Endometriosis: Future Biological Perspectives for Diagnosis and Treatment
Abstract
:1. Introduction
2. Pathophysiology of Endometriosis
2.1. Immune Dysregulation
Inflammatory Mediators | Endometrial Effect | Clinical Manifestations |
---|---|---|
Interleukins (ILs)—cytokines | Produced by macrophages, IL-6 impairs the cytotoxic function of NK cells [50], with an innate and adaptive pro-inflammatory effect [25]. IL-8 recruits neutrophils which produce IL 17A, VEGF, and cyst formation [51]; IL-19 and IL-22 are immunosuppressive and anti-inflammatory; IL-19 promotes Th2 cells, increasing the expression of IL-10 [25]. | Upregulation leads to cytokine imbalance and pro-inflammatory action, inducing pain [51]. Downregulated anti-inflammatory ILs causes endometrioma to evade immunosurveillance. |
Tumour necrosis factor (TNF)-α, | Activates nuclear factor κB (NF-κB) and hypoxia inducible factor (HIF)-1α signalling pathways, increasing cyclooxygenase (COX)-2 expression in endometriosis [52]. | Autocrine and/or paracrine cytokines regulating local immune and inflammatory responses; expression of COX-2 in peritoneal macrophages influences the severity of endometriosis, dysmenorrhea, and infertility [52]; central hyperexcitability from TNF-α [53]. |
Prostaglandins PGE2 and PGF2α | Modulates the balance ratio of Th1/Th2, regulates chemokine secretions, and inhibits lymphocyte alloreactivity. | Pro-inflammatory action leading to chronic pelvic pain [54]. |
Leukocytes—T cells 60% CD8+ T (CD8 T) Regulatory T (Treg) cells and T helper cells NK cells | Secrete pro-inflammatory cytokines (IFN-γ and TNF-α). Decrease in T reg population leads to increased systemic and local inflammation within ectopic and eutopic endometrium [55]. Kill the antigen-positive cells with cytolytic molecules perforins and granzymes [42]; NK cell cytotoxicity is diminished in patients [56]. | Pelvic pain, fertility issues, miscarriage; CD8 T is associated with autoimmune disease [43]. Chronic inflammation, strong immunosuppressive activity [55]; dysmenorrhea, dyspareunia, non-menstrual pelvic pain, rectorrhagia, dyschezia [56]. |
Neutrophils | Human neutrophil peptides (HNP 1–3) and neutrophil-activating peptide (ENA)-78 secrete cytokines CXCL10, and IL-8 secretes VEGF. | Severity of dysmenorrhea and chronic pelvic pain [31]; peritoneal immuno-inflammation, development of endometriosis; endometriotic stromal cells promoting endometriosis progression via lymphangiogenesis [57]. |
Leptin | Hormone with immunoregulatory, proinflammatory, and angiogenic effects [58]; cytokine promoting CD4+ T helper I cell proliferation, macrophage phagocytosis, secretion of inflammatory cytokines [59], production of prostaglandins. | Stimulates activation of peritoneal macrophages and increases pro-inflammatory activity and pain [59]. |
Oestrogen (17β-oestradiol) | Binding to oestrogen receptor α and β, inducing proliferation [28], increases neutrophils concentration and expression of pro-inflammatory cytokines, induces the expression of semaphorins in uterine tissue. | ERβ expression is significantly higher in ectopic endometrium [28]; establishment and progression of endometriosis. |
Neuropeptides | Substance P (SP), calcitonin gene-related peptide (CGRP) present in endometrial lesions having proinflammatory activity. Brain-derived nerve growth factor (BDNF) and neurotrophin 3 (NT3). | Activation of sensory afferent nerves and chronic state of neurogenic inflammation; neurogenesis and peripheral sensitization, hyperalgesia [44]. |
2.2. Dysbiosis and Endometriosis
2.3. Comorbidities Associated with Endometriosis
3. Disease Management Requires Improved Diagnostic Protocols
3.1. Diagnostic Alternatives for Endometriosis
3.1.1. Immune Mediators as Biomarkers
3.1.2. Extracellular Vesicles
3.1.3. Dysbiosis Biomarkers
3.2. Microfluidics and Organoids as Diagnostic Aids
4. Advanced Therapeutic Medicinal Products (ATMPs) Towards Disease Treatment
4.1. CRISPR Technology and Endometriosis
4.2. Mesenchymal Stem Cell Therapy
5. Future Direction Towards Patient Care
6. Conclusions
Funding
Conflicts of Interest
References
- Nezhat, C.; Falik, R.; McKinney, S.; King, L.P. Pathophysiology and management of urinary tract endometriosis. Nat. Rev. Urol. 2017, 14, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.; Munro, D.; Clarke, J. Endometriosis Is Undervalued: A Call to Action. Front. Glob. Womens Health 2022, 3, 902371. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis#:~:text=Key%20facts,age%20women%20and%20girls%20globally (accessed on 24 September 2024).
