes Correlate with Farletuzumab Response in Patients with First-Relapsed Ovarian Cancer Exhibiting Low CA125. Cytogenet Genome Res. 2017, 152, 169–179. [Google Scholar] [CrossRef]
- Spicer, J.; Basu, B.; Montes, A.; Banerji, U.; Kristeleit, R.; Miller, R.; Veal, G.J.; Corrigan, C.J.; Till, S.J.; Figini, M.; et al. Safety and Anti-Tumour Activity of the IgE Antibody MOv18 in Patients with Advanced Solid Tumours Expressing Folate Receptor-Alpha: A Phase I Trial. Nat. Commun. 2023, 14, 4180. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct06547840?term=mov18%20&cond=ovarian%20cancer&aggfilters=ages:adult&rank=1 (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/nct00738699 (accessed on 7 October 2024).
- Herzog, T.J.; Pignata, S.; Ghamande, S.A.; Rubio, M.-J.; Fujiwara, K.; Vulsteke, C.; Armstrong, D.K.; Sehouli, J.; Coleman, R.L.; Gabra, H.; et al. Randomized Phase II Trial of Farletuzumab plus Chemotherapy versus Placebo plus Chemotherapy in Low CA-125 Platinum-Sensitive Ovarian Cancer. Gynecol. Oncol. 2023, 170, 300–308. [Google Scholar] [CrossRef]
- Karpel, H.C.; Powell, S.S.; Pothuri, B. Antibody-Drug Conjugates in Gynecologic Cancer. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390772. [Google Scholar] [CrossRef]
- Manzano, A.; Ocaña, A. Antibody-Drug Conjugates: A Promising Novel Therapy for the Treatment of Ovarian Cancer. Cancers 2020, 12, 2223. [Google Scholar] [CrossRef]
- Moore, K.N.; Oza, A.M.; Colombo, N.; Oaknin, A.; Scambia, G.; Lorusso, D.; Konecny, G.E.; Banerjee, S.; Murphy, C.G.; Tanyi, J.L.; et al. Phase III, Randomized Trial of Mirvetuximab Soravtansine versus Chemotherapy in Patients with Platinum-Resistant Ovarian Cancer: Primary Analysis of FORWARD I. Ann. Oncol. 2021, 32, 757–765. [Google Scholar] [CrossRef]
- Matulonis, U.A.; Lorusso, D.; Oaknin, A.; Pignata, S.; Dean, A.; Denys, H.; Colombo, N.; Van Gorp, T.; Konner, J.A.; Marin, M.R.; et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study. JCO 2023, 41, 2436–2445. [Google Scholar] [CrossRef]
- Moore, K.N.; Angelergues, A.; Konecny, G.E.; García, Y.; Banerjee, S.; Lorusso, D.; Lee, J.-Y.; Moroney, J.W.; Colombo, N.; Roszak, A.; et al. Mirvetuximab Soravtansine in FRα-Positive, Platinum-Resistant Ovarian Cancer. N. Engl. J. Med. 2023, 389, 2162–2174. [Google Scholar] [CrossRef]
- Tarantino, P.; Ricciuti, B.; Pradhan, S.M.; Tolaney, S.M. Optimizing the Safety of Antibody–Drug Conjugates for Patients with Solid Tumours. Nat. Rev. Clin. Oncol. 2023, 20, 558–576. [Google Scholar] [CrossRef]
- Nwabufo, C.K. Mirvetuximab Soravtansine in Ovarian Cancer Therapy: Expert Opinion on Pharmacological Considerations. Cancer Chemother. Pharmacol. 2024, 93, 89–105. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 5. Structure and Mechanism of Action of MIRV. Created in BioRender. 2024. Available online: https://www.biorender.com/h07s666 (accessed on 3 November 2024).
