Role of R-Loop Structure in Efficacy of RNA Elongation Synthesis by RNA Polymerase from Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. The Rationale for Model R-Loops
2.2. Formation of the Pre-Translocated Complex of RNAP with an R-Loop
2.3. The Effect of the R-Loop Structure on the Rate of RNA Extension by the TEC
2.4. The Effect of Backtracked R-Loop Structures on the Rate of RNA Extension by the TEC
2.5. The Effect of Bubble Size and Length of RNA/DNA Heteroduplex on the Rate of RNA Extension by the TEC
3. Discussion
4. Materials and Methods
4.1. Oligonucleotides Synthesis
4.2. Enzyme Purification
4.3. Microscale Thermophoresis (MST)
4.4. Time Courses of RNA Extension
4.5. PAGE Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nudler, E. RNA Polymerase Active Center: The Molecular Engine of Transcription. Annu. Rev. Biochem. 2009, 78, 335–361. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rucobo, F.W.; Cramer, P. Structural Basis of Transcription Elongation. Biochim. Biophys. Acta Gene Regul. Mech. 2013, 1829, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Vassylyev, D.G.; Vassylyeva, M.N.; Perederina, A.; Tahirov, T.H.; Artsimovitch, I. Structural Basis for Transcription Elongation by Bacterial RNA Polymerase. Nature 2007, 448, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Agapov, A.; Olina, A.; Kulbachinskiy, A. RNA Polymerase Pausing, Stalling and Bypass during Transcription of Damaged DNA: From Molecular Basis to Functional Consequences. Nucleic Acids Res. 2022, 50, 3018–3041. [Google Scholar] [CrossRef] [PubMed]
- Landick, R. Transcriptional Pausing as a Mediator of Bacterial Gene Regulation. Annu. Rev. Microbiol. 2021, 75, 291–314. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.Y.; Mishanina, T.V.; Landick, R.; Darst, S.A. Mechanisms of Transcriptional Pausing in Bacteria. J. Mol. Biol. 2019, 431, 4007–4029. [Google Scholar] [CrossRef] [PubMed]
- Saba, J.; Chua, X.Y.; Mishanina, T.V.; Nayak, D.; Windgassen, T.A.; Mooney, R.A.; Landick, R. The Elemental Mechanism of Transcriptional Pausing. Elife 2019, 8, e40981. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, J.; Treutlein, B. Single-Molecule Studies of RNA Polymerases. Chem. Rev. 2013, 113, 8377–8399. [Google Scholar] [CrossRef] [PubMed]
- Herbert, K.M.; Greenleaf, W.J.; Block, S.M. Single-Molecule Studies of RNA Polymerase: Motoring Along. Annu. Rev. Biochem. 2008, 77, 149–176. [Google Scholar] [CrossRef] [PubMed]
- Komissarova, N.; Kashlev, M. RNA Polymerase Switches between Inactivated and Activated States by Translocating Back and Forth along the DNA and the RNA. J. Biol. Chem. 1997, 272, 15329–15338. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.C.M.; Cramer, P. Structural Basis of RNA Polymerase II Backtracking, Arrest and Reactivation. Nature 2011, 471, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Toulokhonov, I.; Zhang, J.; Palangat, M.; Landick, R. A Central Role of the RNA Polymerase Trigger Loop in Active-Site Rearrangement during Transcriptional Pausing. Mol. Cell 2007, 27, 406–419. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, A.; Lin, M.; Kapanidis, A.N.; Ebright, R.H. Closing and Opening of the RNA Polymerase Trigger Loop. Proc. Natl. Acad. Sci. USA 2020, 117, 15642–15649. [Google Scholar] [CrossRef] [PubMed]
