Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients?
Abstract
:1. Introduction
2. Acute Kidney Injury—Definition, Classification, Epidemiology, and Clinical Outcomes
3. Novel Biomarkers—A Promising Alternative in Acute Kidney Injury Prediction and Diagnosis
3.1. Neuthrophil Gelatinase-Associated Lipocalin (NGAL)
3.2. Cystatin C (CysC)
3.3. Kidney Injury Molecule-1 (KIM-1)
3.4. Urinary Insulin-like Growth Factor-Binding Protein 7 and Tissue Inhibitor Metalloproteinase 2 (TIMP2*IGFBP7)
3.5. Proenkephalin (PENK)
3.6. Liver-Type Fatty Acid-Binding Protein (L-FABP)
4. Novel Biomarkers in AKI Prediction and Diagnosis in Liver Transplant Recipients
5. Novel Biomarkers in AKI Prediction and Diagnosis in Kidney Transplant Recipients
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sakai, T. Acute kidney injury after adult liver transplantation—Doesn’t intraoperative management matter? Liver Transplant. 2022, 28, 1131–1132. [Google Scholar] [CrossRef]
- de Haan, J.E.; Hoorn, E.J.; de Geus, H.R.H. Acute kidney injury after liver transplantation: Recent insights and future perspectives. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 161–169. [Google Scholar] [CrossRef]
- Umbro, I.; Tinti, F.; Scalera, I.; Evison, F.; Gunson, B.; Sharif, A.; Ferguson, J.; Muiesan, P.; Mitterhofer, A.P. Acute kidney injury and post-reperfusion syndrome in liver transplantation. World J. Gastroenterol. 2016, 22, 9314. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, A.; Gandolfini, I.; Delsante, M.; Cantarelli, C.; Fiaccadori, E.; Cravedi, P.; Maggiore, U. Acute Kidney Injury (AKI) before and after Kidney Transplantation: Causes, Medical Approach, and Implications for the Long-Term Outcomes. J. Clin. Med. 2021, 10, 1484. [Google Scholar] [CrossRef] [PubMed]
- Dong, V.; Nadim, M.K.; Karvellas, C.J. Post–Liver Transplant Acute Kidney Injury. Liver Transplant. 2021, 27, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Albert, C.; Haase, M.; Albert, A.; Zapf, A.; Braun-Dullaeus, R.C.; Haase-Fielitz, A. Biomarker-Guided Risk Assessment for Acute Kidney Injury: Time for Clinical Implementation? Ann. Lab. Med. 2021, 41, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cleary, C.; Sanz, A.B.; Avello, A.; Sanchez-Niño, M.D.; Ortiz, A. NephroCheck at 10: Addressing unmet needs in AKI diagnosis and risk stratification. Clin. Kidney J. 2023, 16, 1359–1366. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Bellomo, R. Cystatin C in acute kidney injury. Curr. Opin. Crit. Care 2010, 16, 533–539. [Google Scholar] [CrossRef]
- McCullough, P.A.; Shaw, A.D.; Haase, M.; Bouchard, J.; Waikar, S.S.; Siew, E.D.; Murray, P.T.; Mehta, R.L.; Ronco, C. Diagnosis of Acute Kidney Injury Using Functional and Injury Biomarkers: Workgroup Statements from the Tenth Acute Dialysis Quality Initiative Consensus Conference. In ADQI Consensus on AKI Biomarkers and Cardiorenal Syndromes; Karger: Basel, Switzerland, 2013; pp. 13–29. [Google Scholar]
- Lewandowska, L.; Małyszko, J.; Joanna Matuszkiewicz-Rowińska, J. Urinary and Serum Biomarkers for Prediction of Acute Kidney Injury in Patients Undergoing Liver Transplantation. Ann. Transplant. 2019, 24, 291–297. [Google Scholar] [CrossRef]
- Asrani, S.K.; Shankar, N.; da Graca, B.; Nadim, M.K.; Cardenas, A. Role of Novel Kidney Biomarkers in Patients with Cirrhosis and after Liver Transplantation. Liver Transplant. 2022, 28, 466–482. [Google Scholar] [CrossRef]
- Mogawer, M.; El-Rahman El-Shazly, M.; Ali, A.; Abd El-Ghany, A.; Elhamid, S. Novel biomarkers of acute kidney injury following living donor liver transplantation. Saudi J. Kidney Dis. Transplant. 2020, 31, 360. [Google Scholar] [CrossRef]
- Basta-Jovanovic, G.; Bogdanovic, L.; Radunovic, M.; Prostran, M.; Naumovic, R.; Simic-Ogrizovic, S.; Radojevic-Skodric, S. Acute Renal Failure—A Serious Complication in Patients after Kidney Transplantation. Curr. Med. Chem. 2016, 23, 2012–2017. [Google Scholar] [CrossRef]
- Koo, T.Y.; Jeong, J.C.; Lee, Y.; Ko, K.-P.; Lee, K.-B.; Lee, S.; Park, S.J.; Park, J.B.; Han, M.; Lim, H.J.; et al. Pre-transplant Evaluation of Donor Urinary Biomarkers can Predict Reduced Graft Function after Deceased Donor Kidney Transplantation. Medicine 2016, 95, e3076. [Google Scholar] [CrossRef]
- Shi, K.; Jiang, W.; Song, L.; Li, X.; Zhang, C.; Li, L.; Feng, Y.; Yang, J.; Wang, T.; Wang, H.; et al. Persistent acute kidney injury biomarkers: A systematic review and meta-analysis. Clin. Chim. Acta 2025, 564, 119907. [Google Scholar] [CrossRef]
- Khorashadi, M.; Beunders, R.; Pickkers, P.; Legrand, M. Proenkephalin: A New Biomarker for Glomerular Filtration Rate and Acute Kidney Injury. Nephron 2020, 144, 655–661. [Google Scholar] [CrossRef]
- Lima, C.; Gorab, D.L.; Fernandes, C.R.; Macedo, E. Role of proenkephalin in the diagnosis of severe and subclinical acute kidney injury during the perioperative period of liver transplantation. Pract. Lab. Med. 2022, 31, e00278. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.; Steines, L.; Müller, K.; Zeman, F.; Findeisen, P.; Banas, B.; Bergler, T. Dickkopf 3—A New Indicator for the Deterioration of Allograft Function after Kidney Transplantation. Front. Med. 2022, 9, 885018. [Google Scholar] [CrossRef]
- International Society of Nephrology. Summary of Recommendation Statements. Kidney Int. Suppl. 2012, 2, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute kidney injury. Nat. Rev. Dis. Prim. 2021, 7, 52. [Google Scholar] [CrossRef]
- Ricci, Z.; Cruz, D.N.; Ronco, C. Classification and staging of acute kidney injury: Beyond the RIFLE and AKIN criteria. Nat. Rev. Nephrol. 2011, 7, 201–208. [Google Scholar] [CrossRef]
- Abdel-Rahman, E.M.; Turgut, F.; Gautam, J.K.; Gautam, S.C. Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond. J. Clin. Med. 2021, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- Singbartl, K.; Kellum, J.A. AKI in the ICU: Definition, epidemiology, risk stratification, and outcomes. Kidney Int. 2012, 81, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Hapca, S.; Siddiqui, M.K.; Kwan, R.S.Y.; Lim, M.; Matthew, S.; Doney, A.S.F.; Pearson, E.R.; Palmer, C.N.A.; Bell, S. The Relationship between AKI and CKD in Patients with Type 2 Diabetes: An Observational Cohort Study. J. Am. Soc. Nephrol. 2021, 32, 138–150. [Google Scholar] [CrossRef] [PubMed]
- James, M.T.; Grams, M.E.; Woodward, M.; Elley, C.R.; Green, J.A.; Wheeler, D.C.; de Jong, P.; Gansevoort, R.T.; Levey, A.S.; Warnock, D.G.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension with Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, K.; Kaniewska, M.; Rosołowski, M.; Rydzewska, G. Gastrointestinal symptoms in COVID-19. Gastroenterol. Rev. 2023, 18, 61–66. [Google Scholar] [CrossRef]
- Hilton, J.; Boyer, N.; Nadim, M.K.; Forni, L.G.; Kellum, J.A. COVID-19 and Acute Kidney Injury. Crit. Care Clin. 2022, 38, 473–489. [Google Scholar] [CrossRef]