- Moore, K.N.; Borghaei, H.; O’Malley, D.M.; Jeong, W.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Matulonis, U.A.; Running, K.L.; Zhang, X.; et al. Phase 1 Dose-Escalation Study of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor α-Targeting Antibody-Drug Conjugate, in Patients with Solid Tumors. Cancer 2017, 123, 3080–3087. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Matulonis, U.A.; Birrer, M.J.; Castro, C.M.; Gilbert, L.; Vergote, I.; Martin, L.P.; Mantia-Smaldone, G.M.; Martin, A.G.; Bratos, R.; et al. Phase Ib Study of Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRα)-Targeting Antibody-Drug Conjugate (ADC), in Combination with Bevacizumab in Patients with Platinum-Resistant Ovarian Cancer. Gynecol. Oncol. 2020, 157, 379–385. [Google Scholar] [CrossRef]
- Gilbert, L.; Oaknin, A.; Matulonis, U.A.; Mantia-Smaldone, G.M.; Lim, P.C.; Castro, C.M.; Provencher, D.; Memarzadeh, S.; Method, M.; Wang, J.; et al. Safety and Efficacy of Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRα)-Targeting Antibody-Drug Conjugate (ADC), in Combination with Bevacizumab in Patients with Platinum-Resistant Ovarian Cancer. Gynecol. Oncol. 2023, 170, 241–247. [Google Scholar] [CrossRef]
- Coleman, R.L.; Lorusso, D.; Oaknin, A.; Cecere, S.C.; Denys, H.; Colombo, N.; Van Gorp, T.; Konner, J.A.; Romeo Marin, M.; Harter, P.; et al. Mirvetuximab Soravtansine in Folate Receptor Alpha (FRα)–High Platinum-Resistant Ovarian Cancer: Final Overall Survival and Post Hoc Sequence of Therapy Subgroup Results from the SORAYA Trial. Int. J. Gynecol. Cancer 2024, 34, 1119–1125. [Google Scholar] [CrossRef]
- Cristea, M.C.; Stewart, D.; Synold, T.; Ruel, N.; Mortimer, J.; Wang, E.; Jung, A.; Wilczynski, S.; Konecny, G.E.; Eng, M.; et al. A Phase I Study of Mirvetuximab Soravtansine and Gemcitabine in Patients with FRα-Positive Recurrent Ovarian, Primary Peritoneal, Fallopian Tube, or Endometrial Cancer, or Triple Negative Breast Cancer. Gynecol. Oncol. 2024, 182, 124–131. [Google Scholar] [CrossRef]
- Xu, K.; Wang, T.; Pan, S.; He, J. The Efficacy and Toxicity of Mirvetuximab Soravtansine, a Novel Antibody-Drug Conjugate, in the Treatment of Advanced or Recurrent Ovarian Cancer: A Meta-Analysis. Expert. Rev. Clin. Pharmacol. 2023, 16, 1141–1152. [Google Scholar] [CrossRef]
- Porter, R.L.; Matulonis, U.A. Mirvetuximab Soravtansine for Platinum-Resistant Epithelial Ovarian Cancer. Expert. Rev. Anticancer Ther. 2023, 23, 783–796. [Google Scholar] [CrossRef]
- Shimizu, T.; Fujiwara, Y.; Yonemori, K.; Koyama, T.; Sato, J.; Tamura, K.; Shimomura, A.; Ikezawa, H.; Nomoto, M.; Furuuchi, K.; et al. First-in-Human Phase 1 Study of MORAb-202, an Antibody–Drug Conjugate Comprising Farletuzumab Linked to Eribulin Mesylate, in Patients with Folate Receptor-α–Positive Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3905–3915. [Google Scholar] [CrossRef]
- Cheng, X.; Li, J.; Tanaka, K.; Majumder, U.; Milinichik, A.Z.; Verdi, A.C.; Maddage, C.J.; Rybinski, K.A.; Fernando, S.; Fernando, D.; et al. MORAb-202, an Antibody–Drug Conjugate Utilizing Humanized Anti-Human FRα Farletuzumab and the Microtubule-Targeting Agent Eribulin, Has Potent Antitumor Activity. Mol. Cancer Ther. 2018, 17, 2665–2675. [Google Scholar] [CrossRef]
- Gerber, H.-P.; Sapra, P.; Loganzo, F.; May, C. Combining Antibody–Drug Conjugates and Immune-Mediated Cancer Therapy: What to Expect? Biochem. Pharmacol. 2016, 102, 1–6. [Google Scholar] [CrossRef]
- Furuuchi, K.; Rybinski, K.; Fulmer, J.; Moriyama, T.; Drozdowski, B.; Soto, A.; Fernando, S.; Wilson, K.; Milinichik, A.; Dula, M.L.; et al. Antibody-drug Conjugate MORAb-202 Exhibits Long-lasting Antitumor Efficacy in TNBC PDx Models. Cancer Sci. 2021, 112, 2467–2480. [Google Scholar] [CrossRef]
- Demetri, G.D.; Schöffski, P.; Grignani, G.; Blay, J.-Y.; Maki, R.G.; Van Tine, B.A.; Alcindor, T.; Jones, R.L.; D’Adamo, D.R.; Guo, M.; et al. Activity of Eribulin in Patients With Advanced Liposarcoma Demonstrated in a Subgroup Analysis From a Randomized Phase III Study of Eribulin Versus Dacarbazine. JCO 2017, 35, 3433–3439. [Google Scholar] [CrossRef]
- Sakai, H.; Kawakami, H.; Teramura, T.; Onodera, Y.; Somers, E.; Furuuchi, K.; Uenaka, T.; Kato, R.; Nakagawa, K. Folate Receptor α Increases Chemotherapy Resistance through Stabilizing MDM2 in Cooperation with PHB2 That Is Overcome by MORAb-202 in Gastric Cancer. Clin. Transl. Med. 2021, 11, e454. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct05613088?term=farletuzumab&sort=studyfirstpostdate&rank=1 (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct04300556?term=farletuzumab&sort=studyfirstpostdate&page=1&rank=3 (accessed on 7 October 2024).