- Smolarz, B.; Szyłło, K.; Romanowicz, H. Endometriosis: Epidemiology, Classification, Pathogenesis, Treatment and Genetics (Review of Literature). Int. J. Mol. Sci. 2021, 22, 10554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moradi, Y.; Shams-Beyranvand, M.; Khateri, S.; Gharahjeh, S.; Tehrani, S.; Varse, F.; Tiyuri, A.; Najmi, Z. A systematic review on the prevalence of endometriosis in women. Indian J. Med. Res. 2021, 154, 446–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ray, A.; Pant, L.; Magon, N. Deciding the route for hysterectomy: Indian triage system. J. Obset. Gynaecol. India 2015, 65, 39–44. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, C.Y. Association Between Endometriosis and Prognosis of Ovarian Cancer: An Updated Meta-Analysis. Front. Oncol. 2022, 12, 732322. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Casalechi, M.; Vieira-Lopes, M.; Quessada, M.P.; Arão, T.C.; Reis, F.M. Endometriosis and related pelvic pain: Association with stress, anxiety and depressive symptoms. Minerva Obset. Gynecol. 2021, 73, 283–289. [Google Scholar] [CrossRef]
- Tsamantioti, E.S.; Mahdy, H. Endometriosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK567777/ (accessed on 23 September 2024).
- Saraswat, L.; Ayansina, D.T.; Cooper, K.G.; Bhattacharya, S.; Miligkos, D.; Horne, A.W.; Bhattacharya, S. Pregnancy outcomes in women with endometriosis: A national record linkage study. BJOG 2017, 124, 444–452. [Google Scholar] [CrossRef]
- D’Alterio, M.N.; D’Ancona, G.; Raslan, M.; Tinelli, R.; Daniilidis, A.; Angioni, S. Management challenges of deep infiltrating endometriosis. Int. J. Fertil. Steril. 2021, 15, 88–94. [Google Scholar] [CrossRef]
- McCallion, A.; Sisnett, D.J.; Zutautas, K.B.; Hayati, D.; Spiess, K.G.; Aleksieva, S. Endometriosis through an immunological lens: A pathophysiology based in immune dysregulation. Explor. Immunol. 2022, 2, 454–483. [Google Scholar] [CrossRef]
- Garvey, M. The Association between Dysbiosis and Neurological Conditions Often Manifesting with Chronic Pain. Biomedicines 2023, 11, 748. [Google Scholar] [CrossRef]
- Donnez, J.; Cacciottola, L. Endometriosis: An Inflammatory Disease That Requires New Therapeutic Options. Int. J. Mol. Sci. 2022, 23, 1518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garvey, M. Intestinal Dysbiosis: Microbial Imbalance Impacts on Colorectal Cancer Initiation, Progression and Disease Mitigation. Biomedicines 2024, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Cano-Herrera, G.; Salmun Nehmad, S.; Ruiz de Chávez Gascón, J.; Méndez Vionet, A.; van Tienhoven, X.A.; Osorio Martínez, M.F.; Muleiro Alvarez, M.; Vasco Rivero, M.X.; López Torres, M.F.; Barroso Valverde, M.J.; et al. Endometriosis: A Comprehensive Analysis of the Pathophysiology, Treatment, and Nutritional Aspects, and Its Repercussions on the Quality of Life of Patients. Biomedicines 2024, 12, 1476. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, S.; Chen, J.; Zhu, J.; Yang, J. Global Burden of Endometriosis in 204 Countries and Territories from 1990 to 2019. Clin. Exp. Obstet. Gynecol. 2022, 49, 235. [Google Scholar] [CrossRef]
