Extracellular Vesicles as Biomarkers of Pregnancy Complications
Abstract
:1. Introduction
2. Extracellular Vesicles: Characteristics, Types and Methods Analysis
3. Placental Extracellular Vesicles
4. Extracellular Vesicles and Pregnancy Complications
4.1. Preeclampsia
Year Ref. | Extracellular Vesicles | Source of EVs | Groups | Pregnancy Stage | Method | Main Findings |
---|---|---|---|---|---|---|
2013 [9] | EVs | Placental syncytiotrophoblast | PE (n = 11) Normal (n = 22) | 30–42 weeks | Ultracentrifugation, differential centrifugation, WB | The total number of exosomes increases at PE |
2013 [9] | EVs | Placental syncytiotrophoblast | PE (n = 11) Normal (n = 22) | 30–42 weeks | Ultracentrifugation, differential centrifugation, WB | Higher levels of Flt-1/sFlt-1 isoforms in PE |
2017 [12] | Exosomes | Plasma | PE (n = 15) Normal (n = 32) | 11–14 weeks, 21–24 weeks, 31–34 weeks | Ultracentrifugation, differential centrifugation, ELISA | The concentration of exosomes is increased in PE regardless of gestational age, AUC = 0.745 ± 0.094 for all exosomes and 0.829 ± 0.077 for placental exosomes at 11–14 weeks gestation |
2017 [12] | Exosomes | Plasma | PE (n = 15) Normal (n = 32) | 11–14 weeks, 21–24 weeks, 31–34 weeks | Ultracentrifugation, differential centrifugation, NGS | The content of miR-486-1-5p, miR-486-2-5p in exosomes is increased in PE regardless of gestational age |
2019 [47] | Exosomes | Serum | PE (n = 42) Normal (n = 39) | 37–38 weeks | Commercial kit (Invitrogen, Carlsbad, CA, USA), qRT-PCR | Reduction in miR-548c-5p at PE |
2017 [52] | Exosomes | Plasma | PE (n = 23) Chronic hypertension (n = 16) Gestational hypertension (n = 14) Normal (n = 34) | 24–40 weeks | Commercial kit, qRT-PCR | The concentration of total miRNA is higher in PE (FC = 3.19, p < 0.001). The level of hsa-miR-210-3p is higher in PE |
1998 [53] | Syncytiotrophoblast microparticles | Peripheral venous plasma, uterine venous plasma | PE (n = 20) Normal (n = 20) Nonpregnant females (n = 10) | 232–233 days | Ultracentrifugation, FCM, time resolved fluoroimmunoassay | EV levels are elevated in the plasma of women with PE. EV levels are higher in plasma from uterine vessels compared to peripheral blood |
2016 [54] | Exosomes | Plasma | Early onset-PE (<33 weeks) (n = 15) Late onset-PE (>34 weeks) (n = 15) Normal (<33 weeks) (n = 15) Normal (>34 weeks) (n = 15) | 26–39 weeks | Ultracentrifugation, differential centrifugation, ELISA | The total number of exosomes increases in PE regardless of the time of manifestation. The concentration of placental exosomes increases in early PE but decreases in late PE |
2019 [55] | Exosomes | Plasma | Early onset-PE (<33 weeks) (n = 15) Late onset-PE (>34 weeks) (n = 15) Normal (<33 weeks) (n = 15) Normal (>34 weeks) (n = 15) | 26–39 weeks | Commercial kit miRCURY (Qiagen, Valencia, CA, USA), ELISA | The total number of exosomes is higher in PE regardless of gestational age. The concentration of placental exosomes is higher in early PE |
2019 [54] | Exosomes | Plasma | Early onset-PE (<33 weeks) (n = 15) Late onset-PE (>34 weeks) (n = 15) Normal (<33 weeks) (n = 15) Normal (>34 weeks) (n = 15) | 26–39 weeks | Commercial kit miRCURY (Qiagen, Valencia, CA, USA), NTA | 59 miRNAs associated with early PE and 30 miRNAs associated with late PE were identified |
2018 [56] | Exosomes | Plasma | PE (n = 100) Normal (n = 100) | 23–25 weeks | Ultracentrifugation, qRT-PCR | The levels of miR-136, miR-494 and miR-495 are significantly higher at PE |
2018 [56] | Exosomes | Umbilical cord mesenchymal stem cells | PE (n = 15) Normal (n = 15) | 23–25 weeks | Ultracentrifugation, qRT-PCR | The levels of miR-136, miR-494 and miR-495 are significantly higher at PE |
2018 [57] | Exosomes | Serum | PE (n = 10) Normal (n = 10) | 36–40 weeks | Ultracentrifugation, differentialcentrifugation, qRT-PCR | Increased miR-155 content at PE |
2019 [58] | Exosomes | Plasma | PE (n = 43) Gestational hypertension (n = 57) FGR (n = 63) Normal (n = 102) | 10–13 weeks | Commercial kit miRCURY (Qiagen, Valencia, CA, USA), qRT-PCR | Low levels of miR-517-5p, miR-520a-5p and miR-525-5p in the first trimester are associated with subsequent pregnancy complications |
2019 [59] | Exosomes, microvesicles | Plasma | PE (n = 14) Normal (n = 14) | 33–40 weeks | Differential centrifugation, ultracentrifugation, immunoprecipitation, size exclusion chromatography and ultrafiltration, Neprilysin Activity Assay Kit (AnaSpec, Fremont, CA, USA), FCM, WB | In PE placental exosomes are increased and neprilysin expression is upregulated |
2017 [60] | EVs | Urine | PE (n = 49) Normal (n = 42) | 24 h before delivery | Without isolation, WB | The ratio of podocin-positive EVs to nephrin-positive EVs is significantly elevated at PE |
2018 [61] | Exosomes | Urine | PE (n = 24) Normal (n = 24) | 28–36 weeks | Differential centrifugation, WB | In PE NKCC2 and ENaC activity is increased and NCC activity is decreased |
2014 [62] | EVs | Plasma | PE (n = 11) Normal (n = 11) | 27–38 weeks | Biotinylation, Mass spectrometry, ELISA | In total, 87 proteins were detected in the CTB EVs population and 104 proteins in the AV EVs population at PE |
2015 [63] | Exosomes | Umbilical cord blood | PE (n = 10) Normal (n = 10) | 34–39 weeks | Ultracentrifugation, differential centrifugation, LC-MS | Differences were found in the content of 29 proteins between normal and PE. The level of 14 proteins is increased and 15 is decreased in PE |
2016 [64] | Exosomes | Gingival crevicular fluid | PE (n = 10) Normal (n = 20) | 33–34 weeks | Ultracentrifugation, differential centrifugation, ELISA | The ratio of placental exosomes to their total number is significantly higher in patients with PE |
2016 [64] | Exosomes | Gingival crevicular fluid | PE (n = 10) Normal (n = 20) | 33–34 weeks | Ultracentrifugation, differential centrifugation, ELISA | PLAP concentrations are elevated in patients with PE |
2016 [64] | Exosomes | Saliva, gingival crevicular fluid | PE (n = 10) Normal (n = 20) | 33–34 weeks | Ultracentrifugation, differential centrifugation, ELISA | The concentration of sFlt-1 is significantly higher in patients with PE |
2016 [65] | Apoptotic bodies, microvesicles, exosomes | Plasma | PE (n = 19) Normal (n = 14) | 31–39 weeks | Ultracentrifugation, differential centrifugation, qRT-PCR | miR-885-5p, which is elevated in the plasma of pregnant women with PE, predominantly accumulates in plasma exosomes in PE (32-fold higher content compared to apoptotic cells) |
2018 [66] | Exosomes | Plasma | PE (n = 10) Normal (n = 10) | 36–38 weeks | Precipitation (commercial kit), Transmission Electron Microscopy, NTA, ELISA | Exosomes obtained from patients with PE contain significantly elevated concentrations of sFlt1 and sEng, contributing to endothelial vasoconstrictor dysfunction |
2019 [67] | Placental EVs | Plasma | PE (n = 10) Normal (n = 7) | 33 weeks | Not mentioned, FCM | The number of placental EVs is significantly higher at PE |
2020 [68] | Placental exosomes | Plasma | PE (n = 21) Normal (n = 23) | 31–33 weeks | Ultracentrifugation, differential centrifugation, NTA, WB | Syncytin-1 levels are decreased and PLAP levels are increased in patients with PE |