- Xiong, J.; Pu, L.; Xiong, H.; Xiang, P.; Zhang, M.; Liu, J.; Li, A. Evaluation of the criteria of hepatorenal syndrome type of acute kidney injury in patients with cirrhosis admitted to ICU. Scand. J. Gastroenterol. 2018, 53, 1590–1596. [Google Scholar] [CrossRef]
- Nath, C.K.; Rajkhowa, P.; Barman, B.; Barman, H.; Dutta, A.; Pala, S.; Bora, K.; Ahmed, F.; Boruah, P.; Baruah, A. Plasma neutrophil gelatinase-associated lipocalin (NGAL). J. Fam. Med. Prim. Care 2022, 11, 3681–3686. [Google Scholar] [CrossRef]
- Abbas, Q.; Laghari, P.; Jurair, H.; Nafis, J.; Saeed, B.; Qazi, M.F.; Saleem, A.; Khan, A.H.H.; Haque, A. Neutrophil Gelatinase-Associated Lipocalin as a Predictor of Acute Kidney Injury in Children with Shock: A Prospective Study. Cureus 2023, 15, e34407. [Google Scholar] [CrossRef]
- Højagergaard, M.A.; Beske, R.P.; Hassager, C.; Holmvang, L.; Jensen, L.O.; Shacham, Y.; Meyer, M.A.S.; Moeller, J.E.; Helgestad, O.K.L.; Mark, P.D.; et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with ST-Elevation Myocardial Infarction and Its Association with Acute Kidney Injury and Mortality. J. Clin. Med. 2023, 12, 3681. [Google Scholar] [CrossRef]
- Soyler, C.; Tanriover, M.D.; Ascioglu, S.; Aksu, N.M.; Arici, M. Urine neutrophil gelatinase-associated lipocalin levels predict acute kidney injury in acute decompensated heart failure patients. Ren. Fail. 2015, 37, 772–776. [Google Scholar] [CrossRef] [PubMed]
- Dankova, M.; Minarikova, Z.; Danko, J.; Gergel, J.; Pontuch, P.; Goncalvesova, E. Novel biomarkers for prediction of acute kidney injury in acute heart failure. Bratisl. Med. J. 2020, 121, 321–324. [Google Scholar] [CrossRef]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rudolf, H.; Rohn, B.; Bauer, F.; Timmesfeld, N.; Trappe, H.-J.; Babel, N.; Westhoff, T.H. Biomarkers in the prediction of contrast media induced nephropathy—The BITCOIN study. PLoS ONE 2020, 15, e0234921. [Google Scholar] [CrossRef] [PubMed]
- Allegretti, A.S.; Parada, X.V.; Endres, P.; Zhao, S.; Krinsky, S.; Hillien, S.A.S.; Kalim, S.; Nigwekar, S.U.; Flood, J.G.; Nixon, A.; et al. Urinary NGAL as a Diagnostic and Prognostic Marker for Acute Kidney Injury in Cirrhosis: A Prospective Study. Clin. Transl. Gastroenterol. 2021, 12, e00359. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ge, B.; Liu, Y.; Feng, J. The efficacy of biomarkers in the diagnosis of acute kidney injury secondary to liver cirrhosis. Medicine 2021, 100, e25411. [Google Scholar] [CrossRef] [PubMed]
- Vijay, P.; Lal, B.B.; Sood, V.; Khanna, R.; Alam, S. Cystatin C: Best biomarker for acute kidney injury and estimation of glomerular filtration rate in childhood cirrhosis. Eur. J. Pediatr. 2021, 180, 3287–3295. [Google Scholar] [CrossRef]
- Wan, Z.-H. Cystatin C is a biomarker for predicting acute kidney injury in patients with acute-on-chronic liver failure. World J. Gastroenterol. 2013, 19, 9432. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Du, L.; Wan, J.; Li, X. Serum Cystatin C Predicts AKI and the Prognosis of Patients in Coronary Care Unit: A Prospective, Observational Study. Kidney Blood Press. Res. 2017, 42, 961–973. [Google Scholar] [CrossRef]
- Chai, X.; Huang, H.-B.; Feng, G.; Cao, Y.-H.; Cheng, Q.-S.; Li, S.-H.; He, C.-Y.; Lu, W.-H.; Qin, M.-M. Baseline Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Dis. Markers 2018, 2018, 8431219. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Han, F.; Pan, J.; Yao, G.; Wang, Y.; Xu, S.; Xiao, W.; Ding, Y.; Xu, C. Serum Cys C predicts acute kidney injury in patients with acute pancreatitis: A retrospective study. Arab J. Gastroenterol. 2023, 24, 238–244. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, P.; Zhang, J.; Tian, R.; Jin, W.; Xie, H.; Du, J.; Zhou, Z.; Wang, R. Biomarkers for the diagnosis of sepsis-associated acute kidney injury: Systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 4159–4173. [Google Scholar] [CrossRef] [PubMed]
- Carvalho Pedrosa, D.; Macedo de Oliveira Neves, F.; Cavalcante Meneses, G.; Pinheiro Gomes Wirtzbiki, G.; da Costa Moraes, C.A.; Costa Martins, A.M.; Braga Libório, A. Urinary KIM-1 in children undergoing nephrotoxic antineoplastic treatment: A prospective cohort study. Pediatr. Nephrol. 2015, 30, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Li, L.P.; Zeng, Z.; Mu, J.X.; Yang, X.; Zhou, C.; Wang, Z.L.; Zhang, H. Value of urinary KIM-1 and NGAL combined with serum Cys C for predicting acute kidney injury secondary to decompensated cirrhosis. Sci. Rep. 2018, 8, 7962. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Scherzer, R.; Shlipak, M.G.; Madden, E.; Vittinghoff, E.; Tse, W.; Parikh, C.R.; Villalobos, C.P.C.; Monroy-Trujillo, J.M.; Moore, R.D.; et al. Ambulatory urine biomarkers associations with acute kidney injury and hospitalization in people with HIV. AIDS 2023, 37, 2339–2348. [Google Scholar] [CrossRef]
- Assadi, F.; Sharbaf, F.G. Urine KIM-1 as a Potential Biomarker of Acute Renal Injury after Circulatory Collapse in Children. Pediatr. Emerg. Care 2019, 35, 104–107. [Google Scholar] [CrossRef]
- Vandenberghe, W.; Van Laethem, L.; Herck, I.; Peperstraete, H.; Schaubroeck, H.; Zarbock, A.; Meersch, M.; Dhondt, A.; Delanghe, S.; Vanmassenhove, J.; et al. Prediction of cardiac surgery associated—Acute kidney injury (CSA-AKI) by healthcare professionals and urine cell cycle arrest AKI biomarkers [TIMP-2]*[IGFBP7]: A single center prospective study (the PREDICTAKI trial). J. Crit. Care 2022, 67, 108–117. [Google Scholar] [CrossRef]
- Titeca-Beauport, D.; Daubin, D.; Chelly, J.; Zerbib, Y.; Brault, C.; Diouf, M.; Slama, M.; Vinsonneau, C.; Klouche, K.; Maizel, J. The urine biomarkers TIMP2 and IGFBP7 can identify patients who will experience severe acute kidney injury following a cardiac arrest: A prospective multicentre study. Resuscitation 2019, 141, 104–110. [Google Scholar] [CrossRef]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Jia, H.-M.; Zheng, X.; Jiang, Y.-J.; Xin, X.; Li, W.-X. Association between the levels of urinary cell cycle biomarkers and non-recovery of renal function among critically ill geriatric patients with acute kidney injury. Ren. Fail. 2024, 46, 2304099. [Google Scholar] [CrossRef]
- Safadi, S.; Hommos, M.S.; Thongprayoon, C.; Giesen, C.D.; Bernaba, M.; Kashani, K.B.; Lieske, J.C. The role of biomarkers in early identification of acute kidney injury among non-critically ill patients. J. Nephrol. 2024, 37, 1327–1338. [Google Scholar] [CrossRef]