- Swift, B.; Taneri, B.; Becker, C.M.; Basarir, H.; Naci, H.; Missmer, S.A.; Zondervan, K.T.; Rahmioglu, N. Prevalence, diagnostic delay and economic burden of endometriosis and its impact on quality of life: Results from an Eastern Mediterranean population. Eur. J. Public Health 2024, 34, 244–252. [Google Scholar] [CrossRef]
- Lee, S.Y.; Koo, Y.J.; Lee, D.H. Classification of endometriosis. Yeungnam Univ. J. Med. 2021, 38, 10–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vallvé-Juanico, J.; Houshdaran, S.; Giudice, L.C. The endometrial immune environment of women with endometriosis. Hum. Reprod. Update 2019, 25, 565–592. [Google Scholar] [CrossRef]
- Lamceva, J.; Uljanovs, R.; Strumfa, I. The Main Theories on the Pathogenesis of Endometriosis. Int. J. Mol. Sci. 2023, 24, 4254. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- D’Hooghe, T.M.; Debrock, S. Endometriosis, retrograde menstruation and peritoneal inflammation in women and in baboons. Hum. Reprod. Update 2002, 8, 84–88. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chen, Y.H.; Chang, H.Y.; Au, H.K.; Tzeng, C.R.; Huang, Y.H. Chronic Niche Inflammation in Endometriosis-Associated Infertility: Current Understanding and Future Therapeutic Strategies. Int. J. Mol. Sci. 2018, 19, 2385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Konrad, L.; Dietze, R.; Kudipudi, P.K.; Horné, F.; Meinhold, I. Endometriosis in MRKH cases as a proof for the coelomic metaplasia hypothesis? Reproduction 2019, 158, R41–R47. [Google Scholar] [CrossRef] [PubMed]
- Dymanowska-Dyjak, I.; Terpiłowska, B.; Morawska-Michalska, I.; Michalski, A.; Polak, G.; Terpiłowski, M.; Rahnama-Hezavah, M.; Grywalska, E. Immune Dysregulation in Endometriomas: Implications for Inflammation. Int. J. Mol. Sci. 2024, 25, 4802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Y.T.; Jiang, X.Y.; Xu, H.L.; Chen, G.; Wang, S.L.; Zhang, H.P.; Hong, L.; Jin, Q.Q.; Yao, H.; Zhang, W.Y.; et al. Autoimmune Disease-Related Hub Genes are Potential Biomarkers and Associated with Immune Microenvironment in Endometriosis. Int. J. Gen. Med. 2023, 16, 2897–2921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crispim, P.C.A.; Jammal, M.P.; Antão, P.K.A.; Micheli, D.C.; Tavares-Murta, B.M.; Murta, E.F.C.; Nomelini, R.S. IL6, IL8, and IL10 in the distinction of malignant ovarian neoplasms and endometriomas. Am. J. Reprod. Immunol. 2020, 84, e13309. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, J.; Lu, Y.; Fu, B.; Hu, W. Estrogen receptor beta promotes endometriosis progression by upregulating CD47 expression in ectopic endometrial stromal cells. J. Reprod. Immunol. 2022, 151, 103513. [Google Scholar] [CrossRef]
- Yilmaz, B.D.; Bulun, S.E. Endometriosis and nuclear receptors. Hum. Reprod. Update 2019, 25, 473–485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Surrey, E.S. GnRH agonists in the treatment of symptomatic endometriosis: A review. F S Rep. 2022, 4 (Suppl. S2), 40–45. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Zhong, Z.; Wei, C.; Liu, Y.; Zhu, X. Peritoneal immune microenvironment of endometriosis: Role and therapeutic perspectives. Front. Immunol. 2023, 14, 1134663. [Google Scholar] [CrossRef]