- Li, X.; Zhou, S.; Abrahams, C.L.; Krimm, S.; Smith, J.; Bajjuri, K.; Stephenson, H.T.; Henningsen, R.; Hanson, J.; Heibeck, T.H.; et al. Discovery of STRO-002, a Novel Homogeneous ADC Targeting Folate Receptor Alpha, for the Treatment of Ovarian and Endometrial Cancers. Mol. Cancer Ther. 2023, 22, 155–167. [Google Scholar] [CrossRef]
- Oaknin, A.; Fariñas-Madrid, L.; García-Duran, C.; Martin, L.P.; O’Malley, D.M.; Schilder, R.J.; Uyar, D.; Moroney, J.W.; Diaz, J.P.; Spira, A.I.; et al. Luveltamab Tazevibulin (STRO-002), an Anti-Folate Receptor Alpha (FolRα) Antibody Drug Conjugate (ADC), Safety and Efficacy in a Broad Distribution of FolRα Expression in Patients with Recurrent Epithelial Ovarian Cancer (OC): Update of STRO-002-GM1 Phase 1 Dose Expansion Cohort. JCO 2023, 41, 5508. [Google Scholar] [CrossRef]
- Naumann, R.W.; Gonzalez Martin, A.; Herzog, T.J.; Coleman, R.L.; Ray-Coquard, I.L.; Miller, R.; Lu, L.; Dokainish, H.; Berman, C.; Oaknin, A. 818TiP REFRaME-O1/ENGOT-OV79/GOG-3086: A Phase II/III Open-Label Study Evaluating the Efficacy and Safety of Luveltamab Tazevibulin versus Investigator’s Choice of Chemotherapy in Women with Relapsed Platinum-Resistant Epithelial Ovarian Cancer Expressing Folate Receptor Alpha (FolRα). Ann. Oncol. 2023, 34, S540–S541. [Google Scholar] [CrossRef]
- Naumann, R.W.; Martin, L.P.; Oaknin, A.; Spira, A.I.; Hamilton, E.P.; Schilder, R.J.; Lu, L.; Kuriakose, J.; Berman, C.J.; Molina, A. STRO-002-GM2: A Phase 1, Open-Label, Safety, Pharmacokinetic, and Preliminary Efficacy Study of STRO-002, an Anti-Folate Receptor Alpha (FolRα) Antibody-Drug Conjugate (ADC), in Combination with Bevacizumab in Patients with Advanced Epithelial Ovarian Cancer (EOC, Including Fallopian Tube or Primary Peritoneal Cancers). JCO 2022, 40, TPS5622. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct04209855 (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct03552471?term=mov18&aggfilters=ages:adult%20older&cond=ovarian%20cancer&page=3&rank=29 (accessed on 7 October 2024).
- Secord, A.A.; Lewin, S.; Murphy, C.; Method, M. PICCOLO: An Open-Label, Single Arm, Phase 2 Study of Mirvetuximab Soravtansine in Recurrent Platinum Sensitive, High-Grade Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers with High Folate-Alpha (FRα) Expression (300). Gynecol. Oncol. 2022, 166, S157–S158. [Google Scholar] [CrossRef]
- Kako, T.; Dholakia, J.; Leath, C.; Arend, R. Single-Arm Phase II Trial of Carboplatin and Mirvetuximab Soravtansine as Neoadjuvant Chemotherapy (NACT) for Advanced- Stage Ovarian, Fallopian Tube or Primary Peritoneal Cancer (EOC) Who Are Folate Receptor α Positive (NCT04606914) (578). Gynecol. Oncol. 2022, 166, S281. [Google Scholar] [CrossRef]
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct04274426 (accessed on 7 October 2024).
- O’Malley, D.M.; Myers, T.K.N.; Zamagni, C.; Diver, E.; Lorusso, D. GLORIOSA: A Randomized, Open-Label, Phase 3 Study of Mirvetuximab Soravtansine with Bevacizumab vs. Bevacizumab as Maintenance in Platinum-Sensitive Ovarian, Fallopian Tube, or Primary Peritoneal Cancer. JCO 2023, 41, TPS5622. [Google Scholar] [CrossRef]
- Clinical Drug Experience Knowledgebase. Available online: https://cdek.pharmacy.purdue.edu/trial/nct05622890/ (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/nct05456685 (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct06365853 (accessed on 7 October 2024).
- ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/nct05887609?term=mov18&aggfilters=ages:adult%20older&cond=ovarian%20cancer&rank=7 (accessed on 7 October 2024).
- Marchetti, C.; Giorgini, M.; De Medici, C.; Palaia, I.; Iadarola, R.; Vertechy, L.; Muzii, L.; Benedetti Panici, P.; Domenici, L.; Di Donato, V.; et al. Targeted Drug Delivery via Folate Receptors in Recurrent Ovarian Cancer: A Review. OTT 2014, 7, 1223–1236. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Lee, R.J. Targeted Drug Delivery via Folate Receptors. Expert. Opin. Drug Deliv. 2008, 5, 309–319. [Google Scholar] [CrossRef]
- Reddy, J.A.; Nelson, M.; Dircksen, C.; Vetzel, M.; Johnson, T.; Cross, V.; Westrick, E.; Qi, L.; Hahn, S.; Santhapuram, H.K.; et al. Pre-Clinical Studies of EC2629, a Highly Potent Folate-Receptor-Targeted DNA Crosslinking Agent. Sci. Rep. 2020, 10, 12772. [Google Scholar] [CrossRef]
- Peethambaram, P.P.; Hartmann, L.C.; Jonker, D.J.; De Jonge, M.; Plummer, E.R.; Martin, L.; Konner, J.; Marshall, J.; Goss, G.D.; Teslenko, V.; et al. A Phase I Pharmacokinetic and Safety Analysis of Epothilone Folate (BMS-753493), a Folate Receptor Targeted Chemotherapeutic Agent in Humans with Advanced Solid Tumors. Invest. New Drugs 2015, 33, 321–331. [Google Scholar] [CrossRef]
- Vergote, I.; Leamon, C.P. Vintafolide: A Novel Targeted Therapy for the Treatment of Folate Receptor Expressing Tumors. Ther. Adv. Med. Oncol. 2015, 7, 206–218. [Google Scholar] [CrossRef]
- Luyckx, M.; Votino, R.; Squifflet, J.-L.; Baurain, J.-F. Profile of Vintafolide (EC145) and Its Use in the Treatment of Platinum-Resistant Ovarian Cancer. IJWH 2014, 6, 351–358. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 6. The Structure of Vintafolide and Its Mechanism of Action. Created in BioRender. 2024. Available online: https://www.biorender.com/c61r005 (accessed on 3 November 2024).