2012 [69] | Syncytial aggregates | Plasma | PE (n = 16) Normal (n = 12) | 28–40 weeks | Ultracentrifugation, differential centrifugation, WB | The concentration of sFlt1 is significantly higher at PE |
2012 [69] | Syncytial aggregates | Placental villi | PE (n = 12) Normal (n = 9) | 28–40 weeks | Ultracentrifugation, differential centrifugation, Immunohistochemistry, electron microscopy | Flt1/sFlt1 levels are significantly elevated at PE |
2014 [70] | Microvesicles | Placental villi | PE (n = 3) Normal (n = 6) | >34 weeks, delivery | Differential centrifugation, LC-MS, immunohistochemistry | The content of 25 proteins differs in PE and normal pregnancy |
2002 [71] | Microparticles | Plasma | PE (n = 16) Normal (n = 6) | 27–31 weeks | Differential centrifugation, Wire myography | Microparticles derived from PE patients induce endothelial dysfunction in isolated myometrial arteries derived from healthy pregnant women |
2006 [72] | Microparticles | Plasma | PE (n = 21) Normal (n = 17) | 28–39 weeks | Differential centrifugation, Phenotyping using specific monoclonal antibodies | The total number of microparticles is significantly increased in PE. Leukocyte- and platelet-derived microparticles are also increased in PE |
2007 [73] | Microparticles | Plasma | PE (n = 10) Normal (n = 10) | 27–32 weeks | Differential centrifugation, FCM | No differences in complement system activation were found in healthy pregnant women and patients with PE |
2008 [74] | Microparticles | Plasma | PE (n = 11) Normal (n = 8) | 12–38 weeks | Differential centrifugation, FCM | In PE, in the third trimester, the total number of microparticles decreases, but placental, monocytic, and erythrocytic microparticles are increased |
2009 [75] | Microparticles | Plasma | PE (n = 10) Normal (n = 10) Nonpregnant females (n = 10) | 27–33 weeks | Differential centrifugation, FCM, ELISA, MLPA | The total number of microparticles is reduced in PE. The concentration of sl-selectin is significantly decreased and the concentration of elastase is significantly increased in patients with PE |
2012 [76] | Microparticles | Plasma | PE (n = 8) Normal (n = 8) | 27–34 weeks | Differential centrifugation, FCM | ICAM-1 content was significantly increased in monocyte cocultures and endothelial cells after addition of isolated microparticles from PE patients |
2012 [77] | Microparticles | Plasma | Early-onset PE (<34 weeks)(n = 15) Late-onset PE (>34 v)(n = 15) Normal (n = 10) | 28–38 weeks | Differential centrifugation, ELISA, WB | The concentration of placental microparticles is significantly higher in the PE group with early-onset. Caspase-3 levels are elevated in groups with PE |
2004 [78] | Endothelial EVs < 1 µm | Plasma | PE (n = 52) Gestational hypertension (n = 20) Normal (n = 38) | >34 weeks | Ultrafiltration, FCM | Increased concentration of CD31+/42b- and CD62E+ BBs in women with PE and HG compared to controls, increased concentration of CD31+/42b- and CD62E+- BBs in women with PE compared to GH |
2006 [79] | Microparticles | Plasma | Early-onset PE (n = 15) Late-onset PE (n = 10) Normal (n = 35) | 24–40 weeks | Ultracentrifugation, ELISA | Microparticle levels are elevated in PE with early onset compared to normal pregnancy |
2012 [80] | Microparticles | Plasma | PE (n = 58) Normal (n = 38) FGR(n = 12) | 24–41 weeks | Differential centrifugation, FCM | Endothelial microparticle content was significantly increased in PE as in the PE + FGR group |
2012 [81] | Microparticles of neutrophils, endothelial cells, monocytes, platelets, leukocytes, erythrocytes and syncytiotrophoblast | Plasma | PE (n = 28) Normal (n = 30) | 30–36 weeks | Differential centrifugation, FCM | PE has significantly elevated levels of microparticles from a variety of sources |
2012 [82] | Endothelial microparticles | Plasma | PE (n = 20) Normal (n = 20) | >36 weeks | Differential centrifugation, ELISA, FCM | Concentrations of all endothelial microparticles (CD31+/42-, CD 62E+ and CD105+) are significantly higher in patients with PE. The content of sFlt1 and sEnd is significantly elevated and PlGF is significantly decreased in PE |
2014 [83] | Leukocyte microparticles | Plasma | PE (n = 24) Normal (n = 20) | 38–39 weeks | Differential centrifugation, Cytofluorometry | The concentration of leukocyte microparticles does not differ between PE and control groups. In PE, the content of CD45 + CD16 − CD56 + microparticles is higher |
2015 [84] | Microparticles | Plasma, cord blood | PE (n = 16) Normal (n = 16) | 37–39 weeks | Differential centrifugation, FCM | In plasma, the total microparticle content as well as the concentration of leukoic microparticles is higher in PE. The concentration of platelet microparticles (CD61+) is lower in PE. No differences in the content of endothelial microparticles were detected. In cord blood samples, the content of all detected microparticles is significantly higher in PE |
2016 [85] | Platelets and endothelial microparticles | Plasma | PE (n = 20) Normal (n = 20) Nonpregnant females (n = 20) | 38–39 weeks | Differential centrifugation, FCM | Microparticles from women with PE decreased CD18 expression on the tumour necrosis factor α (TNF-α)-activated monocyte cell line TNR-1. Microparticles from healthy pregnant women increased the expression of CD18, CD54 and integrin β7 and decreased the expression of CD11a and CD29. Microparticles from nonpregnant women decreased the expression of CD18, CD49d and CD54 and increased the expression of CD11c, CD31, CD47 and vascular endothelial growth factor receptor 2 |
2015 [86] | Platelet and endothelial microparticles | Plasma | Severe PE (n = 35) Mild PE (n = 40) Normal (n = 60) | >34 weeks | Differential centrifugation, FCM | The concentration of endothelial microparticles is significantly higher in the group with severe PE; the concentration of trophoblast microparticles has no significant difference in the groups |
2017 [87] | Microvesicles and exosomes of syncytiotrophoblast | Plasma, placenta | Plasma: PE (n = 6) Normal (n = 6) Placenta: PE (n = 8) Norma (n = 11) | 28–40 weeks | Ultracentrifugation, differential centrifugation, FCM, WB | In PE, there is a decrease in eNOS levels in both plasma and placental EVs |
2019 [88] | Exosomes | Urine | PE (n = 29) Normal (n = 23) Nonpregnant females (n = 19) | 28–40 weeks | Differential centrifugation, WB | PFKFB2 levels were increased 4.7-fold in PE compared to controls (p < 0.001) |
2017 [89] | Microparticles | Placental trophoblast | PE (n = 6) Normal (n = 25) | 35–40 weeks, delivery | Differential centrifugation, FCM | Trophoblasts obtained from PE patients secrete significantly more microparticles (p < 0.01) |
2019 [90] | Exosomes | Plasma, placenta | Plasma: PE (n = 8) Normal (n = 8) Placenta: PE (n = 13) Normal (n = 7) | 28–40 weeks, delivery | Membrane affinity spin column (Qiagen, Valencia, CA, USA), qRT-PCR | The level of hsa-miR-210 is significantly elevated in samples with PE |