- Palmowski, L.; Lindau, S.; Henk, L.C.; Marko, B.; Witowski, A.; Nowak, H.; Stoll, S.E.; Zacharowski, K.; Böttiger, B.W.; Peters, J.; et al. Predictive enrichment for the need of renal replacement in sepsis-associated acute kidney injury: Combination of furosemide stress test and urinary biomarkers TIMP-2 and IGFBP-7. Ann. Intensive Care 2024, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Chui, H.; McMahon, K.R.; Rassekh, S.R.; Schultz, K.R.; Blydt-Hansen, T.D.; Mammen, C.; Pinsk, M.; Cuvelier, G.D.E.; Carleton, B.C.; Tsuyuki, R.T.; et al. Urinary TIMP-2*IGFBP-7 to diagnose acute kidney injury in children receiving cisplatin. Pediatr. Nephrol. 2024, 39, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, Y.; Zhu, L.; Cui, K.; Zhang, S.; Xu, Y.; Jiang, Y. Plasma proenkephalin and neutrophil gelatinase-associated lipocalin predict mortality in ICU patients with acute kidney injury. BMC Nephrol. 2024, 25, 181. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hur, M.; Lee, S.; Marino, R.; Magrini, L.; Cardelli, P.; Struck, J.; Bergmann, A.; Hartmann, O.; Somma, S. Di Proenkephalin, Neutrophil Gelatinase-Associated Lipocalin, and Estimated Glomerular Filtration Rates in Patients with Sepsis. Ann. Lab. Med. 2017, 37, 388–397. [Google Scholar] [CrossRef]
- Breidthardt, T.; Jaeger, C.; Christ, A.; Klima, T.; Mosimann, T.; Twerenbold, R.; Boeddinghaus, J.; Nestelberger, T.; Badertscher, P.; Struck, J.; et al. Proenkephalin for the early detection of acute kidney injury in hospitalized patients with chronic kidney disease. Eur. J. Clin. Investig. 2018, 48, e12999. [Google Scholar] [CrossRef]
- Walczak-Wieteska, P.; Zuzda, K.; Szczęsna, K.; Ziętalewicz, J.; Andruszkiewicz, P.; Małyszko, J. Proenkephalin A 119–159, a Possible Early Biomarker of Acute Kidney Injury in Complex Endovascular Aortic Repair: A Single Centre Observational, Cross Sectional Study. Eur. J. Vasc. Endovasc. Surg. 2024, 67, 1023–1024. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, Y.; Huang, H.; Kuai, Y.; Chen, J.; Bai, Z.; Li, X.; Li, Y. Prediction of urinary dickkopf-3 for AKI, sepsis-associated AKI, and PICU mortality in children. Pediatr. Res. 2023, 93, 1651–1658. [Google Scholar] [CrossRef]
- Seibert, F.S.; Heringhaus, A.; Pagonas, N.; Rohn, B.; Bauer, F.; Trappe, H.-J.; Landmesser, U.; Babel, N.; Westhoff, T.H. Dickkopf-3 in the prediction of contrast media induced acute kidney injury. J. Nephrol. 2021, 34, 821–828. [Google Scholar] [CrossRef]
- Peschard, V.-G.; Scherzer, R.; Katz, R.; Chen, T.K.; Bullen, A.L.; Campos, K.; Estrella, M.M.; Ix, J.H.; Shlipak, M.G. Association of Urinary Dickkopf-3 Levels with Cardiovascular Events and Kidney Disease Progression in Systolic Blood Pressure Intervention Trial. Kidney360 2024, 5, 690–697. [Google Scholar] [CrossRef]
- Okuda, H.; Obata, Y.; Kamijo-Ikemori, A.; Inoue, S. Quantitative and qualitative analyses of urinary L-FABP for predicting acute kidney injury after emergency laparotomy. J. Anesth. 2022, 36, 38–45. [Google Scholar] [CrossRef]
- Parr, S.K.; Clark, A.J.; Bian, A.; Shintani, A.K.; Wickersham, N.E.; Ware, L.B.; Ikizler, T.A.; Siew, E.D. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2015, 87, 640–648. [Google Scholar] [CrossRef] [PubMed]
- Hishikari, K.; Hikita, H.; Nakamura, S.; Nakagama, S.; Mizusawa, M.; Yamamoto, T.; Doi, J.; Hayashi, Y.; Utsugi, Y.; Araki, M.; et al. Urinary Liver-Type Fatty Acid-Binding Protein Level as a Predictive Biomarker of Acute Kidney Injury in Patients with Acute Decompensated Heart Failure. Cardiorenal Med. 2017, 7, 267–275. [Google Scholar] [CrossRef]
- Torregrosa, I.; Montoliu, C.; Urios, A.; Andrés-Costa, M.J.; Giménez-Garzó, C.; Juan, I.; Puchades, M.J.; Blasco, M.L.; Carratalá, A.; Sanjuán, R.; et al. Urinary KIM-1, NGAL and L-FABP for the diagnosis of AKI in patients with acute coronary syndrome or heart failure undergoing coronary angiography. Heart Vessels 2015, 30, 703–711. [Google Scholar] [CrossRef]
- Yasuda, R.; Suzuki, K.; Okada, H.; Ishihara, T.; Minamiyama, T.; Kamidani, R.; Kitagawa, Y.; Fukuta, T.; Suzuki, K.; Miyake, T.; et al. Urinary liver-type fatty acid-binding protein levels may be associated with the occurrence of acute kidney injury induced by trauma. Front. Med. 2024, 11, 1346183. [Google Scholar] [CrossRef] [PubMed]
- Saito, R.; Hirayama, A.; Akiba, A.; Kamei, Y.; Kato, Y.; Ikeda, S.; Kwan, B.; Pu, M.; Natarajan, L.; Shinjo, H.; et al. Urinary Metabolome Analyses of Patients with Acute Kidney Injury Using Capillary Electrophoresis-Mass Spectrometry. Metabolites 2021, 11, 671. [Google Scholar] [CrossRef]
- Chen, Q.; Liang, X.; Wu, T.; Jiang, J.; Jiang, Y.; Zhang, S.; Ruan, Y.; Zhang, H.; Zhang, C.; Chen, P.; et al. Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. J. Transl. Med. 2022, 20, 123. [Google Scholar] [CrossRef]
- Zhou, L.; Li, H.; Hu, J.; Meng, J.; Lv, H.; Yang, F.; Wang, M.; Liu, R.; Wu, W.; Hou, D.; et al. Plasma oxidative lipidomics reveals signatures for sepsis-associated acute kidney injury. Clin. Chim. Acta 2023, 551, 117616. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Bai, Y.; Lai, C.; Mo, L.; Li, Y.; Jiang, X.; Xu, W.; He, Y.; Zhou, X.; Chen, C. Plasma indole-3-aldehyde as a novel biomarker of acute kidney injury after cardiac surgery: A reanalysis using prospective metabolomic data. BMC Anesthesiol. 2023, 23, 364. [Google Scholar] [CrossRef]
- Tian, M.; Liu, X.; Chen, L.; Hu, S.; Zheng, Z.; Wang, L.; Wang, X.; Gao, H.; Sun, W. Urine metabolites for preoperative prediction of acute kidney injury after coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 2023, 165, 1165–1175.e3. [Google Scholar] [CrossRef]
- Lee, H.-S.; Kim, S.-M.; Jang, J.-H.; Park, H.-D.; Lee, S.-Y. Serum 5-Hydroxyindoleacetic Acid and Ratio of 5-Hydroxyindoleacetic Acid to Serotonin as Metabolomics Indicators for Acute Oxidative Stress and Inflammation in Vancomycin-Associated Acute Kidney Injury. Antioxidants 2021, 10, 895. [Google Scholar] [CrossRef]
- Xu, M.; Feng, D.; Wu, H.; Wang, H.; Chan, Y.; Kolls, J.; Borregaard, N.; Porse, B.; Berger, T.; Mak, T.W.; et al. Liver is the major source of elevated serum lipocalin-2 levels after bacterial infection or partial hepatectomy: A critical role for IL-6/STAT3. Hepatology 2015, 61, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Thorsvik, S.; Bakke, I.; van Beelen Granlund, A.; Røyset, E.S.; Damås, J.K.; Østvik, A.E.; Sandvik, A.K. Expression of neutrophil gelatinase-associated lipocalin (NGAL) in the gut in Crohn’s disease. Cell Tissue Res. 2018, 374, 339–348. [Google Scholar] [CrossRef]
- Stallhofer, J.; Friedrich, M.; Konrad-Zerna, A.; Wetzke, M.; Lohse, P.; Glas, J.; Tillack-Schreiber, C.; Schnitzler, F.; Beigel, F.; Brand, S. Lipocalin-2 Is a Disease Activity Marker in Inflammatory Bowel Disease Regulated by IL-17A, IL-22, and TNF-α and Modulated by IL23R Genotype Status. Inflamm. Bowel Dis. 2015, 21, 2327–2340. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Seo, Y.S. Current knowledge about biomarkers of acute kidney injury in liver cirrhosis. Clin. Mol. Hepatol. 2022, 28, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Z.; Yang, Q.; Yu, M.; Shen, H.; Nie, B.; Han, H.; Gao, F.; Zhou, Y. Plasma neutrophil-gelatinase-associated lipocalin and cystatin C could early diagnose contrast-induced acute kidney injury in patients with renal insufficiency undergoing an elective percutaneous coronary intervention. Chin. Med. J. 2012, 125, 1051–1056. [Google Scholar]