- Naumann, R.W.; Coleman, R.L.; Burger, R.A.; Sausville, E.A.; Kutarska, E.; Ghamande, S.A.; Gabrail, N.Y.; DePasquale, S.E.; Nowara, E.; Gilbert, L.; et al. PRECEDENT: A Randomized Phase II Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD) in Combination Versus PLD Alone in Patients with Platinum-Resistant Ovarian Cancer. JCO 2013, 31, 4400–4406. [Google Scholar] [CrossRef]
- Maurer, A.H.; Elsinga, P.; Fanti, S.; Nguyen, B.; Oyen, W.J.G.; Weber, W.A. Imaging the Folate Receptor on Cancer Cells with 99m Tc-Etarfolatide: Properties, Clinical Use, and Future Potential of Folate Receptor Imaging. J. Nucl. Med. 2014, 55, 701–704. [Google Scholar] [CrossRef]
- Guertin, A.D.; O’Neil, J.; Stoeck, A.; Reddy, J.A.; Cristescu, R.; Haines, B.B.; Hinton, M.C.; Dorton, R.; Bloomfield, A.; Nelson, M.; et al. High Levels of Expression of P-Glycoprotein/Multidrug Resistance Protein Result in Resistance to Vintafolide. Mol. Cancer Ther. 2016, 15, 1998–2008. [Google Scholar] [CrossRef]
- LoRusso, P.M.; Edelman, M.J.; Bever, S.L.; Forman, K.M.; Pilat, M.; Quinn, M.F.; Li, J.; Heath, E.I.; Malburg, L.M.; Klein, P.J.; et al. Phase I Study of Folate Conjugate EC145 (Vintafolide) in Patients With Refractory Solid Tumors. JCO 2012, 30, 4011–4016. [Google Scholar] [CrossRef]
- Oza, A.M.; Vergote, I.B.; Gilbert, L.G.; Lucy; Ghatage, P.; Lisyankaya, A.; Ghamande, S.; Chambers, S.K.; Arranz, J.A.; Provencher, D.M.; et al. A Randomized Double-Blind Phase III Trial Comparing Vintafolide (EC145) and Pegylated Liposomal Doxorubicin (PLD/Doxil®/Caelyx®) in Combination versus PLD in Participants with Platinum-Resistant Ovarian Cancer (PROCEED) (NCT01170650). Gynecol. Oncol. 2015, 137, 5–6. [Google Scholar] [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, T.V.; Castilleja, A.; Anderson, B.W.; Peoples, G.E.; Kudelka, A.P.; Murray, J.L.; Sittisomwong, T.; Wharton, J.T.; Kim, J.W.; et al. Folate Binding Protein Peptide 191-199 Presented on Dendritic Cells Can Stimulate CTL from Ovarian and Breast Cancer Patients. Anticancer Res. 1999, 19, 2907–2916. [Google Scholar]
- Brown, T.A.; Byrd, K.; Vreeland, T.J.; Clifton, G.T.; Jackson, D.O.; Hale, D.F.; Herbert, G.S.; Myers, J.W.; Greene, J.M.; Berry, J.S.; et al. Final Analysis of a Phase I/IIa Trial of the Folate-binding Protein-derived E39 Peptide Vaccine to Prevent Recurrence in Ovarian and Endometrial Cancer Patients. Cancer Med. 2019, 8, 4678–4687. [Google Scholar] [CrossRef]
- Kalli, K.R.; Block, M.S.; Kasi, P.M.; Erskine, C.L.; Hobday, T.J.; Dietz, A.; Padley, D.; Gustafson, M.P.; Shreeder, B.; Puglisi-Knutson, D.; et al. Folate Receptor Alpha Peptide Vaccine Generates Immunity in Breast and Ovarian Cancer Patients. Clin. Cancer Res. 2018, 24, 3014–3025. [Google Scholar] [CrossRef]
- Block, M.S.; Dietz, A.B.; Gustafson, M.P.; Kalli, K.R.; Erskine, C.L.; Youssef, B.; Vijay, G.V.; Allred, J.B.; Pavelko, K.D.; Strausbauch, M.A.; et al. Th17-Inducing Autologous Dendritic Cell Vaccination Promotes Antigen-Specific Cellular and Humoral Immunity in Ovarian Cancer Patients. Nat. Commun. 2020, 11, 5173. [Google Scholar] [CrossRef]
- Tochowicz, A.; Dalziel, S.; Eidam, O.; O’Connell, J.D.; Griner, S.; Finer-Moore, J.S.; Stroud, R.M. Development and Binding Mode Assessment of N-[4-[2-Propyn-1-Yl[(6 S)-4,6,7,8-Tetrahydro-2-(Hydroxymethyl)-4-Oxo-3 H-Cyclopenta[g]Quinazolin-6-Yl]Amino]Benzoyl]-l-γ-Glutamyl-d-Glutamic Acid (BGC 945), a Novel Thymidylate Synthase Inhibitor That Targets Tumor Cells. J. Med. Chem. 2013, 56, 5446–5455. [Google Scholar] [CrossRef]