- Nirgianakis, K.; Ma, L.; McKinnon, B.; Mueller, M.D. Recurrence patterns after surgery in patients with different endometriosis subtypes: A long-term hospital-based cohort study. J. Clin. Med. 2020, 9, 496. [Google Scholar] [CrossRef]
- Imperiale, L.; Nisolle, M.; Noël, J.C.; Fastrez, M. Three Types of Endometriosis: Pathogenesis, Diagnosis and Treatment. State of the Art. J. Clin. Med. 2023, 12, 994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, H.C.; Lin, T.C.; Wu, M.H.; Tsai, S.J. Progesterone resistance in endometriosis: A pathophysiological perspective and potential treatment alternatives. Reprod. Med. Biol. 2024, 23, e12588. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, G.; Wang, J.; Xu, X. Cell subtypes and immune dysfunction in peritoneal fluid of endometriosis revealed by single-cell RNA-sequencing. Cell Biosci. 2021, 11, 98. [Google Scholar] [CrossRef]
- Zhang, H.; Mo, Y.; Wang, L.; Zhang, H.; Wu, S.; Sandai, D.; Shuid, A.N.; Chen, X. Potential shared pathogenic mechanisms between endometriosis and inflammatory bowel disease indicate a strong initial effect of immune factors. Front. Immunol. 2024, 15, 1339647. [Google Scholar] [CrossRef]
- Li, T.; Li, R.H.W.; Ng, E.H.Y.; Yeung, W.S.B.; Chiu, P.C.N.; Chan, R.W.S. Interleukin 6 at menstruation promotes the proliferation and self-renewal of endometrial mesenchymal stromal/stem cells through the WNT/β-catenin signalling pathway. Front. Immunol. 2024, 15, 1378863. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, Y.K.; Hu, W.T.; Tang, L.L.; Sheng, Y.R.; Wei, C.Y. Elevated heme impairs macrophage phagocytosis in endometriosis. Reproduction 2019, 158, 257–266. [Google Scholar] [CrossRef]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, F.; Liu, X.L.; Wang, W.; Dong, H.L.; Xia, Y.F.; Ruan, L.P.; Liu, L.P. Expression of MMIF, HIF-1α and VEGF in serum and endometrial tissues of patients with endometriosis. Curr. Med. Sci. 2018, 38, 499–504. [Google Scholar] [CrossRef]
- Kang, Y.J.; Cho, H.J.; Lee, Y.; Park, A.; Kim, M.J.; Jeung, I.C.; Jung, Y.W.; Jung, H.; Choi, I.; Lee, H.G.; et al. IL-17A and Th17 cells contribute to endometrial cell survival by inhibiting apoptosis and NK cell mediated cytotoxicity of endometrial cells via ERK1/2 pathway. Immune Netw. 2023, 23, e14. [Google Scholar] [CrossRef]
- Sisnett, D.J.; Zutautas, K.B.; Miller, J.E.; Lingegowda, H.; Ahn, S.H.; McCallion, A.; Bougie, O.; Lessey, B.A.; Tayade, C. The Dysregulated IL-23/TH17 Axis in Endometriosis Pathophysiology. J. Immunol. 2024, 212, 1428–1441. [Google Scholar] [CrossRef]
- Kisovar, A.; Becker, C.M.; Granne, I.; Southcombe, J.H. The role of CD8+ T cells in endometriosis: A systematic review. Front. Immunol. 2023, 14, 1225639. [Google Scholar] [CrossRef]
- Paula, R., Jr.; Oliani, A.H.; Vaz-Oliani, D.C.; D’Avila, S.C.; Oliani, S.M.; Gil, C.D. The intricate role of mast cell proteases and the annexin A1-FPR1 system in abdominal wall endometriosis. J. Mol. Histol. 2015, 46, 33–43. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Tarokh, M.; Ghaffari Novin, M.; Poordast, T.; Tavana, Z.; Nazarian, H.; Norouzian, M. Serum and peritoneal fluid cytokine profiles in infertile women with endometriosis. Iran. J. Immunol. 2019, 16, 151–162. [Google Scholar] [CrossRef]