2017 [91] | Microparticles | Plasma | PE (n = 33) Normal (n = 112) | 10–14 weeks | Differential centrifugation, ELISA | In patients with PE, total annexin V and copeptin levels were significantly elevated, while PlGF levels, on the contrary, were significantly decreased compared to controls |
4.2. Gestational Diabetes Mellitus
Year Ref. | Extracellular Vesicles | Source of EVs | Groups | Pregnancy Stage | Method | Main Findings |
---|---|---|---|---|---|---|
2020 [40] | Placental exosomes | Urine | GDM (n = 27) Normal (n = 34) | 8–39 weeks | Centrifugation, qRT-PCR | In the second trimester of pregnancy, increased expression of miR-516-5p, miR-517-3p, miR-518-5p, miR-222-3p and miR-16-5p was observed in GDM patients |
2018 [101] | Exosomes | Plasma, chorionic villi | GDM (n = 12) Normal (n = 12) | 37–39 weeks | Ultracentrifugation, differential centrifugation, NGS, qRT-PCR | In GDM, 9 miRNAs are upregulated and 14 miRNAs are downregulated in exosomes of placental origin. The content of miRNAs hsa-miR-125a-3p, hsa334 miR-99b-5p, hsa-miR-197-3p, hsa-miR-22-3p and hsa-miR-224-5p is the same in exosomes derived from plasma and chorionic villi during GDM |
2016 [103] | Exosomes, microvesicles | Plasma | GDM (n = 7) Normal (n = 13) | 11–14 weeks, 22–24 weeks, 32–36 weeks | Ultracentrifugation, differential centrifugation, ELISA | GDM doubly increases the concentration of exosomes. Exosomes from early, mid, and late gestation obtained from normal pregnancy significantly increased (∼1.8-fold) the release of GM-CSF, IL-4, IL-6, IL-8, IFN-γ, and TNF-α, without significant differences between gestational age |
2019 [104] | EVs | Gingival crevicular fluid | GDM (n = 11) Normal (n = 23) | 11–14 weeks | Commercial kit ExoQuick (System Biosciences Inc., Mountain View, CA, USA), NTA, ELISA, transmission electron microscopy | The concentration of EVs is significantly higher with GDM (AUC = 0.81) |
2019 [105] | EVs | Serum | GDM (n = 23) Normal (n = 46) | 6–15 weeks | Ultracentrifugation, differential centrifugation, qRT-PCR | The level of 10 miRNAs (miR-520h, miR-1323, miR-136-5p, miR-342-3p, miR-29a-3p, miR-29b-3p, miR-122-5p, miR-132-3p. miR-182-3p and miR-210-3p) were significantly higher in the group with GDM |
2019 [106] | Placental EVs | Plasma | GDM (n = 6) Normal (n = 6) | 39–40 weeks | Ultracentrifugation, differential centrifugation, FCM | The amount of dipeptidyl peptidase IV (DPPIV) is increased with GDM |
2019 [107] | EVs | Plasma | GDM (n = 6) Normal (n = 19) | 6–36 weeks | Differential centrifugation, NTA | The concentration of extracellular vesicles collected in the first trimester was significantly higher in patients who subsequently developed GDM |
2020 [108] | EVs | Plasma | GDM (n = 24) Normal (n = 24) | 24–28 weeks | Differential centrifugation, NTA | The number of EVs of placental origin is significantly higher in GDM (higher PLAP level) |
2021 [109] | EVs | Plasma | GDM (n = 50) Normal (n = 50) | 28–40 weeks | Not mentioned, FCM | The total number of EVs is slightly higher in the group with GDM, and the number of adipocytic EVs is higher in the control group. A significant correlation between the percentage of adipocytic EVs and total cholesterol is observed in the GDM group |
2020 [110] | Exosomes | Umbilical cord blood | GDM (n = 23) Normal (n = 23) | Delivery | Ultracentrifugation, differential centrifugation, qRT-PCR | The concentration of exosomes was significantly higher in GDM patients. We identified 507 differentially expressed circular RNAs, of which 229 were activated and 278 were suppressed in patients with GDM |
2019 [111] | Exosomes | Adipose tissue | GDM (n = 82) Normal (n = 65) | >37 weeks (delivery) | Differential centrifugation, exclusion chromatography, NTA | The number of exosomes is significantly higher in GDM. We identified 127 proteins whose expression is statistically significantly altered in GDM, of which 110 proteins are activated and 17 are repressed |
2016 [112] | Exosomes | Urine | GDM (n = 8) Normal (n = 10) | 20 weeks | Differential centrifugation, LC-MS, WB | Identified 645 proteins in exosomes of healthy pregnant women and 855 proteins in exosomes of GDM patients. The content of 70 proteins differed significantly between the compared groups, with the most significant differences found for the calcium-binding protein S100 A9 (S100A9) |
2021 [113] | Exosomes | Cord blood, umbilical cord, placenta. | GDM (n = 23) Normal (n = 47) | Delivery (38–39 weeks) | Commercial kit Exoquick™ Exosome Precipitation Solution (System Biosciences, Mountain View, CA, USA), qRT-PCR | A statistically significant increase in miR-126-3p was observed in all types of biomaterial examined |
2022 [114] | EVs | Plasma | GDM (n = 20) Normal (n = 25) | 11–14 weeks | Centrifugation, NTA | The concentration of EVs was significantly higher in patients with subsequently developed GDM (AUC = 0.813 ± 0.080) |
4.3. Foetal Growth Restriction
Year Ref. | Extracellular Vesicles | Source of EVs | Groups | Pregnancy Stage | Method | Main Findings |
---|---|---|---|---|---|---|
2019 [58] | Exosomes | Plasma | PE (n = 43) Gestational hypertension (n = 57) FGR (n = 63) Normal (n = 102) | 10–13 weeks | Commercial kit miRCURY (Qiagen, Valencia, CA, USA), qRT-PCR | Low levels of miR-517-5p, miR-520a-5p and miR-525-5p in the first trimester are associated with subsequent pregnancy complications |
2012 [80] | Microparticles | Plasma | PE (n = 58) Normal (n = 38) FGR (n = 12) | 24–41 weeks | Differential centrifugation, FCM | The content of microvesicles is lower in the PE + FGR group than in the group with PE. The number of microvesicles in the blood of pregnant women with FGR does not change |
2018 [116] | Exosomes | Plasma | FGR (n = 20) Normal (n = 10) | 33–37 weeks | Ultracentrifugation, differential centrifugation, ELISA, NTA | In foetal growth retardation, the number of placental exosomes is significantly reduced |
2017 [117] | Exosomes | Serum | FGR (n = 36) Normal (n = 51) | 16–22 weeks | Ultracentrifugation, differential centrifugation, qRT-PCR | High levels of miR-20b-5p, miR-942-5p, miR-324-3p, miR-223-5p, and miR-127-3p are associated with a low risk of foetal growth retardation |
2024 [118] | sEVs | Plasma | Small--for--gestational age (SGA) (n = 43) Normal (n = 220) | 10–14 weeks, 16–22 weeks, 26–32 weeks, delivery | Ultracentrifugation, filtration, FCM, WB, NTA, lipid MS | The SGA group had lower EVs than controls throughout pregnancy. A lipid profile of 25 differentially expressed lipids was found to predict the birth of a small-for-gestational-age (SGA) infant in the first and second trimester of pregnancy (AUC = 0.822 and 0.909, respectively) |
2022 [119] | Microparticles | Plasma | FGR (n = 32) Normal (n = 20) | 24 weeks– delivery | Differential centrifugation, WB | In the third trimester, OPA1 protein content was significantly increased in the FGR group compared to controls |
4.4. Preterm Birth
Year Ref. | Extracellular Vesicles | Source of EVs | Groups | Pregnancy Stage | Method | Main Findings |
---|---|---|---|---|---|---|
2019 [10] | Exosomes | Plasma | PTB (n = 10) Normal (n = 20) | 9–40 weeks | Ultracentrifugation, differential centrifugation, NGS | The content of 173 miRNAs differs in PB and normal pregnancy |