- Banerjee, S.; Michalarea, V.; Ang, J.E.; Ingles Garces, A.; Biondo, A.; Funingana, I.-G.; Little, M.; Ruddle, R.; Raynaud, F.; Riisnaes, R.; et al. A Phase I Trial of CT900, a Novel α-Folate Receptor–Mediated Thymidylate Synthase Inhibitor, in Patients with Solid Tumors with Expansion Cohorts in Patients with High-Grade Serous Ovarian Cancer. Clin. Cancer Res. 2022, 28, 4634–4641. [Google Scholar] [CrossRef]
- McFadden, M.; Singh, S.K.; Kinnel, B.; Varambally, S.; Singh, R. The Effect of Paclitaxel- and Fisetin-Loaded PBM Nanoparticles on Apoptosis and Reversal of Drug Resistance Gene ABCG2 in Ovarian Cancer. J. Ovarian Res. 2023, 16, 220. [Google Scholar] [CrossRef]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An Introduction to Chimeric Antigen Receptor (CAR) T-cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Choudhery, M.S.; Arif, T.; Mahmood, R.; Harris, D.T. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. JCM 2024, 13, 3202. [Google Scholar] [CrossRef]
- Bukowski, K. Figure 7. CAR-T Cell Therapy. Created in BioRender. 2024. Available online: https://www.biorender.com/q28s549 (accessed on 3 November 2024).
- Kershaw, M.H.; Westwood, J.A.; Parker, L.L.; Wang, G.; Eshhar, Z.; Mavroukakis, S.A.; White, D.E.; Wunderlich, J.R.; Canevari, S.; Rogers-Freezer, L.; et al. A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer. Clin. Cancer Res. 2006, 12, 6106–6115. [Google Scholar] [CrossRef]
- Song, D.-G.; Ye, Q.; Poussin, M.; Harms, G.M.; Figini, M.; Powell, D.J. CD27 Costimulation Augments the Survival and Antitumor Activity of Redirected Human T Cells in Vivo. Blood 2012, 119, 696–706. [Google Scholar] [CrossRef]
- Song, D.-G.; Ye, Q.; Poussin, M.; Chacon, J.A.; Figini, M.; Powell, D.J. Effective Adoptive Immunotherapy of Triple-Negative Breast Cancer by Folate Receptor-Alpha Redirected CAR T Cells Is Influenced by Surface Antigen Expression Level. J. Hematol. Oncol. 2016, 9, 56. [Google Scholar] [CrossRef]
- Huang, J.; Kerstann, K.W.; Ahmadzadeh, M.; Li, Y.F.; El-Gamil, M.; Rosenberg, S.A.; Robbins, P.F. Modulation by IL-2 of CD70 and CD27 Expression on CD8+ T Cells: Importance for the Therapeutic Effectiveness of Cell Transfer Immunotherapy. J. Immunol. 2006, 176, 7726–7735. [Google Scholar] [CrossRef]
- Song, D.-G.; Ye, Q.; Carpenito, C.; Poussin, M.; Wang, L.-P.; Ji, C.; Figini, M.; June, C.H.; Coukos, G.; Powell, D.J. In Vivo Persistence, Tumor Localization, and Antitumor Activity of CAR-Engineered T Cells Is Enhanced by Costimulatory Signaling through CD137 (4-1BB). Cancer Res. 2011, 71, 4617–4627. [Google Scholar] [CrossRef]
- Liang, Z.; Dong, J.; Yang, N.; Li, S.-D.; Yang, Z.-Y.; Huang, R.; Li, F.-J.; Wang, W.-T.; Ren, J.-K.; Lei, J.; et al. Tandem CAR-T Cells Targeting FOLR1 and MSLN Enhance the Antitumor Effects in Ovarian Cancer. Int. J. Biol. Sci. 2021, 17, 4365–4376. [Google Scholar] [CrossRef]
- Nagai, T.; Furusho, Y.; Li, H.; Hasui, K.; Matsukita, S.; Sueyoshi, K.; Yanagi, M.; Hatae, M.; Takao, S.; Matsuyama, T. Production of a High-Affinity Monoclonal Antibody Reactive with Folate Receptors Alpha and Beta. Monoclon. Antibodies Immunodiagn. Immunother. 2015, 34, 181–190. [Google Scholar] [CrossRef]
- Yang, H.; Parkhouse, R.M.E.; Wileman, T. Monoclonal Antibodies That Identify the CD3 Molecules Expressed Specifically at the Surface of Porcine γδ-T Cells. Immunology 2005, 115, 189–196. [Google Scholar] [CrossRef]
- Kim, M.S.; Ma, J.S.Y.; Yun, H.; Cao, Y.; Kim, J.Y.; Chi, V.; Wang, D.; Woods, A.; Sherwood, L.; Caballero, D.; et al. Redirection of Genetically Engineered CAR-T Cells Using Bifunctional Small Molecules. J. Am. Chem. Soc. 2015, 137, 2832–2835. [Google Scholar] [CrossRef]