- Pan, H.-C.; Yang, S.-Y.; Chiou, T.T.-Y.; Shiao, C.-C.; Wu, C.-H.; Huang, C.-T.; Wang, T.-J.; Chen, J.-Y.; Liao, H.-W.; Chen, S.-Y.; et al. Comparative accuracy of biomarkers for the prediction of hospital-acquired acute kidney injury: A systematic review and meta-analysis. Crit. Care 2022, 26, 349. [Google Scholar] [CrossRef]
- Kojima, Y.; Tsuchiya, A.; Mito, M.; Watanabe, Y.; Kawata, Y.; Tominaga, K.; Terai, S. Urinary NGAL in gastrointestinal diseases can be used as an indicator of early infection in addition to acute kidney injury marker. JGH Open 2024, 8, e70009. [Google Scholar] [CrossRef] [PubMed]
- Vanmassenhove, J.; Glorieux, G.; Lameire, N.; Hoste, E.; Dhondt, A.; Vanholder, R.; Van Biesen, W. Influence of severity of illness on neutrophil gelatinase-associated lipocalin performance as a marker of acute kidney injury: A prospective cohort study of patients with sepsis. BMC Nephrol. 2015, 16, 18. [Google Scholar] [CrossRef]
- Törnblom, S.; Nisula, S.; Petäjä, L.; Vaara, S.T.; Haapio, M.; Pesonen, E.; Pettilä, V. Urine NGAL as a biomarker for septic AKI: A critical appraisal of clinical utility—Data from the observational FINNAKI study. Ann. Intensive Care 2020, 10, 51. [Google Scholar] [CrossRef]
- Haase, M.; Bellomo, R.; Devarajan, P.; Schlattmann, P.; Haase-Fielitz, A. Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2009, 54, 1012–1024. [Google Scholar] [CrossRef]
- Mårtensson, J.; Bellomo, R. The Rise and Fall of NGAL in Acute Kidney Injury. Blood Purif. 2014, 37, 304–310. [Google Scholar] [CrossRef]
- Frydman, S.; Freund, O.; Zornitzki, L.; Katash, H.A.; Banai, S.; Shacham, Y. Indexed neutrophil gelatinase associated lipocalin: A novel biomarker for the assessment of acute kidney injury. J. Nephrol. 2023, 37, 401–407. [Google Scholar] [CrossRef]
- Haase, M.; Bellomo, R.; Devarajan, P.; Ma, Q.; Bennett, M.R.; Möckel, M.; Matalanis, G.; Dragun, D.; Haase-Fielitz, A. Novel Biomarkers Early Predict the Severity of Acute Kidney Injury after Cardiac Surgery in Adults. Ann. Thorac. Surg. 2009, 88, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Soto, K.; Coelho, S.; Rodrigues, B.; Martins, H.; Frade, F.; Lopes, S.; Cunha, L.; Papoila, A.L.; Devarajan, P. Cystatin C as a Marker of Acute Kidney Injury in the Emergency Department. Clin. J. Am. Soc. Nephrol. 2010, 5, 1745–1754. [Google Scholar] [CrossRef] [PubMed]
- Nakhjavan-Shahraki, B.; Yousefifard, M.; Ataei, N.; Baikpour, M.; Ataei, F.; Bazargani, B.; Abbasi, A.; Ghelichkhani, P.; Javidilarijani, F.; Hosseini, M. Accuracy of cystatin C in prediction of acute kidney injury in children; serum or urine levels: Which one works better? A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 120. [Google Scholar] [CrossRef] [PubMed]
- Jha, P.; Jha, A.K.; Dayal, V.M.; Jha, S.K.; Kumar, A. Baseline serum cystatin C as a marker of acute kidney injury in patients with acute-on-chronic liver failure. Indian J. Gastroenterol. 2021, 40, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Duff, S.; Irwin, R.; Cote, J.M.; Redahan, L.; McMahon, B.A.; Marsh, B.; Nichol, A.; Holden, S.; Doran, P.; Murray, P.T. Urinary biomarkers predict progression and adverse outcomes of acute kidney injury in critical illness. Nephrol. Dial. Transplant. 2022, 37, 1668–1678. [Google Scholar] [CrossRef]
- Yang, H.; Lin, C.; Zhuang, C.; Chen, J.; Jia, Y.; Shi, H.; Zhuang, C. Serum Cystatin C as a predictor of acute kidney injury in neonates: A meta-analysis. J. Pediatr. 2022, 98, 230–240. [Google Scholar] [CrossRef]
- Lagos-Arevalo, P.; Palijan, A.; Vertullo, L.; Devarajan, P.; Bennett, M.R.; Sabbisetti, V.; Bonventre, J.V.; Ma, Q.; Gottesman, R.D.; Zappitelli, M. Cystatin C in acute kidney injury diagnosis: Early biomarker or alternative to serum creatinine? Pediatr. Nephrol. 2015, 30, 665–676. [Google Scholar] [CrossRef]
- Shyam, R.; Sachan, R.; Patel, M.; Bharti, H.; Gupta, K.; Parihar, A. Evaluation of Serum Cystatin C as an Early Biomarker of Acute Kidney Injury in Patients with Acute Pancreatitis. Indian J. Crit. Care Med. 2020, 24, 777–782. [Google Scholar] [CrossRef]
- Chen, D.; Cao, C.; Jiang, L.; Tan, Y.; Yuan, H.; Pan, B.; Ma, M.; Zhang, H.; Wan, X. Serum cystatin C: A potential predictor for hospital-acquired acute kidney injury in patients with acute exacerbation of COPD. Chron. Respir. Dis. 2020, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Asakage, A.; Ishihara, S.; Boutin, L.; Dépret, F.; Sugaya, T.; Sato, N.; Gayat, E.; Mebazaa, A.; Deniau, B. Predictive Performance of Neutrophil Gelatinase Associated Lipocalin, Liver Type Fatty Acid Binding Protein, and Cystatin C for Acute Kidney Injury and Mortality in Severely Ill Patients. Ann. Lab. Med. 2024, 44, 144–154. [Google Scholar] [CrossRef]
- Pei, Y.; Zhou, G.; Wang, P.; Shi, F.; Ma, X.; Zhu, J. Serum cystatin C, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, klotho and fibroblast growth factor-23 in the early prediction of acute kidney injury associated with sepsis in a Chinese emergency cohort study. Eur. J. Med. Res. 2022, 27, 39. [Google Scholar] [CrossRef]
- Tu, Y.; Wang, H.; Sun, R.; Ni, Y.; Ma, L.; Xv, F.; Hu, X.; Jiang, L.; Wu, A.; Chen, X.; et al. Urinary netrin-1 and KIM-1 as early biomarkers for septic acute kidney injury. Ren. Fail. 2014, 36, 1559–1563. [Google Scholar] [CrossRef] [PubMed]
- Brozat, J.F.; Harbalioğlu, N.; Hohlstein, P.; Abu Jhaisha, S.; Pollmanns, M.R.; Adams, J.K.; Wirtz, T.H.; Hamesch, K.; Yagmur, E.; Weiskirchen, R.; et al. Elevated Serum KIM-1 in Sepsis Correlates with Kidney Dysfunction and the Severity of Multi-Organ Critical Illness. Int. J. Mol. Sci. 2024, 25, 5819. [Google Scholar] [CrossRef]
- Latoch, E.; Konończuk, K.; Taranta-Janusz, K.; Muszyńska-Rosłan, K.; Szymczak, E.; Wasilewska, A.; Krawczuk-Rybak, M. Urine NGAL and KIM-1: Tubular injury markers in acute lymphoblastic leukemia survivors. Cancer Chemother. Pharmacol. 2020, 86, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, E.A.; Hu, D.; Philbrook, H.T.; Ix, J.H.; Bonventre, J.V.; Coca, S.G.; Moledina, D.G.; Fried, L.F.; Shlipak, M.G.; Parikh, C.R. Urinary Biomarkers and Kidney Injury in VA NEPHRON-D: Phenotyping Acute Kidney Injury in Clinical Trials. Am. J. Kidney Dis. 2024, 83, 151–161. [Google Scholar] [CrossRef]
- Schrezenmeier, E.V.; Barasch, J.; Budde, K.; Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in acute kidney injury—Pathophysiological basis and clinical performance. Acta Physiol. 2017, 219, 556–574. [Google Scholar] [CrossRef]
- Kashani, K.; Cheungpasitporn, W.; Ronco, C. Biomarkers of acute kidney injury: The pathway from discovery to clinical adoption. Clin. Chem. Lab. Med. 2017, 55, 1074–1089. [Google Scholar] [CrossRef]
- Wang, W.; Sun, W.; Gao, B.; Lian, X.; Zhou, H. Cell Cycle Arrest as a Therapeutic Target of Acute Kidney Injury. Curr. Protein Pept. Sci. 2017, 18, 1224–1231. [Google Scholar] [CrossRef]
- Price, P.M.; Safirstein, R.L.; Megyesi, J. The cell cycle and acute kidney injury. Kidney Int. 2009, 76, 604–613. [Google Scholar] [CrossRef]