2019 [124] | Exosomes | Plasma | PTB (n = 13) Preterm premature rupture of membranes (n = 8) Term in labour (n = 11) Term not in labour (n = 13) | 32–40 weeks | Ultracentrifugation, differential centrifugation, SWATH-MS | 72 proteins were identified, the content of which differed between the study groups |
2019 [125] | Microparticles | Plasma | PTB (n = 87) Normal (n = 174) | 10–12 weeks | Exclusion chromatography, LC-MS | A set of proteins (F13A, FBLN1, IC1, ITIH2 and LCAT) showing high potential for use, as a PB biomarker, in early pregnancy was identified (AUC = 0.74 (95% DI, 0.63–0.81)) |
2018 [126] | EVs | Plasma | PTB (n = 20) Normal (n = 47) | 24–34 weeks | Differential centrifugation, exclusion chromatography, NGS, qRT-PCR | A total of 535 microRNAs were identified, of which 51 had significant concentration changes between groups |
2016 [127] | Bacterial EVs | Urine | PTB (n = 35) Normal (n = 39) | 25–42 weeks | Ultracentrifugation, differential centrifugation, NGS | The level of bacterial EVs is higher at PB |
2016 [128] | EVs | Plasma | PTB (n = 25) Normal (n = 50) | 10–12 weeks | Exclusion chromatography, LC-MS | Identified 62 proteins that may be used as biomarkers of preterm birth |
2015 [129] | Microparticles | Serum | PTB (n = 24) Normal (n = 24) | 15–17 weeks | Differential centrifugation, LC | A total of 99 proteins were identified with statistically significant differences between the PB and control groups. An additional study identified 18 proteins associated with the risk of PB |
5. Conclusions
Funding
Conflicts of Interest
References
- Zhao, Z.; Moley, K.H.; Gronowski, A.M. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin. Biochem. 2013, 46, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Condrat, C.E.; Varlas, V.N.; Duică, F.; Antoniadis, P.; Danila, C.A.; Cretoiu, D.; Suciu, N.; Crețoiu, S.M.; Voinea, S.C. Pregnancy-Related Extracellular Vesicles Revisited. Int. J. Mol. Sci. 2021, 22, 3904. [Google Scholar] [CrossRef] [PubMed]
- Barbitoff, Y.A.; Tsarev, A.A.; Vashukova, E.S.; Maksiutenko, E.M.; Kovalenko, L.V.; Belotserkovtseva, L.D.; Glotov, A.S. A Data-Driven Review of the Genetic Factors of Pregnancy Complications. Int. J. Mol. Sci. 2020, 21, 3384. [Google Scholar] [CrossRef]
- Zaborowski, M.P.; Balaj, L.; Breakefield, X.O.; Lai, C.P.-K. Extracellular Vesicles: Composition, Biological Relevance, and Methods of Study. Bioscience 2015, 65, 783–797. [Google Scholar] [CrossRef]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Zavec, A.B.; Borras, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Vashukova, E.S.; Kozyulina, P.Y.; Illarionov, R.A.; Yurkina, N.O.; Pachuliia, O.V.; Butenko, M.G.; Postnikova, T.B.; Ivanova, L.A.; Eremeeva, D.R.; Zainulina, M.S.; et al. High-Throughput Sequencing of Circulating MicroRNAs in Plasma and Serum during Pregnancy Progression. Life 2021, 11, 1055. [Google Scholar] [CrossRef]
- Dragovic, R.A.; Collett, G.P.; Hole, P.; Ferguson, D.J.; Redman, C.W.; Sargent, I.L.; Tannetta, D.S. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods 2015, 87, 64–74. [Google Scholar] [CrossRef]
- Tannetta, D.S.; Dragovic, R.A.; Gardiner, C.; Sargent, I.L. Characterisation of syncytiotrophoblast vesicles in normal pregnancy and pre-eclampsia: Expression of flt-1 and endoglin. PLoS ONE 2013, 8, e56754. [Google Scholar] [CrossRef]
- Menon, R.; Debnath, C.; Lai, A.; Guanzon, D.; Bhatnagar, S.; Kshetrapal, P.K.; Sheller-Miller, S.; Salomon, C.; Garbhini Study Team. Circulating exosomal mirna profile during term and preterm birth pregnancies: A longitudinal study. Endocrinology 2019, 160, 249–275. [Google Scholar] [CrossRef]
- Mitchell, M.D.; Peiris, H.N.; Kobayashi, M.; Koh, Y.Q.; Duncombe, G.; Illanes, S.E.; Rice, G.E.; Salomon, C. Placental exosomes in normal and complicated pregnancy. Am. J. Obs. Gynecol. 2015, 213, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Salomon, C.; Guanzon, D.; Scholz-Romero, K.; Longo, S.; Correa, P.; Illanes, S.E.; Rice, G.E. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J. Clin. Endocrinol. Metab. 2017, 102, 3182–3194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Fan, B.; Xu, W.; Zhang, X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J. Cell. Mol. Med. 2020, 24, 4377–4388. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Fraile-Martinez, O.; Garcia-Montero, C.; Alvarez-Mon, M.A.; Gomez-Lahoz, A.M.; Albillos, A.; Lahera, G.; Quintero, J.; Monserrat, J.; Guijarro, L.G. An updated view of the importance of vesicular trafficking and transport and their role in immune-mediated diseases: Potential therapeutic interventions. Membranes 2022, 12, 552. [Google Scholar] [CrossRef]
- Burkova, E.E.; Sedykh, S.E.; Nevinsky, G.A. Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics. Int. J. Mol. Sci. 2021, 22, 2158. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Liu, H.; Tang, W.H. Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 2019, 9, 19. [Google Scholar] [CrossRef]
- Ortega, M.A.; Fraile-Martínez, O.; García-Montero, C.; Paradela, A.; Asunción Sánchez-Gil, M.; Rodriguez-Martin, S.; De León-Luis, J.A.; Pereda-Cerquella, C.; Bujan, J.; Guijarro, L.G.; et al. Unfolding the role of placental-derived Extracellular Vesicles in Pregnancy: From homeostasis to pathophysiology. Front. Cell Dev. Biol. 2022, 10, 1060850. [Google Scholar] [CrossRef]
- Kalra, H.; Drummen, G.P.C.; Mathivanan, S. Focus on extracellular vesicles: Introducing the next small big thing. Int. J. Mol. Sci. 2016, 17, 170. [Google Scholar] [CrossRef]
- Markova, K.L.; Kozyreva, A.R.; Gorshkova, A.A.; Aleksandrova, E.P.; Berezkina, M.E.; Mikhailova, V.A.; Ivanova, A.N.; Kaputkina, S.Y.; Onokhin, K.V.; Benken, K.A.; et al. Methodological Approaches to Assessing the Size and Morphology of Microvesicles of Cell Lines. Bull. Exp. Biol. Med. 2020, 169, 586–595. [Google Scholar] [CrossRef]
- Markova, K.; Mikhailova, V.; Milyutina, Y.; Korenevsky, A.; Sirotskaya, A.; Rodygina, V.; Tyshchuk, E.; Grebenkina, P.; Simbirtsev, A.; Selkov, S.; et al. Effects of Microvesicles Derived from NK Cells Stimulated with IL-1β on the Phenotype and Functional Activity of Endothelial Cells. Int. J. Mol. Sci. 2021, 22, 13663. [Google Scholar] [CrossRef]
- Battistelli, M.; Falcieri, E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- Korenevskii, A.V.; Milyutina, Y.P.; Zhdanova, A.A.; Pyatygina, K.M.; Sokolov, D.I.; Sel’kov, S.A. Mass-Spectrometric Analysis of Proteome of Microvesicles Produced by NK-92 Natural Killer Cells. Bull. Exp. Biol. Med. 2018, 165, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.A.; Goberdhan, D.C.I.; O’Driscoll, L.; Buzas, E.I.; Blenkiron, C.; Bussolati, B.; Cai, H.; Di Vizio, D.; Driedonks, T.A.P.; Erdbrügger, U.; et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles 2024, 13, 12404, Erratum in J. Extracell. Vesicles 2024, 13, e12451. https://doi.org/10.1002/jev2.12451. [Google Scholar] [CrossRef] [PubMed]
- Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 2006, 3, 22. [Google Scholar] [CrossRef]