- Song, D.-G.; Ye, Q.; Poussin, M.; Liu, L.; Figini, M.; Powell, D.J. A Fully Human Chimeric Antigen Receptor with Potent Activity against Cancer Cells but Reduced Risk for Off-Tumor Toxicity. Oncotarget 2015, 6, 21533–21546. [Google Scholar] [CrossRef]
- Schutsky, K.; Song, D.-G.; Lynn, R.; Smith, J.B.; Poussin, M.; Figini, M.; Zhao, Y.; Powell, D.J. Rigorous Optimization and Validation of Potent RNA CAR T Cell Therapy for the Treatment of Common Epithelial Cancers Expressing Folate Receptor. Oncotarget 2015, 6, 28911–28928. [Google Scholar] [CrossRef]
- Schreiner, J.; Thommen, D.S.; Herzig, P.; Bacac, M.; Klein, C.; Roller, A.; Belousov, A.; Levitsky, V.; Savic, S.; Moersig, W.; et al. Expression of Inhibitory Receptors on Intratumoral T Cells Modulates the Activity of a T Cell-Bispecific Antibody Targeting Folate Receptor. OncoImmunology 2016, 5, e1062969. [Google Scholar] [CrossRef]
- Wing, A.; Fajardo, C.A.; Posey, A.D.; Shaw, C.; Da, T.; Young, R.M.; Alemany, R.; June, C.H.; Guedan, S. Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-Cell Engager. Cancer Immunol. Res. 2018, 6, 605–616. [Google Scholar] [CrossRef]
- Kovtun, Y.V.; Audette, C.A.; Ye, Y.; Xie, H.; Ruberti, M.F.; Phinney, S.J.; Leece, B.A.; Chittenden, T.; Blättler, W.A.; Goldmacher, V.S. Antibody-Drug Conjugates Designed to Eradicate Tumors with Homogeneous and Heterogeneous Expression of the Target Antigen. Cancer Res. 2006, 66, 3214–3221. [Google Scholar] [CrossRef]
- Moore, K.N.; O’Malley, D.M.; Vergote, I.; Martin, L.P.; Gonzalez-Martin, A.; Malek, K.; Birrer, M.J. Safety and Activity Findings from a Phase 1b Escalation Study of Mirvetuximab Soravtansine, a Folate Receptor Alpha (FRα)-Targeting Antibody-Drug Conjugate (ADC), in Combination with Carboplatin in Patients with Platinum-Sensitive Ovarian Cancer. Gynecol. Oncol. 2018, 151, 46–52. [Google Scholar] [CrossRef]
- Ma, W.W.; Tolcher, A.W.; Perez, C.A.; Wahner Hendrickson, A.E.; Orr, D.W.; Murciano-Goroff, Y.R.; Anders, C.K.; Hamilton, E.P.; Swisher, E.M.; Mathews, C.A.; et al. Study of ELU001, a C’Dot Drug Conjugate (CDC) Targeting Folate Receptor α (FRα) Overexpressing Solid Tumors. JCO 2024, 42, TPS3173. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Song, M.; Westin, S.N.; Au-Yeung, G.; Mitchell, P.; Myers, C.; Gymnopoulos, M.; Fraenkel, P.G.; Nawinne, M.; Brier, T.; et al. 819TiP FONTANA: A Phase I/IIa Study of AZD5335 as Monotherapy and in Combination with Anti-Cancer Agents in Patients with Solid Tumours. Ann. Oncol. 2023, 34, S541. [Google Scholar] [CrossRef]
- Lawn, S.; Rojas, A.H.; Colombo, R.; Siddappa, D.; Wong, J.; Wu, K.; Fung, V.; Urosev, D.; Yang, L.; Rich, J.R.; et al. Abstract 2641: ZW191, a Novel FRa-Targeting Antibody Drug Conjugate Bearing a Topoisomerase 1 Inhibitor Payload. Cancer Res. 2023, 83, 2641. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Chen, X.; Zhao, Y.; Liao, Y.; Huang, P.; Wu, W.; Nieto, N.S.; Li, L.; Tang, W. Development of Folate Receptor Targeting Chimeras for Cancer Selective Degradation of Extracellular Proteins. Nat. Commun. 2024, 15, 8695. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, T.; Muminovic, M.; Nano, O.; Vulfovich, M. Folate Receptor Alpha—A Novel Approach to Cancer Therapy. IJMS 2024, 25, 1046. [Google Scholar] [CrossRef] [PubMed]
- Musechem. Available online: https://www.musechem.com/blog/folate-receptor-a-new-horizon-in-cancer-therapeutics/ (accessed on 31 October 2024).