- Fan, W.; Ankawi, G.; Zhang, J.; Digvijay, K.; Giavarina, D.; Yin, Y.; Ronco, C. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin. Chem. Lab. Med. 2019, 57, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, X.; Mao, Z.; Kang, H.; Liu, H.; Pan, L.; Hu, J.; Wang, L.; Zhou, F. The diagnostic accuracy of urinary [TIMP-2]·[IGFBP7] for acute kidney injury in adults. Medicine 2017, 96, e7484. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; von Groote, T.; Ostermann, M.; Lumlertgul, N.; Weerapolchai, K.; Garcia, M.I.M.; Cano, J.M.M.; del Corral, B.D.; Broch-Porcar, M.J.; Perez Carrasco, M.; et al. The Role of Cell Cycle Arrest Biomarkers for Predicting Acute Kidney Injury in Critically Ill COVID-19 Patients: A Multicenter, Observational Study. Crit. Care Med. 2023, 51, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Casas-Aparicio, G.; Alvarado-de la Barrera, C.; Escamilla-Illescas, D.; León-Rodríguez, I.; Del Río-Estrada, P.M.; Calderón-Dávila, N.; González-Navarro, M.; Olmedo-Ocampo, R.; Castillejos-López, M.; Figueroa-Hernández, L.; et al. Role of Urinary Kidney Stress Biomarkers for Early Recognition of Subclinical Acute Kidney Injury in Critically Ill COVID-19 Patients. Biomolecules 2022, 12, 275. [Google Scholar] [CrossRef] [PubMed]
- Waskowski, J.; Pfortmueller, C.A.; Schenk, N.; Buehlmann, R.; Schmidli, J.; Erdoes, G.; Schefold, J.C. Correction: (TIMP2) x (IGFBP7) as early renal biomarker for the prediction of acute kidney injury in aortic surgery (TIGER). A single center observational study. PLoS ONE 2021, 16, e0259567. [Google Scholar] [CrossRef]
- Bell, M.; Larsson, A.; Venge, P.; Bellomo, R.; Mårtensson, J. Assessment of Cell-Cycle Arrest Biomarkers to Predict Early and Delayed Acute Kidney Injury. Dis. Markers 2015, 2015, 158658. [Google Scholar] [CrossRef]
- Beunders, R.; Struck, J.; Wu, A.H.B.; Zarbock, A.; Di Somma, S.; Mehta, R.L.; Koyner, J.L.; Nadim, M.K.; Maisel, A.S.; Murray, P.T.; et al. Proenkephalin (PENK) as a Novel Biomarker for Kidney Function. J. Appl. Lab. Med. 2017, 2, 400–412. [Google Scholar] [CrossRef]
- Lin, L.-C.; Chuan, M.-H.; Liu, J.-H.; Liao, H.-W.; Ng, L.L.; Magnusson, M.; Jujic, A.; Pan, H.-C.; Wu, V.-C.; Forni, L.G. Proenkephalin as a biomarker correlates with acute kidney injury: A systematic review with meta-analysis and trial sequential analysis. Crit. Care 2023, 27, 481. [Google Scholar] [CrossRef]
- Hollinger, A.; Wittebole, X.; François, B.; Pickkers, P.; Antonelli, M.; Gayat, E.; Chousterman, B.G.; Lascarrou, J.-B.; Dugernier, T.; Di Somma, S.; et al. Proenkephalin A 119-159 (Penkid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int. Rep. 2018, 3, 1424–1433. [Google Scholar] [CrossRef]
- Rosenqvist, M.; Bronton, K.; Hartmann, O.; Bergmann, A.; Struck, J.; Melander, O. Proenkephalin a 119–159 (penKid)—A novel biomarker for acute kidney injury in sepsis: An observational study. BMC Emerg. Med. 2019, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- von Groote, T.; Albert, F.; Meersch, M.; Koch, R.; Porschen, C.; Hartmann, O.; Bergmann, D.; Pickkers, P.; Zarbock, A. Proenkephalin A 119–159 predicts early and successful liberation from renal replacement therapy in critically ill patients with acute kidney injury: A post hoc analysis of the ELAIN trial. Crit. Care 2022, 26, 333. [Google Scholar] [CrossRef] [PubMed]
- Smathers, R.L.; Petersen, D.R. The human fatty acid-binding protein family: Evolutionary divergences and functions. Hum. Genom. 2011, 5, 170. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, G.; Rajappa, M. Predictive markers in chronic kidney disease. Clin. Chim. Acta 2022, 535, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Kamijo-Ikemori, A.; Sugaya, T.; Hoshino, S.; Yasuda, T.; Kimura, K. Urinary Excretion of Liver Type Fatty Acid Binding Protein Accurately Reflects the Degree of Tubulointerstitial Damage. Am. J. Pathol. 2009, 174, 2096–2106. [Google Scholar] [CrossRef]
- Wilnes, B.; Castello-Branco, B.; Branco, B.C.; Sanglard, A.; Vaz de Castro, P.A.S.; Simões-e-Silva, A.C. Urinary L-FABP as an Early Biomarker for Pediatric Acute Kidney Injury Following Cardiac Surgery with Cardiopulmonary Bypass: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 4912. [Google Scholar] [CrossRef]
- Wang, L.; Ma, P.; Chen, H.; Chang, M.; Lu, P.; Chen, N.; Zhang, X.; Li, Y.; Sui, M. Rapid and ultrasensitive detection of acute kidney injury biomarkers CH3L1 and L-FABP using surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 295, 122604. [Google Scholar] [CrossRef]
- Karakaş, P.; Çalişkan, F.; Kati, C.; Tunçel, Ö. The Importance of Neutrophil Gelatinase—Associated Lipocalin and Liver Type Fatty Acid Binding Protein in Acute Kidney Injury. Clin. Lab. 2022, 68, 2141. [Google Scholar] [CrossRef]
- Pan, H.-C.; Huang, T.T.-M.; Huang, C.-T.; Sun, C.-Y.; Chen, Y.-M.; Wu, V.-C. Urinary Biomarkers Can Predict Weaning From Acute Dialysis Therapy in Critically Ill Patients. Arch. Pathol. Lab. Med. 2022, 146, 1353–1363. [Google Scholar] [CrossRef]
- Imai, N.; Yasuda, T.; Kamijo-Ikemori, A.; Shibagaki, Y.; Kimura, K. Distinct Roles of Urinary Liver-Type Fatty Acid-Binding Protein in Non-Diabetic Patients with Anemia. PLoS ONE 2015, 10, e0126990. [Google Scholar] [CrossRef]
- Feng, S.; Roll, G.R.; Rouhani, F.J.; Sanchez Fueyo, A. The future of liver transplantation. Hepatology 2024, 80, 674–697. [Google Scholar] [CrossRef] [PubMed]
- de Rave, S.; Hansen, B.E.; Groenland, T.H.N.; Kazemier, G.; de Man, R.A.; Metselaar, H.J.; Terpstra, O.T.; Tilanus, H.W.; Ijzermans, J.H.N.M.; Schalm, S.W. Heterotopic vs. orthotopic liver transplantation for chronic liver disease: A case-control comparison of short-term and long-term outcomes. Liver Transplant. 2005, 11, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Stepanova, M.; Al Shabeeb, R.; Eberly, K.E.; Shah, D.; Nguyen, V.; Ong, J.; Henry, L.; Alqahtani, S.A. The changing epidemiology of adult liver transplantation in the United States in 2013-2022: The dominance of metabolic dysfunction–associated steatotic liver disease and alcohol-associated liver disease. Hepatol. Commun. 2024, 8, e0352. [Google Scholar] [CrossRef]
- Åberg, F.; Jiang, Z.G.; Cortez-Pinto, H.; Männistö, V. Alcohol-associated liver disease—Global epidemiology. Hepatology 2024, 79, 1–16. [Google Scholar] [CrossRef]
- Craig, E.V.; Heller, M.T. Complications of liver transplant. Abdom. Radiol. 2021, 46, 43–67. [Google Scholar] [CrossRef]
- Feldkamp, T.; Bienholz, A.; Paul, A.; Saner, F.H. Renal damage after liver transplantation. Biosci. Rep. 2020, 40, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, R.J.; Engoren, M.C.; Mentz, G.; Sharma, P.; Kumar, S.S.; Davis, R.; Kheterpal, S.; Sonnenday, C.J.; Douville, N.J. Intraoperative risk factors of acute kidney injury after liver transplantation. Liver Transpl. 2022, 28, 1207–1223. [Google Scholar] [CrossRef]