- Taylor, D.D.; Shah, S. Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 2015, 87, 3–10. [Google Scholar] [CrossRef]
- Taylor, D.D.; Zacharias, W.; Gercel-Taylor, C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol. Biol. 2011, 728, 235–246. [Google Scholar]
- Tauro, B.J.; Greening, D.W.; Mathias, R.A.; Ji, H.; Mathivanan, S.; Scott, A.M.; Simpson, R.J. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 2012, 56, 293–304. [Google Scholar] [CrossRef]
- Li, P.; Kaslan, M.; Lee, S.H.; Yao, J.; Gao, Z. Progress in Exosome Isolation Techniques. Theranostics 2017, 7, 789–804. [Google Scholar] [CrossRef]
- Gheinani, A.H.; Vögeli, M.; Baumgärtner, U.; Vassella, E.; Draeger, A.; Burkhard, F.C.; Monastyrskaya, K. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep. 2018, 8, 3945. [Google Scholar] [CrossRef]
- Macias, M.; Rebmann, V.; Mateos, B.; Varo, N.; Perez-Gracia, J.L.; Alegre, E.; González, A. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clin. Chem. Lab. Med. 2019, 57, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Stenqvist, A.C.; Nagaeva, O.; Baranov, V.; Mincheva-Nilsson, L. Exosomes Secreted by Human Placenta Carry Functional Fas Ligand and TRAIL Molecules and Convey Apoptosis in Activated Immune Cells, Suggesting Exosome-Mediated Immune Privilege of the Fetus. J. Immunol. 2013, 191, 5515–5523. [Google Scholar] [CrossRef] [PubMed]
- Tannetta, D.; Collett, G.; Vatish, M.; Redman, C.; Sargent, I. Syncytiotrophoblast extracellular vesicles—Circulating biopsies reflecting placental health. Placenta 2017, 52, 134–138. [Google Scholar] [CrossRef]
- Kshirsagar, S.K.; Alam, S.M.; Jasti, S.; Hodes, H.; Nauser, T.; Gilliam, M.; Billstrand, C.; Hunt, J.S.; Petroff, M.G. Immunomodulatory molecules are released from the first trimester and term placenta via exosomes. Placenta 2012, 33, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Nardi, F.D.S.; Michelon, T.F.; Neumann, J.; Manvailer, L.F.S.; Wagner, B.; Horn, P.A.; Graça Bicalho, M.; Rebmann, V. High levels of circulating extracellular vesicles with altered expression and function during pregnancy. Immunobiology 2016, 221, 753–760. [Google Scholar] [CrossRef]
- Southcombe, J.; Tannetta, D.; Redman, C.; Sargent, I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS ONE 2011, 6, e20245. [Google Scholar] [CrossRef]
- Mincheva-Nilsson, L.; Nagaeva, O.; Chen, T.; Stendahl, U.; Antsiferova, J.; Mogren, I.; Hernestål, J.; Baranov, V. Placenta-derived soluble MHC class I chain-related molecules down-regulate NKG2D receptor on peripheral blood mononuclear cells during human pregnancy: A possible novel immune escape mechanism for fetal survival. J. Immunol. 2006, 17, 3585–3592. [Google Scholar] [CrossRef]
- Hedlund, M.; Stenqvist, A.C.; Nagaeva, O.; Kjellberg, L.; Wulff, M.; Baranov, V.; Mincheva-Nilsson, L. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: Evidence for immunosuppressive function. J. Immunol. 2009, 183, 340–351. [Google Scholar] [CrossRef]
- Luo, S.S.; Ishibashi, O.; Ishikawa, G.; Ishikawa, T.; Katayama, A.; Mishima, T.; Takizawa, T.; Shigihara, T.; Goto, T.; Izumi, A.; et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol. Reprod. 2009, 81, 717–729. [Google Scholar] [CrossRef]
- Herrera-Van Oostdam, A.S.; Toro-Ortíz, J.C.; López, J.A.; Noyola, D.E.; García-López, D.A.; Durán-Figueroa, N.V.; Martínez-Martínez, E.; Portales-Pérez, D.P.; Salgado-Bustamante, M.; López-Hernández, Y. Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation. Int. J. Mol. Med. 2020, 46, 546–560. [Google Scholar] [CrossRef]
- Sadovsky, Y.; Mouillet, J.F.; Ouyang, Y.; Bayer, A.; Coyne, C.B. The function of trophomiRs and other microRNAs in the human placenta. Cold Spring Harb. Perspect. Med. 2015, 5, a023036. [Google Scholar] [CrossRef] [PubMed]
- Kambe, S.; Yoshitake, H.; Yuge, K.; Ishida, Y.; Ali, M.M.; Takizawa, T.; Kuwata, T.; Ohkuchi, A.; Matsubara, S.; Suzuki, M.; et al. Human exosomal placenta-associated miR-517a-3p modulates the expression of PRKG1 mRNA in Jurkat cells. Biol. Reprod. 2014, 91, 129. [Google Scholar] [CrossRef] [PubMed]
- Tiozzo, C.; Bustoros, M.; Lin, X.; Manzano De Mejia, C.; Gurzenda, E.; Chavez, M.; Hanna, I.; Aguiari, P.; Perin, L.; Hanna, N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am. J. Obstet. Gynecol. 2021, 225, 681.e1–681.e20. [Google Scholar] [CrossRef] [PubMed]
- Chaiwangyen, W.; Murrieta-Coxca, J.M.; Favaro, R.R.; Photini, S.M.; Gutiérrez-Samudio, R.N.; Schleussner, E.; Markert, U.R.; Morales-Prieto, D.M. MiR-519d-3p in Trophoblastic Cells: Effects, Targets and Transfer to Allogeneic Immune Cells via Extracellular Vesicles. Int. J. Mol. Sci. 2020, 21, 3458. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, X.; Zhu, Y.; Li, L.; Wu, Y.; Ying, J.; Li, Y.; Chen, J. Human Trophoblast Cell-Derived Extracellular Vesicles Facilitate Preeclampsia by Transmitting miR-1273d, miR-4492, and miR-4417 to Target HLA-G. Reprod. Sci. 2022, 29, 2685–2696. [Google Scholar] [CrossRef]
- Cooke, W.R.; Jiang, P.; Ji, L.; Bai, J.; Jones, G.D.; Lo, Y.M.D.; Redman, C.; Vatish, M. Differential 5′-tRNA Fragment Expression in Circulating Preeclampsia Syncytiotrophoblast Vesicles Drives Macrophage Inflammation. Hypertension 2024, 81, 876–886. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, P.; Wang, Z.; Qin, Z.; Xiu, X.; Xu, D.; Zhang, X.; Wang, Y. Mirna-548c-5p downregulates inflammatory response in preeclampsia via targeting ptpro. J. Cell Physiol. 2019, 234, 11149–11155. [Google Scholar] [CrossRef]
- Ailamazyan, E.K. Obstetrics: National Guide; GEOTAR-Media: Moscow, Russia, 2009; p. 764. [Google Scholar]
- Ailamazyan, E.K.; Mozgovaya, E.V. Gestosis: Theory and Practice; MEDpressinform: Moscow, Russia, 2008; p. 272. [Google Scholar]
- Vashukova, E.S.; Glotov, A.S.; Baranov, V.S. MiRNAs Associated with Preeclampsia. Rus. J. Genet. 2020, 56, 5–20. [Google Scholar] [CrossRef]
- Redman, C.W.; Tannetta, D.S.; Dragovic, R.A.; Gardiner, C.; Southcombe, J.H.; Collett, G.P.; Sargent, I.L. Review: Does size matter? Placental debris and the pathophysiology of pre-eclampsia. Placenta 2012, 33, 48–54. [Google Scholar] [CrossRef]
- Biro, O.; Alasztics, B.; Molvarec, A.; Joo, J.; Nagy, B.; Rigo, J. Various levels of circulating exosomal total-miRNA and mir-210 hypoxamir in different forms of pregnancy hypertension. Pregnancy Hypertens. 2017, 10, 207–212. [Google Scholar] [CrossRef]
- Knight, M.; Redman, C.W.; Linton, E.A.; Sargent, I.L. Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br. J. Obs. Gynaecol. 1998, 105, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Pillay, P.; Maharaj, N.; Moodley, J.; Mackraj, I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and early and late onset pre-eclamptic pregnancies. Placenta 2016, 46, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Pillay, P.; Vatish, M.; Duarte, R.; Moodley, J.; Mackraj, I. Exosomal microRNA profiling in early and late onset preeclamptic pregnant women reflects pathophysiology. Int. J. Nanomed. 2019, 14, 5637–5657. [Google Scholar] [CrossRef] [PubMed]