- Bukowski, K. Figure 8. The Future Directions of Potential Use of FRα and FRα-Targeting Therapies in Diagnostics and Treatment of Cancer. Created in BioRender. 2024. Available online: https://biorender.com/a08s070 (accessed on 3 November 2024).
Drug | Dose | Mechanism of Action | Refs. |
---|---|---|---|
Cisplatin | 75–100 mg/m2 IV per cycle q4Weeks with cyclophosphamide (600 mg/m2 IV q4Weeks); administer sequentially | Induction of cross-links in the DNA structure between platinum (II) and two adjacent guanine molecules. | [20,21] |
Carboplatin | 360 mg/m2 by IV on day 1 every 4 weeks | Formation of DNA adducts and DNA cross-linking. | [22,23] |
Paclitaxel | 175 mg/m2 IV over 3 h q3Weeks (follow with cisplatin), or 135 mg/m2 IV over 24 h q3Weeks (follow with cisplatin) | Antimicrotubule agent. | [24,25] |
Olaparib | 300 mg twice a day | PARP inhibitor. | [26] |
Niraparib | 200–300 mg daily | [27] | |
Rucaparib | 600 mg orally twice a day | [28] | |
Bevacizumab | 10–15 mg/kg once every 2–3 weeks in combination with other drugs. | Blocks angiogenesis by inhibiting vascular endothelial growth factor A (VEGF-A). | [29] |
Clinical Trial Details * | Results | Ref. |
---|---|---|
Farletuzumab (MORab003) | ||
NCT00428766; phase I; Morphotek; USA; completed (2005–2007); platinum-resistant (PR) EOC, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC); n = 25. | Generally safe and well tolerated. | [92] |
NCT01004380; phase Ib; Morphotek; USA; completed (2009–2012); PS EOC at first or second relapse; n = 15. | A well-tolerated combination of farletuzumab and carboplatin/PLD | [93] |
NCT00318370; phase II; Morphotek; international; completed (2006–2010); first-relapse PS OC, FTC, and PPC; n = 54. | Well tolerated as a single agent. Farletuzumab combined with carboplatin and taxanes can increase the response rate and the duration of response. | [94] |
NCT00738699; phase III; Morphotek; international; terminated (2008–2012); PR OC; n = 417. | The study did not meet pre-specified criteria for continuation. | [99] |
NCT00849667; phase III; Morphotek; international; terminated (2009–2013); PS OC in first release; n = 1100. | The primary endpoint PFS was not reached | [95] |
NCT02289950; phase II; Eisai; international; completed (2015—2020); recurrent PS OC in first relapse with low carbohydrate antigen 125 (CA-125) level; n = 214. | Adding farletuzumab to standard chemotherapy does not improve PFS. FRα expression was not measured in this study. | [100] |
MOv18 (IgE) | ||
NCT02546921; phase I; Cancer Research UK; UK; completed (2016–2021); EOC, FTC, and endometrial cancer (n = 26) | Tolerable safety profile. Anticancer properties against FRα positive solid tumors. | [97] |
NCT06547840; phase Ib; Epsilogen; UK; not recruiting yet (2024–); PR OC | — | [98] |
Clinical Trial Details * | Results | Refs. |
---|---|---|
IMGN853/Elahere/MIRV/Mirvetuximab Soravtansine | ||
NCT01609556; phase I; ImmunoGen; international; completed (2012–2018); OC; n = 23. | Manageable safety profile and promising preliminary clinical effectiveness. | [109] |
NCT02606305, FORWARD II; phase Ib/II; ImmunoGen; international; completed (2016–2021); PR EOC, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC); n = 66. | The combination of MIRV and bevacizumab is well tolerated and more efficient compared to bevacizumab combined with standard chemotherapy. Promising activity regardless of the patient’s previous use of bevacizumab or their level of FRα expression. | [110,111] |
NCT02631876, FORWARD I; phase III; ImmunoGen; international; completed (2016–2020); PR EOC, FTC, and PPC; n = 366. | A more manageable safety profile than chemotherapy. Did not meet the primary PFS endpoint. | [103] |
NCT02996825, phase I; City of Hope Medical Center; USA; completed (2017–2024); PR EOC, PPC, and FTC; n = 14. | The promising activity of MIRV combined with gemcitabine. Frequent hematologic toxicities. | [113] |
NCT04209855, MIRASOL; phase III; ImmunoGen; international; active, not recruiting (2019–); PR high-grade serous ovarian cancer (HGSOC), PPC, or FTC; n = 453. | A notable advantage of OS, PFS, and ORR over chemotherapy. | [105,128] |
NCT04296890, SORAYA; phase III; ImmunoGen; international; completed (2020–2022); PR EOC; n = 105. | Well tolerated and safe profile. Clinically significant antitumor activity. | [82,83] |
NCT03552471; phase I; Ohio State University Comprehensive Cancer Center; USA; active, not recruiting (2018–); endometrial cancer, OC, FTC, and PPC after relapse. | — | [129] |