- Leithead, J.A.; Rajoriya, N.; Gunson, B.K.; Muiesan, P.; Ferguson, J.W. The evolving use of higher risk grafts is associated with an increased incidence of acute kidney injury after liver transplantation. J. Hepatol. 2014, 60, 1180–1186. [Google Scholar] [CrossRef]
- Fuhrman, D.Y.; Kellum, J.A.; Joyce, E.L.; Miyashita, Y.; Mazariegos, G.V.; Ganoza, A.; Squires, J.E. The use of urinary biomarkers to predict acute kidney injury in children after liver transplant. Pediatr. Transplant. 2020, 24, e13608. [Google Scholar] [CrossRef]
- Lima, C.; de Paiva Haddad, L.B.; de Melo, P.D.V.; Malbouisson, L.M.; do Carmo, L.P.F.; D’Albuquerque, L.A.C.; Macedo, E. Early detection of acute kidney injury in the perioperative period of liver transplant with neutrophil gelatinase-associated lipocalin. BMC Nephrol. 2019, 20, 367. [Google Scholar] [CrossRef]
- Robertson, F.P.; Yeung, A.C.; Male, V.; Rahman, S.; Mallett, S.; Fuller, B.J.; Davidson, B.R. Urinary Neutrophil Gelatinase Associated Lipocalins (NGALs) predict acute kidney injury post liver transplant. HPB 2019, 21, 473–481. [Google Scholar] [CrossRef]
- Baron-Stefaniak, J.; Schiefer, J.; Miller, E.J.; Berlakovich, G.A.; Baron, D.M.; Faybik, P. Comparison of macrophage migration inhibitory factor and neutrophil gelatinase-associated lipocalin-2 to predict acute kidney injury after liver transplantation: An observational pilot study. PLoS ONE 2017, 12, e0183162. [Google Scholar] [CrossRef] [PubMed]
- Dedeoglu, B.; de Geus, H.R.; Fortrie, G.; Betjes, M.G. Novel Biomarkers for the Prediction of Acute Kidney Injury in Patients Undergoing Liver Transplantation. Biomark. Med. 2013, 7, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Wagener, G.; Minhaz, M.; Mattis, F.A.; Kim, M.; Emond, J.C.; Lee, H.T. Urinary neutrophil gelatinase-associated lipocalin as a marker of acute kidney injury after orthotopic liver transplantation. Nephrol. Dial. Transplant. 2011, 26, 1717–1723. [Google Scholar] [CrossRef] [PubMed]
- Portal, A.J.; McPhail, M.J.W.; Bruce, M.; Coltart, I.; Slack, A.; Sherwood, R.; Heaton, N.D.; Shawcross, D.; Wendon, J.A.; Heneghan, M.A. Neutrophil gelatinase-Associated lipocalin predicts acute kidney injury in patients undergoing liver transplantation. Liver Transplant. 2010, 16, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.; Jung, J.-Y.; Yoon, H.-K.; Yang, S.-M.; Lee, H.-J.; Kim, W.H.; Jung, C.-W.; Suh, K.-S. Serum neutrophil gelatinase-associated lipocalin and lactate level during surgery predict acute kidney injury and early allograft dysfunction after liver transplantation. Sci. Rep. 2023, 13, 8643. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, M.; Xia, Q.; Wang, S.; Qian, J.; Lu, R.; Che, M.; Dai, H.; Wu, Q.; Ni, Z.; et al. Urinary neutrophil gelatinase-associated lipocalin and L-type fatty acid binding protein as diagnostic markers of early acute kidney injury after liver transplantation. Biomarkers 2012, 17, 336–342. [Google Scholar] [CrossRef]
- Schiefer, J.; Lichtenegger, P.; Berlakovich, G.A.; Plöchl, W.; Krenn, C.G.; Baron, D.M.; Baron-Stefaniak, J.; Faybik, P. Urinary [TIMP-2] × [IGFBP-7] for predicting acute kidney injury in patients undergoing orthotopic liver transplantation. BMC Nephrol. 2019, 20, 269. [Google Scholar] [CrossRef]
- Sirota, J.C.; Walcher, A.; Faubel, S.; Jani, A.; McFann, K.; Devarajan, P.; Davis, C.L.; Edelstein, C.L. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol. 2013, 14, 17. [Google Scholar] [CrossRef]
- Lima, C.; Santos Ferreira, G.; Vattimo, M.D.F.F.; de Paiva Haddad, L.B.; Malbouisson, L.M.; Carneiro D’Albuquerque, L.A.; Maciel, A.T.; Macedo, E. Comprehensive biomarker assessment for predicting severe acute kidney injury and need of kidney replacement therapy in liver transplantation patients. Ren. Fail. 2024, 46, 2402076. [Google Scholar] [CrossRef]
- Park, J.; Cho, S.; Cho, Y.J.; Choi, H.J.; Hong, S.H.; Chae, M.S. Predictive Utility of Antithrombin III in Acute Kidney Injury in Living-Donor Liver Transplantation: A Retrospective Observational Cohort Study. Transplant. Proc. 2021, 53, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guan, Y.; Xie, Q.; Gong, W.; Li, J.; Chen, T.; Xu, Y.; Xu, N.; Chen, S.; Chen, M.; et al. The metabolites of de novo NAD+ synthesis are a valuable predictor of acute kidney injury. Clin. Kidney J. 2023, 16, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Harhay, M.N.; Ong, A.C.M.; Tummalapalli, S.L.; Ortiz, A.; Fogo, A.B.; Fliser, D.; Roy-Chaudhury, P.; Fontana, M.; Nangaku, M.; et al. Chronic kidney disease and the global public health agenda: An international consensus. Nat. Rev. Nephrol. 2024, 20, 473–485. [Google Scholar] [CrossRef]
- Joshi, R.; Subedi, P.; Yadav, G.K.; Khadka, S.; Rijal, T.; Amgain, K.; Rajbhandari, S. Prevalence and risk factors of chronic kidney disease among patients with type 2 diabetes mellitus at a tertiary care hospital in Nepal: A cross-sectional study. BMJ Open 2023, 13, e067238. [Google Scholar] [CrossRef]
- Jethwani, P. Overview of Renal Transplantation for Primary Care Physicians. Med. Clin. North Am. 2023, 107, 707–716. [Google Scholar] [CrossRef]
- Kim, P.Y.; Shoghi, A.; Fananapazir, G. Renal Transplantation. Radiol. Clin. North Am. 2023, 61, 809–820. [Google Scholar] [CrossRef]
- Lim, W.H.; Johnson, D.W.; Teixeira-Pinto, A.; Wong, G. Association Between Duration of Delayed Graft Function, Acute Rejection, and Allograft Outcome after Deceased Donor Kidney Transplantation. Transplantation 2019, 103, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Raynaud, M.; Al-Awadhi, S.; Louis, K.; Zhang, H.; Su, X.; Goutaudier, V.; Wang, J.; Demir, Z.; Wei, Y.; Truchot, A.; et al. Prognostic Biomarkers in Kidney Transplantation: A Systematic Review and Critical Appraisal. J. Am. Soc. Nephrol. 2024, 35, 177–188. [Google Scholar] [CrossRef]
- Seeman, T.; Vondrak, K.; Dusek, J.; Simankova, N.; Zieg, J.; Hacek, J.; Chadimova, M.; Sopko, B.; Fortova, M. Urinary Neutrophil Gelatinase-Associated Lipocalin Does Not Distinguish Acute Rejection from Other Causes of Acute Kidney Injury in Pediatric Renal Transplant Recipients. Clin. Lab. 2017, 63, 160702. [Google Scholar] [CrossRef]
- Ramirez-Sandoval, J.C.; Barrera-Chimal, J.; Simancas, P.E.; Correa-Rotter, R.; Bobadilla, N.A.; Morales-Buenrostro, L.E. Tubular urinary biomarkers do not identify aetiology of acute kidney injury in kidney transplant recipients. Nephrology 2014, 19, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Sandoval, J.C.; Barrera-Chimal, J.; Simancas, P.E.; Rojas-Montaño, A.; Correa-Rotter, R.; Bobadilla, N.A.; Morales-Buenrostro, L.E. Urinary neutrophil gelatinase-associated lipocalin predicts graft loss after acute kidney injury in kidney transplant. Biomarkers 2014, 19, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Pianta, T.J.; Peake, P.W.; Pickering, J.W.; Kelleher, M.; Buckley, N.A.; Endre, Z.H. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl. Int. 2015, 28, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Elnokeety, M.M.; Hussein, W.M.; Ahmed Abdelrazek, S.; Momtaz, M. Cell cycle arrest biomarkers for the early detection of acute allograft dysfunction and acute rejection in living donor kidney transplantation: A cross-sectional study from Egypt. Korean J. Transplant. 2023, 37, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, Q.; Xia, T.; Fu, S.; Tao, X.; Wen, Y.; Chan, S.; Gao, S.; Xiong, X.; Chen, W. Diagnostic value of plasma tryptophan and symmetric dimethylarginine levels for acute kidney injury among tacrolimus-treated kidney transplant patients by targeted metabolomics analysis. Sci. Rep. 2018, 8, 14688. [Google Scholar] [CrossRef]