- Motawi, T.M.K.; Sabry, D.; Maurice, N.W.; Rizk, S.M. Role of mesenchymal stem cells exosomes derived microRNAs; miR-136, miR-494 and miR-495 in pre-eclampsia diagnosis and evaluation. Arch. Biochem. Biophys. 2018, 659, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Li, Y.; Li, R.; Diao, Z.; Yany, M.; Wu, M.; Sun, H.; Yan, G.; Hu, Y. Placentaassociated serum exosomal mir155 derived from patients with preeclampsia inhibits enos expression in human umbilical vein endothelial cells. Int. J. Mol. Med. 2018, 41, 1731–1739. [Google Scholar] [CrossRef]
- Hromadnikova, I.; Dvorakova, L.; Kotlabova, K.; Krofta, L. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAS. Int. J. Mol. Sci. 2019, 20, 2972. [Google Scholar] [CrossRef]
- Gill, M.; Motta-Mejia, C.; Kandzija, N.; Cooke, W.; Zhang, W.; Cerdeira, A.S.; Bastie, C.; Redman, C.; Vatish, M. Placental syncytiotrophoblast-derived extracellular vesicles carry active nep (neprilysin) and are increased in preeclampsia. Hypertension 2019, 73, 1112–1119. [Google Scholar] [CrossRef]
- Gilani, S.I.; Anderson, U.D.; Jayachandran, M.; Weissgerber, T.L.; Zand, L.; White, W.M.; Milic, N.; Suarez, M.L.G.; Vallapureddy, R.R.; Nääv, Å.; et al. Urinary extracellular vesicles of podocyte origin and renal injury in preeclampsia. J. Am. Soc. Nephrol. 2017, 28, 3363–3372. [Google Scholar] [CrossRef]
- Hu, C.C.; Katerelos, M.; Choy, S.W.; Crossthwaite, A.; Walker, S.P.; Pell, G.; Lee, M.; Cook, N.; Mount, P.F.; Paizis, K.; et al. Pre-eclampsia is associated with altered expression of the renal sodium transporters nkcc2, ncc and enac in urinary extracellular vesicles. PLoS ONE 2018, 13, e0204514. [Google Scholar] [CrossRef]
- Tan, K.H.; Tan, S.S.; Sze, S.K.; Lee, W.K.; Ng, M.J.; Lim, S.K. Plasma biomarker discovery in preeclampsia using a novel differential isolation technology for circulating extracellular vesicles. Am. J. Obs. Gynecol. 2014, 211, 380.e1–380.e13. [Google Scholar]
- Jia, R.; Li, J.; Rui, C.; Ji, H.; Ding, H.; Lu, Y.; De, W.; Sun, L. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol. Biochem. 2015, 36, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, A.; Gaedechens, D.; Ramírez, V.; Zuñiga, E.; Kusanovic, J.P.; Inostroza, C.; Varas-Godoy, M.; Silva, K.; Salomon, C.; Rice, G.; et al. Placental biomarkers and angiogenic factors in oral fluids of patients with preeclampsia. Prenat. Diagn. 2016, 36, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Sandrim, V.C.; Luizon, M.R.; Palei, A.C.; Tanus-Santos, J.E.; Cavalli, R.C. Circulating microRNA expression profiles in pre-eclampsia: Evidence of increased miR-885-5p levels. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 2120–2128. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Yao, J.; He, Q.; Liu, M.; Duan, T.; Wang, K. Exosomes from women with preeclampsia induced vascular dysfunction by delivering sFlt (soluble Fms-like tyrosine kinase)-1 and sEng (soluble endoglin) to endothelial cells. Hypertension 2018, 72, 1381–1390. [Google Scholar] [CrossRef]
- Han, C.; Wang, C.; Chen, Y.; Wang, J.; Xu, X.; Hilton, T.; Cai, W.; Zhao, Z.; Wu, Y.; Li, K.; et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica 2019, 105, 1686–1694. [Google Scholar] [CrossRef]
- Levine, L.; Habertheuer, A.; Ram, C.; Korutla, L.; Schwartz, N.; Hu, R.W.; Reddy, S.; Freas, A.; Zielinski, P.D.; Harmon, J.; et al. Syncytiotrophoblast extracellular microvesicle profiles in maternal circulation for noninvasive diagnosis of preeclampsia. Sci. Rep. 2020, 10, 6398. [Google Scholar] [CrossRef]
- Rajakumar, A.; Cerdeira, A.S.; Rana, S.; Zsengeller, Z.; Edmunds, L.; Jeyabalan, A.; Hubel, C.A.; Stillman, I.E.; Parikh, S.M.; Karumanchi, S.A. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine Kinase 1 in preeclampsia. Hypertension 2012, 59, 256–264. [Google Scholar] [CrossRef]
- Baig, S.; Kothandaraman, N.; Manikandan, J.; Rong, L.; Ee, K.H.; Hill, J.; Lai, C.W.; Tan, W.Y.; Yeoh, F.; Kale, A.; et al. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin. Proteom. 2014, 11, 40. [Google Scholar] [CrossRef]
- Vanwijk, M.J.; Svedas, E.; Boer, K.; Nieuwland, R.; Vanbavel, E.; Kublickiene, K.R. Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from healthy pregnant women. Am. J. Obstet. Gynecol. 2002, 187, 1686–1693. [Google Scholar] [CrossRef]
- Meziani, F.; Tesse, A.; David, E.; Martinez, M.C.; Wangesteen, R.; Schneider, F.; Andriantsitohaina, R. Shed membrane particles from preeclamptic women generate vascular wall inflammation and blunt vascular contractility. Am. J. Pathol. 2006, 169, 1473–1483. [Google Scholar] [CrossRef]
- Biró, E.; Lok, C.A.; Hack, C.E.; van der Post, J.A.; Schaap, M.C.; Sturk, A.; Nieuwland, R. Cell-derived microparticles and complement activation in preeclampsia versus normal pregnancy. Placenta 2007, 28, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.A.; Boing, A.N.; Sargent, I.L.; Sooranna, S.R.; van der Post, J.A.; Nieuwland, R.; Sturk, A. Circulating platelet-derived and placenta-derived microparticles expose Flt-1 in preeclampsia. Reprod. Sci. 2008, 15, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.A.; Jebbink, J.; Nieuwland, R.; Faas, M.M.; Boer, K.; Sturk, A.; Van Der Post, J.A. Leukocyte activation and circulating leukocyte-derived microparticles in preeclampsia. Am. J. Reprod. Immunol. 2009, 61, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.A.; Snijder, K.S.; Nieuwland, R.; Van Der Post, J.A.; de Vos, P.; Faas, M.M. Microparticles of pregnant women and preeclamptic patients activate endothelial cells in the presence of monocytes. Am. J. Reprod. Immunol. 2012, 67, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, Y.; Jiang, R.; Teng, Y. Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int. J. Gynaecol. Obstet. 2012, 119, 234–238. [Google Scholar] [CrossRef]
- González-Quintero, V.H.; Smarkusky, L.P.; Jiménez, J.J.; Mauro, L.M.; Jy, W.; Hortsman, L.L.; O’Sullivan, M.J.; Ahn, Y.S. Elevated plasma endothelial microparticles: Preeclampsia versus gestational hypertension. Am. J. Obs. Gynecol. 2004, 191, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Goswamia, D.; Tannetta, D.S.; Magee, L.A.; Fuchisawa, A.; Redman, C.W.G.; Sargent, I.L.; von Dadelszen, P. Excess Syncytiotrophoblast Microparticle Shedding Is a Feature of Early-Onset Pre-Eclampsia, but Not Normotensive Intrauterine Growth Restriction. Placenta 2006, 27, 56–61. [Google Scholar] [CrossRef]
- Alijotas-Reig, J.; Palacio-Garcia, C.; Farran-Codina, I.; Ruiz-Romance, M.; Llurba, E.; Vilardell-Tarres, M. Circulating cell-derived microparticles in severe preeclampsia and in fetal growth restriction. Am. J. Reprod. Immunol. 2012, 67, 140–151. [Google Scholar] [CrossRef]
- Marques, F.K.; Campos, F.M.; Filho, O.A.; Carvalho, A.T.; Dusse, L.M.; Gomes, K.B. Circulating microparticles in severe preeclampsia. Clin. Chim. Acta 2012, 414, 253–258. [Google Scholar] [CrossRef]
- Petrozella, L.; Mahendroo, M.; Timmons, B.; Roberts, S.; McIntire, D.; Alexander, J.M. Endothelial microparticles and the antiangiogenic state in preeclampsia and the postpartum period. Am. J. Obstet. Gynecol. 2012, 207, 140.e20–140.e26. [Google Scholar] [CrossRef]