- Montagna, P.; Capellino, S.; Villaggio, B.; Remorgida, V.; Ragni, N.; Cutolo, M.; Ferrero, S. Peritoneal fluid macrophages in endometriosis: Correlation between the expression of oestrogen receptors and inflammation. Fertil. Steril. 2008, 90, 156–164. [Google Scholar] [CrossRef]
- Ferrero, S.; Haas, S.; Remorgida, V.; Camerini, G.; Fulcheri, E.; Ragni, N.; Straub, R.H.; Capellino, S. Loss of sympathetic nerve fibers in intestinal endometriosis. Fertil. Steril. 2010, 94, 2817–2819. [Google Scholar] [CrossRef]
- Coxon, L.; Wiech, K.; Vincent, K. Is There a Neuropathic-Like Component to Endometriosis-Associated Pain? Results From a Large Cohort Questionnaire Study. Front. Pain Res. 2021, 2, 743812. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kang, Y.J.; Jeung, I.C.; Park, A.; Park, Y.J.; Jung, H.; Kim, T.D.; Lee, H.G.; Choi, I.; Yoon, S.R. An Increased Level of IL-6 Suppresses NK Cell Activity in Peritoneal Fluid of Patients with Endometriosis via Regulation of SHP-2 Expression. Hum. Reprod. 2014, 29, 2176–2189. [Google Scholar] [CrossRef]
- Takamura, M.; Osuga, Y.; Izumi, G.; Yoshino, O.; Koga, K.; Saito, A.; Hirata, T.; Hirota, Y.; Harada, M.; Hasegawa, A. Interleukin-17A Is Present in Neutrophils in Endometrioma and Stimulates the Secretion of Growth-Regulated Oncogene-α (Gro-α) from Endometrioma Stromal Cells. Fertil. Steril. 2012, 8, 1218–1224.e2. [Google Scholar] [CrossRef]
- Grund, E.M.; Kagan, D.; Tran, C.A. Tumor necrosis factor-alpha regulates inflammatory and mesenchymal responses via mitogen-activated protein kinase kinase, p38, and nuclear factor kappaB in human endometriotic epithelial cells. Mol. Pharmacol. 2008, 73, 1394–1404. [Google Scholar] [CrossRef]
- Velho, R.V.; Halben, N.; Chekerov, R.; Keye, J.; Plendl, J.; Sehouli, J.; Mechsner, S. Functional changes of immune cells: Signal of immune tolerance of the ectopic lesions in endometriosis? Reprod. Biomed. Online 2021, 43, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Zhang, C. Role of the gut microbiota in the pathogenesis of endometriosis: A review. Front. Microbiol. 2024, 15, 1363455. [Google Scholar] [CrossRef] [PubMed]
- Knez, J.; Kovačič, B.; Goropevšek, A. The role of regulatory T-cells in the development of endometriosis. Hum. Reprod. 2024, 39, 1367–1380. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.L.; Rosa, N.N.; Martins, C.; Ângelo-Dias, M.; Borrego, L.M.; Lima, J. The Role of NK and T Cells in Endometriosis. Int. J. Mol. Sci. 2024, 25, 10141. [Google Scholar] [CrossRef] [PubMed]
- Li, W.N.; Hsiao, K.Y.; Wang, C.A.; Chang, N.; Hsu, P.L.; Sun, C.H.; Wu, S.R.; Wu, M.H.; Tsai, S.J. Extracellular vesicle-associated VEGF-C promotes lymphangiogenesis and immune cells infiltration in endometriosis. Proc. Natl. Acad. Sci. USA 2020, 117, 25859–25868. [Google Scholar] [CrossRef]
- Viganὸ, P.; Somigliana, E.; Matrone, R.; Dubini, A.; Barron, C.; Vignali, M.; di Blasio, A.M. Serum Leptin Concentrations in Endometriosis. J. Clin. Endocrinol. Metab. 2002, 87, 1085–1087. [Google Scholar] [CrossRef]