- Verissimo, T.; Faivre, A.; Sgardello, S.; Naesens, M.; de Seigneux, S.; Criton, G.; Legouis, D. Estimated Renal Metabolomics at Reperfusion Predicts One-Year Kidney Graft Function. Metabolites 2022, 12, 57. [Google Scholar] [CrossRef]
- Kang, S.-W.; Kang, S.-W.; Ban, J.-Y.; Park, M.-S. Identification of Multiple Hub Genes in Acute Kidney Injury after Kidney Transplantation by Bioinformatics Analysis. Medicina 2022, 58, 681. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Wang, B.; Chen, W.; Wei, Y.; Wu, R.; Meng, L.; Lyu, L. Discovery of ferroptosis-related genes in renal ischemia reperfusion and evaluate the potential impact on kidney transplantation. Front. Immunol. 2024, 15, 1394477. [Google Scholar] [CrossRef]
- Gauthier, P.T.; Madill-Thomsen, K.S.; Demko, Z.; Prewett, A.; Gauthier, P.; Halloran, P.F. Distinct Molecular Processes Mediate Donor-derived Cell-free DNA Release From Kidney Transplants in Different Disease States. Transplantation 2024, 108, 898–910. [Google Scholar] [CrossRef]
- Wilflingseder, J.; Sunzenauer, J.; Toronyi, E.; Heinzel, A.; Kainz, A.; Mayer, B.; Perco, P.; Telkes, G.; Langer, R.M.; Oberbauer, R. Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles. PLoS ONE 2014, 9, e104164. [Google Scholar] [CrossRef]
- Pezeshgi, A.; Abedi Azar, S.; Ghasemi, H.; Kamali, K.; Esmaeilzadeh, A.; Hajsalimi, B.; Pour-Asghar, S.; Behmanesh, M.R.; Kiafar, M. Role of plasma neutrophil gelatinase-associated lipocalin as an emerging biomarker of acute renal failure following kidney transplantation and its correlation with plasma creatinine. J. Ren. Inj. Prev. 2016, 5, 98–103. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Clinical Setting | Outcomes | Reference |
---|---|---|---|
serum NGAL | ICU, n = 138 | AUC: 0.80 for AKI diagnosis cut-off: 391 ng/mL | [29] |
ICU, n = 94 | mean AUC: 0.723 for AKI diagnosis cut-off: 150 ng/mL sen.: 85.3%; spe.: 50% | [30] | |
myocardial infarction n = 385 | AUC: 0.943 for AKI diagnosis cut-off: 112.5 ng/mL sen.: 86.4%; spe.: 100% | [31] | |
urinary NGAL | HF, n = 100 | AUC: 0.778 for AKI diagnosis cut-off: 12 ng/mL sen.: 79%; spe.: 67% | [32] |
HF, n = 72 | AUC: 0.84 for AKI diagnosis sen.: 74.7%; spe.: 84% | [33] | |
coronary angiography n = 30 | AUC: 0.68 for AKI diagnosis NGAL/creatinine ratio cut-off: 56.4 μg/mg creatinine sen.: 82.6%; spe.: 53.3% | [34] | |
decompensated cirrhosis n = 213 | C-statistic for AKI discrimination between ATN-AKI and non-ATN-AKI: 0.762 cut-off: 244 μg/g creatinine; sen.: 71%; spe.: 76% C-statistic for 90-day transplant-free survival NGAL vs. MELD-Na: 0.697 vs. 0.683, respectively | [35] | |
serum CysC | cirrhosis, n = 540 | AUC: 0.940 for AKI diagnosis cut-off: 1.24 mg/L sen.: 92%; spe.: 92% | [36] |
cirrhosis, n = 100 | AUC: 0.832 for AKI diagnosis cut-off: 0.94 mg/L sen.: 75.6%; spe.: 89.8% | [37] | |
acute liver failure, n = 56 | AUC: 0.975 for AKI diagnosis cut-off: 1.21 mg/L sen.: 100%; spe.: 87.5 | [38] | |
ICU, n = 414 | AUC: 0.842 for AKI diagnosis cut-off: 1.25 mg/L sen.: 82.2%; spe.: 76.4 | [39] | |
acute pancreatitis, n = 237 | AUC: 0.948 for AKI diagnosis cut-off: 1.865 mg/L sen.: 88.9%; spe.: 100% | [40] | |
acute pancreatitis, n = 379 | AUC: 0.711 for AKI diagnosis cut-off: 1.055 mg/L sen.: 45.5%; spe.: 86.7 | [41] | |
urinary KIM-1 | meta-analysis, n = 42 | AUC: 0.907 for AKI diagnosis sen.: 0.86; spe.: 0.84 | [42] |
methotrexate or platinum-based antineoplastic therapy, n = 64 | AUC: 0.82 for AKI diagnosis cut-off: 6.2 ng/mg of creatinine sen.: 73.1%; spe.: 92.1% | [43] | |
cirrhosis, n = 150 | AUC: 0.843 for AKI diagnosis cut-off: 4.56 ng/mL sen.: 77.2%; spe.: 79.8% | [44] | |
HIV, n = 468 | Higher levels of KIM-1 were significantly associated with an increased risk of AKI development (HR: 1.30; 95% CI: 1.03–1.63) | [45] | |
ICU, n = 86 | AUC: 0.81 for AKI diagnosis cut-off: 0.8 ng/mg of creatinine sen.: 91%; spec.: 81% | [46] | |
urinary TIMP2*IGFBP7 | cardiac surgery postoperatively, n = 100 | AUC: 0.541 for stage 1–2 AKI AUC: 0.838 for stage 3 AKI | [47] |
cardiac arrest, n = 115 | AUC: 0.91 for severe AKI diagnosis cut-off: 0.39 (ng/mL)2/1000 sen.: 97%; spec.: 72% | [48] | |
ICU, n = 728 | AUC: 0.800 for moderate/severe AKI diagnosis | [49] | |
ICU, n = 209 | AUC: 0.774 for AKI diagnosis cut-off: 0.81 (ng/mL)2/1000 sen.: 62%; spe.: 83.8% | [50] | |
emergency department, n = 368 | C-statistic for AKI diagnosis: 0.54 | [51] | |
ICU, n = 100 | AUC: 0.66 for AKI diagnosis alone cut-off: 2.63 (ng/mL)2/1000 sen.: 61%; spe.: 71% Parameters were improved when combined with FST. | [52] | |
cisplatin antineoplastic therapy, n = 156 | AUC range: 0.61–0.7 for AKI diagnosis | [53] | |
serum PENK | ICU, n = 150 | 28-day mortality: HR, 0.785; 95% CI, 0.706–0.865 cut-off: 0.36 ng/μL | [54] |
ICU, n = 167 | AUC: 0.725 for AKI diagnosis cut-off: 154 pmol/L sen.: 65.9%; spe.: 79.4% 30-day mortality: HR, 7.9 95%; CI, 3.9–16.2 cut-off: 80 pmol/L | [55] | |
CKD, n = 111 | AUC: 0.92 for AKI diagnosis | [56] | |
Thoraco-abdominal aortic aneurysm, n = 33 | AUC: 0.866 for AKI diagnosis | [57] | |
urinary dickkopf-3 | ICU, n = 420 | AUC: 0.80 for AKI diagnosis AUC: 0.78 for mortality | [58] |
coronary angiography, n = 490 | AUC: 0.61 for AKI diagnosis sen.: 47.4%; spe.: 72.4 | [59] | |
CVD, n = 2344 | HR: 1.07; 95% CI: 0.85–1.21 for risk of AKI | [60] | |
urinary L-FABP | emergency laparotomy n = 48 | AUC: 0.8 for AKI diagnosis sen.: 55.6%; spe.: 91.9% | [61] |
ICU, n = 152 | AUC: 0.79 for AKI diagnosis | [62] | |
HF, n = 281 | AUC: 0.930 for AKI diagnosis cut-off: 12.5 μg/g of creatinine sen.: 94.2%; spe.: 87% | [63] | |
coronary angiography, n = 193 | AUC: 0.642 for AKI diagnosis cut-off: 20.7 ng/mg of creatinine sen.: 54%; sen.: 62% | [64] | |
trauma, n = 100 | OR: 18.24 95% CI: 4.21–79.02 for AKI diagnosis sen.: 73.3%; spe.: 88.2% | [65] | |
urinary glycine and ethanolamine | ICU, n = 121 metabolomic profiling | decreased concentrations of glycine and ethanolamine in AKI patients | [66] |
serum phenylalanine | sepsis, n = 63 metabolomic profiling | AUC: 0.89 for AKI diagnosis within 24 h after admission to the ICU intensified metabolism of phenylalanine pathaways in sepsis-associated AKI | [67] |
serum oxidized lipid metabolites | sepsis, n = 67 metabolomic profiling | altered metabolism of 21 oxidized lipid metabolites in patients with sepsis-associated AKI | [68] |