NCT05041257, PICCOLO; phase II; ImmunoGen; international; active, not recruiting (2021–); recurrent PS HGSOC, PPC or FTC; n = 75. | — | [130] |
NCT04606914; phase II; University of Alabama at Birmingham; USA; recruiting (2021–); advanced stage OC, FTC, or PPC; n = 70 | — | [131] |
NCT04274426, MIROVA; phase II; AGO Research GmbH; Germany; recruiting (2021–); high recurrent OC; n = 136. | — | [132] |
NCT05445778, GLORIOSA; phase III; ImmunoGen; international; recruiting (2022–); recurrent PS EOC, FTC, and PPC; n = 418. | — | [133] |
NCT05622890; phase III; Huadong Pharmaceutical; China; recruiting (2022–); PR advanced HGSOC, PPC, or FTC. | — | [134] |
NCT05456685; phase II; ImmunoGen; international; active, not recruiting (2022–); recurrent PS HGSOC, PPC, or FTC following one prior line of platinum-based chemotherapy. | — | [135] |
NCT06365853; phase II; ImmunoGen; international; recruiting (2024–); recurrent OC | — | [136] |
NCT05887609; phase II; University of Colorado, Denver; USA; recruiting (2023–); recurrent PS OC, PPC, or FTC. | — | [137] |
MORAb-202 | ||
NCT03386942; phase I; Eisai; Japan; completed (2017–2022); FRα-positive advanced solid tumors; n = 22. | Well tolerated. Promising antitumor potential. | [116] |
NCT05613088; phase II; Bristol-Myers Squibb; international; recruiting (2023–); PR HGSOC, PPC, or FTC. | — | [122] |
NCT04300556; phase I/II; Eisai; international; recruiting (2020–); PR solid tumors including OC, PPC, or FTC. | — | [123] |
STRO-002 | ||
NCT03748186; phase I; Sutro Biopharma; international; completed (2019–2024); PR OC (n = 32). | Manageable safety profile. | [125] |
NCT05200364; phase I; Sutro Biopharma; USA; active, not recruiting (2022–); recurrent advanced OC, PPC, or FTC. | — | [127] |
Clinical Trial Details * | Results | Ref. |
---|---|---|
NCT00308269; phase I; Endocyte; USA; completed (2006–2007); refractory solid tumors including OC; n = 32. | Acceptable safety profile and partial response in one of the patients with OC. | [148] |
NCT00722592; phase II; Endocyte; international; completed (2008–2012); PR OC after relapse; n = 149. | Combining EC145 and PLD has shown more effective antitumor properties than standard therapy. Etarfolatide allows the identification of individuals who are likely to benefit from vintafolide. | [145] |
NCT01170650; phase III; Endocyte; international; terminated (2011–2016); PR OC. | Well-tolerated combination of vintafolide and PLD. The futility threshold was not reached. | [149] |
Drug | Clinical Trial Details * | Results | Ref. |
---|---|---|---|
E39+GM-CSF | NCT01580696; phase I/IIa; COL George Peoples, MD, FACS; USA; completed (2012–2016); endometrial and ovarian cancer; n = 51 | Safe profile. Potential to prevent relapse in high-risk endometrial and ovarian cancer. | [152] |
Multi-epitope FRα peptide | NCT01606241; phase I; Mayo Clinic; USA; completed (2012–2018); breast and ovarian cancer; n = 22. | Well tolerated. Augmented immunity in more than 90% of examined patients. | [153] |
TPIV200/huFR-1 | NCT02764333; phase II; Memorial Sloan Kettering Cancer Center; USA; completed (2016–2021); recurrent PR high-grade serous ovarian cancer (HGSOC); n = 27. | Well-tolerated combination of TPIV200 with durvalumab. The high response of FRα-specific T cells in all patients and elongated median overall survival (OS). | [14] |
Th17-inducing autologous dendritic cell vaccination | NCT02111941; phase I; Mayo Clinic; USA; active, active, not recruiting (2014–); stage IIIC-IV OC, fallopian tube cancer (FTC), and primary peritoneal cancer (PPC); n = 19. | Safe profile and prolonged remission. Induction of antigen-specific immunity. | [154] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowski, K.; Rogalska, A.; Marczak, A. Folate Receptor Alpha—A Secret Weapon in Ovarian Cancer Treatment? Int. J. Mol. Sci. 2024, 25, 11927. https://doi.org/10.3390/ijms252211927
Bukowski K, Rogalska A, Marczak A. Folate Receptor Alpha—A Secret Weapon in Ovarian Cancer Treatment? International Journal of Molecular Sciences. 2024; 25(22):11927. https://doi.org/10.3390/ijms252211927
Chicago/Turabian StyleBukowski, Karol, Aneta Rogalska, and Agnieszka Marczak. 2024. "Folate Receptor Alpha—A Secret Weapon in Ovarian Cancer Treatment?" International Journal of Molecular Sciences 25, no. 22: 11927. https://doi.org/10.3390/ijms252211927
APA StyleBukowski, K., Rogalska, A., & Marczak, A. (2024). Folate Receptor Alpha—A Secret Weapon in Ovarian Cancer Treatment? International Journal of Molecular Sciences, 25(22), 11927. https://doi.org/10.3390/ijms252211927