- Mikhailova, V.A.; Ovchinnikova, O.M.; Zainulina, M.S.; Sokolov, D.I.; Sel’kov, S.A. Detection of Microparticles of Leukocytic Origin in the Peripheral Blood in Normal Pregnancy and Preeclampsia. Bull. Exp. Biol. Med. 2014, 157, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Campello, E.; Spiezia, L.; Radu, C.M.; Dhima, S.; Visentin, S.; Valle, F.D.; Tormene, D.; Woodhams, B.; Cosmi, E.; Simioni, P. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb. Res. 2015, 136, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, D.I.; Ovchinnikova, O.M.; Korenkov, D.A.; Viknyanschuk, A.N.; Benken, K.A.; Onokhin, K.V.; Selkov, S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res. 2016, 170, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.; Kamal, S.; El Sherbiny, W.; Abdel Aal, A.A. Flow cytometric assessment of endothelial and platelet microparticles in preeclampsia and their relation to disease severity and Doppler parameters. Hematology 2015, 20, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Motta-Mejia, C.; Kandzija, N.; Zhang, W.; Mhlomi, V.; Cerdeira, A.S.; Burdujan, A.; Tannetta, D.; Dragovic, R.; Sargent, I.L.; Redman, C.W. Placental vesicles carry active endothelial nitric oxide synthase and their activity is reduced in preeclampsia. Hypertension 2017, 70, 372–381. [Google Scholar] [CrossRef]
- Ellis, R.; Katerelos, M.; Choy, S.W.; Cook, N.; Lee, M.; Paizis, K.; Pell, G.; Walker, S.; Power, D.A.; Mount, P.F. Increased expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isoforms in urinary exosomes in pre-eclampsia. J. Transl. Med. 2019, 17, 60. [Google Scholar] [CrossRef]
- Xu, J.; Jia, X.; Gu, Y.; Lewis, D.F.; Gu, X.; Wang, Y. Vitamin D reduces oxidative stress-induced procaspase-3/ROCK1 activation and MP release by placental trophoblasts. J. Clin. Endocrinol. Metab. 2017, 102, 2100–2110. [Google Scholar] [CrossRef]
- Biro, O.; Fóthi, Á.; Alasztics, B.; Nagy, B.; Orban, T.I.; Rigo, J., Jr. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene 2019, 692, 138–144. [Google Scholar] [CrossRef]
- Jadli, A.; Ghosh, K.; Satoskar, P.; Damania, K.; Bansal, V.; Shetty, S. Combination of copeptin, placental growth factor and total annexin V microparticles for prediction of preeclampsia at 10–14 weeks of gestation. Placenta 2017, 58, 67–73. [Google Scholar] [CrossRef]
- Zhu, X.M.; Han, T.; Sargent, I.L.; Yin, G.W.; Yao, Y.Q. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs. normal pregnancies. Am. J. Obstet. Gynecol. 2009, 200, 661.e1–661.e7. [Google Scholar] [CrossRef]
- Tkachenko, A.; Illarionov, R.; Vashukova, E.; Glotov, A. Publication-based analysis of miR-210 dependent biomarkers of pre-eclampsia. Biol. Commun. 2020, 65, 163–177. [Google Scholar] [CrossRef]
- Zhang, Y.; Fei, M.; Xue, G.; Zhou, Q.; Jia, Y.; Li, L.; Xin, H.; Sun, S. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: New insights into molecular mechanisms for the disease. J. Cell Mol. Med. 2012, 16, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Loscalzo, J. MicroRNA-210: A unique and pleiotropic hypoxamir. Cell Cycle 2010, 9, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Treacy, R.; Herrero, T.; Olsen, R.; Leonardo, T.R.; Zhang, X.; DeHoff, P.; To, C.; Poling, L.G.; Fernando, A.; et al. Discovery and Verification of Extracellular miRNA Biomarkers for Non-invasive Prediction of Pre-eclampsia in Asymptomatic Women. Cell Rep. Med. 2020, 1, 100013. [Google Scholar] [CrossRef]
- World Health Organisation. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: A World Health Organization guideline. Diabetes Res. Clin. Pract. 2014, 103, 341–363. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Elise Powe, C.; Immanuel, J.; Karuranga, S.; et al. IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s Criteria. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- Song, C.; Lyu, Y.; Li, C.; Liu, P.; Li, J.; Ma, R.C.; Yang, X. Long-term risk of diabetes in women at varying durations after gestational diabetes: A systematic review and meta-analysis with more than 2 million women. Obes. Rev. 2018, 19, 421–429. [Google Scholar] [CrossRef]
- Plows, J.F.; Stanley, J.L.; Baker, P.N.; Reynolds, C.M.; Vickers, M.H. The Pathophysiology of Gestational Diabetes Mellitus. Int. J. Mol. Sci. 2018, 19, 3342. [Google Scholar] [CrossRef]
- Nair, S.; Jayabalan, N.; Guanzon, D.; Palma, C.; Scholz-Romero, K.; Elfeky, O.; Zuñiga, F.; Ormazabal, V.; Diaz, E.; Rice, G.E.; et al. Human placental exosomes in gestational diabetes mellitus carry a specific set of mirnas associated with skeletal muscle insulin sensitivity. Clin. Sci. 2018, 132, 2451–2467. [Google Scholar] [CrossRef]
- Jayabalan, N.; Lai, A.; Nair, S.; Guanzon, D.; Scholz-Romero, K.; Palma, C.; McIntyre, H.D.; Lappas, M.; Salomon, C. Quantitative Proteomics by SWATH-MS Suggest an Association Between Circulating Exosomes and Maternal Metabolic Changes in Gestational Diabetes Mellitus. Proteomics 2018, 19, e1800164. [Google Scholar] [CrossRef]
- Salomon, C.; Scholz-Romero, K.; Sarker, S.; Sweeney, E.; Kobayashi, M.; Correa, P.; Longo, S.; Duncombe, G.; Mitchell, M.D.; Rice, G.E.; et al. Gestational diabetes mellitus is associated with changes in the concentration and bioactivity of placenta-derived exosomes in maternal circulation across gestation. Diabetes 2016, 65, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, L.J.; Varas-Godoy, M.; Monckeberg, M.; Realini, O.; Hernández, M.; Rice, G.; Romero, R.; Saavedra, J.F.; Illanes, S.E.; Chaparro, A. Oral extracellular vesicles in early pregnancy can identify patients at risk of developing gestational diabetes mellitus. PLoS ONE 2019, 14, e0218616. [Google Scholar] [CrossRef] [PubMed]
- Gillet, V.; Ouellet, A.; Stepanov, Y.; Rodosthenous, R.S.; Croft, E.K.; Brennan, K.; Abdelouahab, N.; Baccarelli, A.; Takser, L. Microrna profiles in extracellular vesicles from serum early in pregnancies complicated by gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2019, 104, 5157–5169. [Google Scholar] [CrossRef] [PubMed]
- Kandzija, N.; Zhang, W.; Motta-Mejia, C.; Mhlomi, V.; McGowan-Downey, J.; James, T.; Cerdeira, A.S.; Tannetta, D.; Sargent, I.; Redman, C.W.; et al. Placental extracellular vesicles express active dipeptidyl peptidase iv; levels are increased in gestational diabetes mellitus. J. Extracell. Vesicles 2019, 8, 1617000. [Google Scholar] [CrossRef]
- Arias, M.; Monteiro, L.J.; Acuña-Gallardo, S.; Varas-Godoy, M.; Rice, G.E.; Monckeberg, M.; Díaz, P.; Illanes, S.E. Extracellular vesicle concentration in maternal plasma as an early marker of gestational diabetes. Rev. Med. Chil. 2019, 147, 1503–1509. [Google Scholar] [CrossRef]
- James-Allan, L.B.; Rosario, F.J.; Barner, K.; Lai, A.; Guanzon, D.; McIntyre, H.D.; Lappas, M.; Powell, T.L.; Salomon, C.; Jansson, T. Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 5724–5739. [Google Scholar] [CrossRef]
- Franzago, M.; Lanuti, P.; Fraticelli, F.; Marchioni, M.; Buca, D.; Di Nicola, M.; Liberati, M.; Miscia, S.; Stuppia, L.; Vitacolonna, E. Biological insight into the extracellular vesicles in women with and without gestational diabetes. J. Endocrinol. Investig. 2021, 44, 49–61. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, L.; Lin, Y.; Li, Z.; Xu, J.; Shi, Z.; Chen, Z.; Ma, J.; Wen, J. Circular RNA expression profiles in umbilical cord blood exosomes from normal and gestational diabetes mellitus patients. Biosci. Rep. 2020, 40, BSR20201946. [Google Scholar] [CrossRef]