- Toulokhonov, I.; Artsimovitch, I.; Landick, R. Allosteric Control of RNA Polymerase by a Site That Contacts Nascent RNA Hairpins. Science 2001, 292, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Myasnikov, A.G.; Chen, J.; Crucifix, C.; Papai, G.; Takacs, M.; Schultz, P.; Weixlbaumer, A. Structural Basis for NusA Stabilized Transcriptional Pausing. Mol. Cell 2018, 69, 816–827.e4. [Google Scholar] [CrossRef] [PubMed]
- Koshland, D.E. The Active Site and Enzyme Action. AdV. Enzymol. 1960, 22, 45–97. [Google Scholar]
- Hammes, G.G.; Chang, Y.C.; Oas, T.G. Conformational Selection or Induced Fit: A Flux Description of Reaction Mechanism. Proc. Natl. Acad. Sci. USA 2009, 106, 13737–13741. [Google Scholar] [CrossRef] [PubMed]
- Esyunina, D.; Turtola, M.; Pupov, D.; Bass, I.; KlimǍsauskas, S.; Belogurov, G.; Kulbachinskiy, A. Lineage-Specific Variations in the Trigger Loop Modulate RNA Proofreading by Bacterial RNA Polymerases. Nucleic Acids Res. 2016, 44, 1298–1308. [Google Scholar] [CrossRef] [PubMed]
- Svetlov, V.; Artsimovitch, I. Purification of Bacterial RNA Polymerase: Tools and Protocols. In Bacterial Transcriptional Control: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Komissarova, N.; Kireeva, M.L.; Becker, J.; Sidorenkov, I.; Kashlev, M. Engineering of Elongation Complexes of Bacterial and Yeast RNA Polymerases. Methods Enzymol. 2003, 371, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Timofeyeva, N.A.; Fedorova, O.S. A Kinetic Mechanism of Repair of DNA Containing Alpha-Anomeric Deoxyadenosine by Human Apurinic/Apyrimidinic Endonuclease 1. Mol. Biosyst. 2016, 12, 3435–3446. [Google Scholar] [CrossRef] [PubMed]
R-Loops Containing Bubbles of 9–12 nt in Length | Shorthand | Type of Complex |
R-loop-9 | Pre-translocated, 9-nt bubble | |
R-loop-11 | Pre-translocated, 11-nt bubble | |
R-loop-11Comp | Pre-translocated, 11-nt bubble, 3′-terminal complementary base pair | |
R-loop-12 | Post-translocated, 12-nt bubble | |
R-loops containing a 3’ noncomplementary edge in an RNA primer | ||
R-loop-11B2 | 2-nt backtracked, 11-nt bubble, 3′-terminal mismatch of 2 nt | |
R-loop-11B3 | 3-nt backtracked, 11-nt bubble, 3′-terminal mismatch of 3 nt | |
R-loops containing a long bubble of 16, 21, or 31 nt in length | ||
R-loop-16 | Pre-translocated, 16-nt bubble | |
R-loop-21 | Pre-translocated, 21-nt bubble | |
R-loop-31 | Pre-translocated, 31-nt bubble | |
R-loop containing a quadruplex in nontemplate DNA | ||
R-loop-31Q | Pre-translocated, 31-nt bubble, quadruplex |
R-Loops | RNA Extension by 1–20 nt | RNA Extension by 17–20 nt | ||||
---|---|---|---|---|---|---|
k1Sum, s−1 | k2Sum, s−1 | [TEC]Sum, % | k117÷20, s−1 | k217÷20, s−1 | [TEC]17÷20, % | |