serum I3A | cardiac surgery, n = 55 metabolomic profiling | increased serum concentration of I3A in patients with AKI AUC: 0.84 for AKI diagnosis perioperatively and intraoperatively | [69] |
urinary metabolite panel: Tyr-gGlu + DAGC + Arg-arg + L-Met + AAMU | coronary artery bypass graft, n = 55 metabolomic profiling | AUC: 0.89 for AKI diagnosis postoperatively sen.: 86%; spe.: 74% | [70] |
serum 5-HIAA | vancomycin-associated AKI, n = 28 metabolomic profiling | increased concentration of 5-HIAA in AKI patients increased 5-HIAA/5-HT ratio in AKI patients AUC: 0.795 for 5-HIAA for AKI diagnosis AUC: 0.884 for the 5-HIAA/5-HT ratio for AKI diagnosis | [71] |
Biomarker | Clinical Setting | Outcomes | Reference |
---|---|---|---|
serum NGAL | LD-LTx, n = 353 | NGAL alone: AUC: 0.74 for AKI diagnosis; OR: 0.84 NGAL adjusted with lactate: AUC: 0.9 for AKI diagnosis; OR: 0.89 | [137] |
LTx, n = 100 | 2-fold higer NGAL levels in patients with severe AKI 18 h after transplantation cut-off: 198 ng/mL sen.: 87%; spe.: 71% | [131] | |
LTx, n = 26 | AUC: 0.86 for severe AKI diagnosis 8 h after transplantation cut-off: 243.5 ng/mL | [134] | |
LTx, n = 95 | AUC: 0.87 for severe AKI diagnosis 12 h after transplantation cut-off: 258 ng/mL | [136] | |
urinary NGAL | LTx, n = 16 | AUC: 0.816 for AKI diagnosis 24 h after transplantation | [130] |
LTx, n = 100 | AUC: 0.76 for severe AKI diagnosis 6 h after transplantation cut-off: 136 ng/mL sen.: 68%; spe.: 76% | [131] | |
LTx, n = 27 | AUC: 0.792 for AKI diagnosis 24 h after transplantation AUC: 0.812 for predicting the need for RRT 24 h after transplantation | [132] | |
LTx, n = 26 | AUC: 0.76 for severe AKI diagnosis 8 h after transplantation cut-off: 94.5 ng/mL | [134] | |
OLTx, n = 45 | AUC: 0.79 for AKI diagnosis 24 h after transplantation | [133] | |
LTx, n = 92 | AUC: 0.636 for AKI diagnosis 18 h after transplantation cut-off: 35 ng/mg of urinary creatinine sen.: 68.1%; spe.: 59.7% | [135] | |
LTx, n = 95 | AUC: 0.8 for severe AKI diagnosis 12 h after transplantation cut-off: 258 ng/mL | [136] | |
LTx, n = 100 | AUC: 0.62 for severe AKI diagnosis in the first week after transplantation | [141] | |
urinary TIMP2*IGFBP7 | LTx, n = 16 | AUC: 0.683 for AKI diagnosis 24 h after transplantation | [130] |
OLTx, n = 40 | AUC: 0.71 for severe AKI diagnosis 48 h after transplantation | [139] | |
urinary KIM-1 | LTx, n = 16 | AUC: 0.9 for AKI diagnosis 24 h after transplantation | [130] |
serum PENK | LTx, n = 57 | preoperatively: AUC, 0.69 for severe AKI diagnosis; cut-off, 55.3 pmol/L; sen., 86%; spe., 0.52 postoperatively: AUC, 0.83 for severe AKI diagnosis; cut-off, 119.05 pmol/L; sen., 81%; spe., 90% | [17] |
LTx, n = 100 | AUC: 0.7 for severe AKI diagnosis in the first week after transplantation. | [141] | |
serum ATIII | LD-LTx, n = 577 | AUC: 0.709 for AKI diagnosis sen.: 71.3%; spe.: 64.1% OR: 2.839 95% CI: 1.311–6.147 for a 2.8-fold higher AKI probability for low ATIII levels | [142] |
serum renalase | LD-LTx, n = 50 | AUC: 0.54 for AKI diagnosis | [12] |
serum L-FABP | LTx, n = 25 | AUC: 0.760 for AKI diagnosis 4 h after transplantation cut-off: 3451.75 ng/mg of urinary creatinine sen.: 72.7%; spe.: 71.4% | [138] |
urinary de novo NAD+ | OLTx, n = 49 metabolomic profiling | AUC: 0.729 for AKI diagnosis | [143] |
Biomarker | Clinical Setting | Outcomes | Reference |
---|---|---|---|
serum NGAL | KTx, n = 37 | AUC: 0.83 for AKI diagnosis 7 days after transplantation cut-off: 1.6 mg/dL sen.: 88.9%; spe.: 81% | [162] |
urinary NGAL | KTx, n = 15 | no significant diffrences in NGAL concentrations negative correlation between eGFR and NGAL (r = −0.77) | [151] |
KTx, n = 109 | AUC: 0.758 for RGF diagnosis (95% CI: 0.645–0.871) OR for RGF: 2.143 95% CI: 0.920–4.992 | [14] | |
KTx, n = 67 | AUC: 0.89 for AKI diagnosis during 1-year follow-up 95% CI: 0.81–0.97 cut-off: 200 ng/mL sen.: 84%; spe.: 86% | [153] | |
KTx, n = 67 | AUC: 0.89 for AKI diagnosis during 1-year follow-up 95% CI: 0.81–0.97 cut-off: 200 ng/mL sen.: 84%; spe.: 86% | [152] | |
urinary TIMP2*IGFBP7 | LD-KTx, n = 48 | AUC: 0.939 for acute allograft dysfunction diagnosis cut-off: 0.803 (ng/mL)2/1000 sen.: 94.4%; spe.: 83.3% | [155] |
DD-KTx, n = 56 | AUC: 0.76 for RGF diagnosis 4 h after kidney reperfusion 95% CI: 0.62–0.91 | [154] | |
urinary KIM-1 | DD-KTx, n = 109 | AUC: 0.506 for RGF diagnosis 95% CI: 0.391–0.620 | [14] |
urinary L-FABP | KTx, n = 109 | AUC: 0.704 for RGF diagnosis 95% CI: 0.592–0.817 | [14] |
urinary DKK3 | KTx, n = 122 | OR for RGF diagnosis: 4.001 95% CI: 0.994–16.100 Higher concentrations of DKK-3 measured three and twelve months after transplantation predicted AKI. | [18] |
serum tryptophan and SDMA | KTx, n = 42 metabolomic profiling | altered metabolism and decreased concentrations of tryptophan and SDMA AUC: 0.900 for AKI diagnosis for combined tryptophan and SDMA AUC: 0.820 for AKI diagnosis for SDMA alone AUC: 0.738 for AKI diagnosis for tryptophan alone | [156] |
G1P, fumarate, and succinate | KTx biopsies, n = 42 metabolomic profiling | One-year eGFR positively correlated with the increased abundance of G1P and fumarate. One-year eGFR negatively correlated with the increased abundance of succinate. | [157] |
Hub genes involved in renal cell proliferation (AKAP12, AMOT, C3AR1, LY96, PLCD4, PLCG2, and others) | bioinformatics analysis of gene expression from the Omnibus database genomic profiling | Altered expression of selected hub genes was associated with a higher risk of post-transplantation AKI development. | [158] |
dd-cfDNA | KTx biopsies, n = 604 genomic profiling | elevated serum level of dd-cfDNA during post-transplantation AKI | [160] |
microRNA (miR-182-5p) | KTx biopsies, n = 166 genomic profiling | miR-182-5p expression correlated significantly with genes involved in AKI development. | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zywno, H.; Figiel, W.; Grat, M.; Nazarewski, S.; Galazka, Z.; Malyszko, J. Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients? Int. J. Mol. Sci. 2024, 25, 12072. https://doi.org/10.3390/ijms252212072
Zywno H, Figiel W, Grat M, Nazarewski S, Galazka Z, Malyszko J. Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients? International Journal of Molecular Sciences. 2024; 25(22):12072. https://doi.org/10.3390/ijms252212072
Chicago/Turabian StyleZywno, Hubert, Wojciech Figiel, Michal Grat, Slawomir Nazarewski, Zbigniew Galazka, and Jolanta Malyszko. 2024. "Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients?" International Journal of Molecular Sciences 25, no. 22: 12072. https://doi.org/10.3390/ijms252212072
APA StyleZywno, H., Figiel, W., Grat, M., Nazarewski, S., Galazka, Z., & Malyszko, J. (2024). Can Novel Biomarkers Effectively Predict Acute Kidney Injury in Liver or Kidney Transplant Recipients? International Journal of Molecular Sciences, 25(22), 12072. https://doi.org/10.3390/ijms252212072