- Jayabalan, N.; Lai, A.; Ormazabal, V.; Adam, S.; Guanzon, D.; Palma, C.; Scholz-Romero, K.; Lim, R.; Jansson, T.; McIntyre, H.D.; et al. Adipose tissue exosomal proteomic profile reveals a role on placenta glucose metabolism in gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2019, 104, 1735–1752. [Google Scholar] [CrossRef]
- Ramachandrarao, S.P.; Hamlin, A.A.; Awdishu, L.; Overcash, R.; Zhou, M.; Proudfoot, J.; Ishaya, M.; Aghania, E.; Madrigal, A.; Kokoy-Mondragon, C.; et al. Proteomic analyses of urine exosomes reveal new biomarkers of diabetes in pregnancy. Madridge J. Diabetes 2016, 1, 11–22. [Google Scholar] [CrossRef]
- Shah, K.B.; Chernausek, S.D.; Teague, A.M.; Bard, D.E.; Tryggestad, J.B. Maternal diabetes alters microRNA expression in fetal exosomes, human umbilical vein endothelial cells and placenta. Pediatr. Res. 2021, 89, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Khodzhaeva, Z.S.; Abramova, M.E.; Muminova, K.M.; Gorina, K.A.; Frolova, E.R.; Goryunov, K.V.; Silachev, D.N.; Shevtsova, Y.A. The role of plasma extracellular vesicles as predictors of gestational diabetes mellitus in the first trimester of pregnancy. Akusherstvo I Ginekol./Obstet. Gynecol. 2022, 4, 76–83. (In Russian) [Google Scholar] [CrossRef]
- Beune, I.M.; Bloomfield, F.H.; Ganzevoort, W.; Embleton, N.D.; Rozance, P.J.; van Wassenaer-Leemhuis, A.G.; Wynia, K.; Gordijn, S.J. Consensus based definition of growth restriction in the newborn. J. Pediatr. 2018, 196, 71–76. [Google Scholar] [CrossRef]
- Miranda, J.; Paules, C.; Nair, S.; Lai, A.; Palma, C.; Scholz-Romero, K.; Rice, G.E.; Gratacos, E.; Crispi, F.; Salomon, C. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction—Liquid biopsies to monitoring fetal growth. Placenta 2018, 64, 34–43. [Google Scholar] [CrossRef]
- Rodosthenous, R.S.; Burris, H.H.; Sanders, A.P.; Just, A.C.; Dereix, A.E.; Svensson, K.; Solano, M.; Téllez-Rojo, M.M.; Wright, R.O.; Baccarelli, A.A. Second trimester extracellular microRNAs in maternal blood and fetal growth: An exploratory study. Epigenetics 2017, 12, 804–810. [Google Scholar] [CrossRef]
- Klemetti, M.M.; Pettersson, A.B.V.; Ahmad Khan, A.; Ermini, L.; Porter, T.R.; Litvack, M.L.; Alahari, S.; Zamudio, S.; Illsley, N.P.; Röst, H.; et al. Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. J. Extracell. Vesicles 2024, 13, 2, Erratum in J. Extracell. Vesicles 2024, 13, e12443. https://doi.org/10.1002/jev2.12443. PMID: 38353485; PMCID: PMC10865917. [Google Scholar] [CrossRef]
- Mikayelyan, A.G.; Marey, M.V.; Bulatova, Y.S.; Tetruashvili, N.K.; Vysokikh, M.Y. The Study of the Relationship Between Blood Microvesicle Structure in Pregnant Women with Subsequent Placenta-Associated Complications. Doctor Ru 2022, 21, 6–12. (In Russian) [Google Scholar] [CrossRef]
- IIto, M.; Sferruzzi-Perri, A.N.; Edwards, C.A.; Adalsteinsson, T.; Allen, S.E.; Loo, T.H.; Kitazawa, M.; Kaneko-Ishino, T.; Ishino, F.; Stewart, C.L.; et al. A trans-homologue interaction between reciprocally imprinted miR-127 and Rtl1 regulates placenta development. Development 2015, 142, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, M.; Chen, Z.; Xu, L.; Chang, M.; Wang, K.; Deng, C.; Gu, Y.; Zhou, S.; Shen, Y.; et al. Biogenesis and Function of Extracellular Vesicles in Pathophysiological Processes of Skeletal Muscle Atrophy. Biochem. Pharmacol. 2022, 198, 114954. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.B.; Kinney, M.; Lawn, J. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod. Health 2013, 10, S2. [Google Scholar] [CrossRef]
- Illarionov, R.A.; Pachuliia, O.V.; Vashukova, E.S.; Tkachenko, A.A.; Maltseva, A.R.; Postnikova, T.B.; Nasykhova, Y.A.; Bespalova, O.N.; Glotov, A.S. Plasma miRNA Profile in High Risk of Preterm Birth during Early and Mid-Pregnancy. Genes 2022, 13, 2018. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Dixon, C.L.; Sheller-Miller, S.; Fortunato, S.J.; Saade, G.R.; Palma, C.; Lai, A.; Guanzon, D.; Salomon, C. Quantitative proteomics by swath-ms of maternal plasma exosomes determine pathways associated with term and preterm birth. Endocrinology 2019, 160, 639–650. [Google Scholar] [CrossRef] [PubMed]
- McElrath, T.F.; Cantonwine, D.E.; Jeyabalan, A.; Doss, R.C.; Page, G.; Roberts, J.M.; Brohman, B.; Zhang, Z.; Rosenblatt, K.P. Circulating microparticle proteins obtained in the late first trimester predict spontaneous preterm birth at less than 35 weeks’ gestation: A panel validation with specific characterization by parity. Am. J. Obs. Gynecol. 2019, 220, 488.e1–488.e11. [Google Scholar] [CrossRef] [PubMed]
- Fallen, S.; Baxter, D.; Wu, X.; Kim, T.K.; Shynlova, O.; Lee, M.Y.; Scherler, K.; Lye, S.; Hood, L.; Wang, K. Extracellular vesicle RNAs reflect placenta dysfunction and are a biomarker source for preterm labour. J. Cell Mol. Med. 2018, 22, 2760–2773. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.Y.; Rho, M.; You, Y.A.; Kwon, E.J.; Kim, M.H.; Kym, S.; Jee, Y.K.; Kim, Y.K.; Kim, Y.J. 16s rRNA gene-based metagenomic analysis reveals differences in bacteria-derived extracellular vesicles in the urine of pregnant and non-pregnant women. Exp. Mol. Med. 2016, 48, e208. [Google Scholar] [CrossRef]
- Cantonwine, D.E.; Zhang, Z.; Rosenblatt, K.; Goudy, K.S.; Doss, R.C.; Ezrin, A.M.; Page, G.; Brohman, B.; McElrath, T.F. Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth. Am. J. Obs. Gynecol. 2016, 214, 631.e1–631.e11. [Google Scholar] [CrossRef]
- Ezrin, A.M.; Brohman, B.; Willmot, J.; Baxter, S.; Moore, K.; Luther, M.; Fannon, M.R.; Sibai, B. Circulating serum-derived microparticles provide novel proteomic biomarkers of spontaneous preterm birth. Am. J. Perinatol. 2015, 32, 605–614. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, A.K.; Vashukova, E.S.; Illarionov, R.A.; Maltseva, A.R.; Pachuliia, O.V.; Postnikova, T.B.; Glotov, A.S. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int. J. Mol. Sci. 2024, 25, 11944. https://doi.org/10.3390/ijms252211944
Popova AK, Vashukova ES, Illarionov RA, Maltseva AR, Pachuliia OV, Postnikova TB, Glotov AS. Extracellular Vesicles as Biomarkers of Pregnancy Complications. International Journal of Molecular Sciences. 2024; 25(22):11944. https://doi.org/10.3390/ijms252211944
Chicago/Turabian StylePopova, Anastasiia K., Elena S. Vashukova, Roman A. Illarionov, Anastasia R. Maltseva, Olga V. Pachuliia, Tatiana B. Postnikova, and Andrey S. Glotov. 2024. "Extracellular Vesicles as Biomarkers of Pregnancy Complications" International Journal of Molecular Sciences 25, no. 22: 11944. https://doi.org/10.3390/ijms252211944
APA StylePopova, A. K., Vashukova, E. S., Illarionov, R. A., Maltseva, A. R., Pachuliia, O. V., Postnikova, T. B., & Glotov, A. S. (2024). Extracellular Vesicles as Biomarkers of Pregnancy Complications. International Journal of Molecular Sciences, 25(22), 11944. https://doi.org/10.3390/ijms252211944