- Wu, M.H.; Huang, M.F.; Chang, F.M.; Tsai, S.J. Leptin on peritoneal macrophages of patients with endometriosis. Am. J. Reprod. Immunol. 2010, 63, 214–221. [Google Scholar] [CrossRef]
- Maulitz, L.; Stickeler, E.; Stickel, S.; Habel, U.; Tchaikovski, S.N.; Chechko, N. Endometriosis, psychiatric comorbidities and neuroimaging: Estimating the odds of an endometriosis brain. Front. Neuroendocrinol. 2022, 65, 100988. [Google Scholar] [CrossRef]
- Mohling, S.I.; Holcombe, J.; Furr, R.S. Intestinal Permeability and Endometriosis: A pilot investigation. J. Endometr. Uterine Disord. 2023, 3, 100045. [Google Scholar] [CrossRef]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef]
- Uzuner, C.; Mak, J.; El-Assaad, F.; Condous, G. The bidirectional relationship between endometriosis and microbiome. Front. Endocrinol. 2023, 14, 1110824. [Google Scholar] [CrossRef] [PubMed]
- Ervin, S.M.; Li, H.; Lim, L.; Roberts, L.R.; Liang, X.; Mani, S. Gut microbial β-GlucuronidasesReactivate estrogens as components of the estrobolome that reactivate estrogens. J. Biol. Chem. 2019, 294, 18586–18599. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tan, Q.; Fu, Q.; Zhou, Y.; Hu, Y.; Tang, S. Gastrointestinal microbiome and breast cancer: Correlations, mechanisms and potential clinical implications. Breast Cancer 2017, 24, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Tan, H.; Yang, R.; Yang, F.; Liu, D.; Huang, B. Gut dysbiosis-derived beta-glucuronidase promotes the development of endometriosis. Fertil. Steril. 2023, 120, 682–694. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z. The Microbiota Continuum Along the Female Reproductive Tract and Its Relation to Uterine-Related Diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef]
- Svensson, A.; Brunkwall, L.; Roth, B. Associations Between Endometriosis and Gut Microbiota. Reprod. Sci. 2021, 28, 2367–2377. [Google Scholar] [CrossRef]
- Ata, B.; Yildiz, S.; Turkgeldi, E.; Brocal, V.P.; Dinleyici, E.C.; Moya, A. The endobiota study: Comparison of vaginal, cervical and gut microbiota between women with stage 3/4 endometriosis and healthy controls. Sci. Rep. 2019, 9, 2204. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, X.; Tang, H.; Zeng, L.; Wu, R. Microbiota composition and distribution along the female reproductive tract of women with endometriosis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 15. [Google Scholar] [CrossRef]
- Huang, L.; Liu, B.; Liu, Z.; Feng, W.; Liu, M.; Wang, Y.; Peng, D.; Fu, X.; Zhu, H.; Cui, Z.; et al. Gut Microbiota Exceeds Cervical Microbiota for Early Diagnosis of Endometriosis. Front. Cell. Infect. Microbiol. 2021, 11, 788836. [Google Scholar] [CrossRef]
- Taniguchi, F.; Azuma, Y.; Terakawa, N.; Harada, T. Lipopolysaccharide promotes the development of murine endometriosis-like lesions via nuclear factor-kappa B pathway. Fertil. Steril. 2016, 106, e271–e272. [Google Scholar] [CrossRef]