R-loop-9 | 0.48 ± 0.03 | (3.3 ± 0.5) × 10−5 | 56.2 ± 0.4 | 0.057 ± 0.009 | (7.8 ± 0.8) × 10−5 | 14.4 ± 0.7 |
R-loop-11 | 0.46 ± 0.03 | (5.0 ± 0.6) × 10−5 | 57.2 ± 0.4 | 0.025 ± 0.004 | 5.2 ± 0.8) × 10−5 | 11.2 ± 0.7 |
R-loop-11Comp | 0.42 ± 0.05 | (6 ± 1) × 10−5 | 57.0 ± 0.8 | 0.028 ± 0.006 | (8.7 ± 0.9) × 10−5 | 10.6 ± 0.8 |
R-loop-12 | 0.54 ± 0.07 | (6 ± 1) × 10−5 | 59.4 ± 0.6 | 0.026 ± 0.006 | (7.9 ± 0.8) × 10−5 | 8.7 ± 0.7 |
R-Loops | RNA Extension by 1–20 nt | RNA Extension by 17–20 nt | ||||
---|---|---|---|---|---|---|
k1Sum, s−1 | k2Sum, s−1 | [TEC]Sum, % | k117÷20, s−1 | k217÷20, s−1 | [TEC]17÷20, % | |
R-loop-11 | 0.46 ± 0.03 | (5.0 ± 0.6) × 10−5 | 57.2 ± 0.4 | 0.025 ± 0.004 | (5.2 ± 0.8) × 10−5 | 11.2 ± 0.7 |
R-loop-11B2 | 0.051 ± 0.007 | (7.5 ± 0.8) × 10−5 | 25.1 ± 0.9 | (5.3 ± 0.7) × 10−3 | (3.6 ± 0.4) × 10−5 | 8.9 ± 0.6 |
R-loop-11B3 | 0.059 ± 0.007 | (6.5 ± 0.8) × 10−5 | 28 ± 1 | (6.5 ± 0.6) × 10−3 | (3.0 ± 0.2) × 10−5 | 6.7 ± 0.3 |
R-Loops | RNA Extension by 1–20 nt | RNA Extension by 17–20 nt | ||||
---|---|---|---|---|---|---|
k1Sum, s−1 | k2Sum, s−1 | [TEC]Sum, % | k117÷20, s−1 | k217÷20, s−1 | [TEC]17÷20, % | |
R-loop-11 | 0.46 ± 0.03 | (5.0 ± 0.6) × 10−5 | 57.2 ± 0.4 | 0.025 ± 0.004 | 5.2 ± 0.8) × 10−5 | 11.2 ± 0.7 |
R-loop-16 | 0.18 ± 0.03 | (9.5 ± 0.9) × 10−5 | 26.6 ± 0.6 | 0.023 ± 0.002 | (4.0 ± 0.3) × 10−5 | 9.1 ± 0.3 |
R-loop-21 | 0.17 ± 0.03 | (15.1± 0.9) × 10−5 | 27.3 ± 0.7 | 0.034 ± 0.003 | (8.9± 0.4) × 10−5 | 12.8 ± 0.4 |
R-loop-31 | 0.20 ± 0.03 | (2.8 ± 0.2) × 10−5 | 14.0 ± 0.3 | 0.015 ± 0.004 | (1.7 ± 0.1) × 10−5 | 2.2 ± 0.2 |
R-loop-31Q | 0.012 ± 0.002 | (1.8 ± 0.3) × 10−5 | 18 ± 1 | (1.7 ± 0.1) × 10−3 | (0.48 ± 0.07) × 10−5 | 8.7 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeyeva, N.A.; Tsoi, E.I.; Novopashina, D.S.; Kuznetsova, A.A.; Kuznetsov, N.A. Role of R-Loop Structure in Efficacy of RNA Elongation Synthesis by RNA Polymerase from Escherichia coli. Int. J. Mol. Sci. 2024, 25, 12190. https://doi.org/10.3390/ijms252212190
Timofeyeva NA, Tsoi EI, Novopashina DS, Kuznetsova AA, Kuznetsov NA. Role of R-Loop Structure in Efficacy of RNA Elongation Synthesis by RNA Polymerase from Escherichia coli. International Journal of Molecular Sciences. 2024; 25(22):12190. https://doi.org/10.3390/ijms252212190
Chicago/Turabian StyleTimofeyeva, Nadezhda A., Ekaterina I. Tsoi, Darya S. Novopashina, Aleksandra A. Kuznetsova, and Nikita A. Kuznetsov. 2024. "Role of R-Loop Structure in Efficacy of RNA Elongation Synthesis by RNA Polymerase from Escherichia coli" International Journal of Molecular Sciences 25, no. 22: 12190. https://doi.org/10.3390/ijms252212190
APA StyleTimofeyeva, N. A., Tsoi, E. I., Novopashina, D. S., Kuznetsova, A. A., & Kuznetsov, N. A. (2024). Role of R-Loop Structure in Efficacy of RNA Elongation Synthesis by RNA Polymerase from Escherichia coli. International Journal of Molecular Sciences, 25(22), 12190. https://doi.org/10.3390/ijms252212190