- Khan, K.N.; Fujishita, A.; Hiraki, K.; Kitajima, M.; Nakashima, M.; Fushiki, S. Bacterial contamination hypothesis: A new concept in endometriosis. Reprod. Med. Biol. 2018, 17, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Shan, J.; Ni, Z.; Cheng, W.; Zhou, L.; Zhai, D.; Sun, S. Gut microbiota imbalance and its correlations with hormone and inflammatory factors in patients with stage 3/4 endometriosis. Arch. Gynecol. Obset. 2021, 304, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, J.; Zhang, L.; Zhao, Z.; Cheng, G.; Zhang, W.; Qu, P. Endometrial microbial dysbiosis and metabolic alteration promote the development of endometrial cancer. Int. J. Gynaecol. Obstet. 2024, 167, 810–822. [Google Scholar] [CrossRef]
- Sabbadin, C.; Saccardi, C.; Andrisani, A.; Vitagliano, A.; Marin, L.; Ragazzi, E.; Bordin, L.; Ambrosini, G.; Armanini, D. Role of Renin-Angiotensin-Aldosterone System and Cortisol in Endometriosis: A Preliminary Report. Int. J. Mol. Sci. 2022, 24, 310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akiyama, S.; Sakuraba, A. Distinct roles of interleukin-17 and T helper 17 cells among autoimmune diseases. J. Transl. Autoimmun. 2021, 4, 100104. [Google Scholar] [CrossRef]
- Lee, Y.E.; Lee, S.H.; Kim, W.U. Cytokines, Vascular Endothelial Growth Factors, and PlGF in Autoimmunity: Insights From Rheumatoid Arthritis to Multiple Sclerosis. Immune Netw. 2024, 24, e10. [Google Scholar] [CrossRef]
- Neri, B.; Russo, C.; Mossa, M.; Martire, F.G.; Selntigia, A.; Mancone, R.; Calabrese, E.; Rizzo, G.; Exacoustos, C.; Biancone, L. High Frequency of Deep Infiltrating Endometriosis in Patients with Inflammatory Bowel Disease: A Nested Case-Control Study. Dig. Dis. 2023, 41, 719–728. [Google Scholar] [CrossRef]
- Nitchingham, D.; Waraich, N.; Sagar, N. P127 Endometriosis presenting as ulcerative colitis—A case report. Gut 2023, 72, A120–A121. [Google Scholar]
- Gan, R.; Yi, Y.; Li, Y. Association of endometriosis and inflammatory bowel disease (ibd), findings from epidemiological evidence to genetic links. Fertil. Steril. 2023, 120, e78–e79. [Google Scholar] [CrossRef]
- Shigesi, N.; Kvaskoff, M.; Kirtley, S.; Feng, Q.; Fang, H.; Knight, J.C.; Missmer, S.A.; Rahmioglu, N.; Zondervan, K.T.; Becker, C.M. The association between endometriosis and autoimmune diseases: A systematic review and meta-analysis. Hum. Reprod. Update 2019, 25, 486–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bin Huraib, G.; Al Harthi, F.; Arfin, M. The Protein Tyrosine Phosphatase Non-Receptor Type 22 (PTPN22) Gene Polymorphism and Susceptibility to Autoimmune Diseases. In The Recent Topics in Genetic Polymorphisms; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Vanni, V.S.; Villanacci, R.; Salmeri, N. Concomitant autoimmunity may be a predictor of more severe stages of endometriosis. Sci. Rep. 2021, 11, 15372. [Google Scholar] [CrossRef] [PubMed]
- Oală, I.E.; Mitranovici, M.I.; Chiorean, D.M.; Irimia, T.; Crișan, A.I.; Melinte, I.M.; Cotruș, T.; Tudorache, V.; Moraru, L.; Moraru, R.; et al. Endometriosis and the Role of Pro-Inflammatory and Anti-Inflammatory Cytokines in Pathophysiology: A Narrative Review of the Literature. Diagnostics 2024, 14, 312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kvaskoff, M. The Continuous Textbook of Women’s Medicine Series—Gynecology Module Endometriosis. Glob. Libr. Women’s Med. 2024, 3, ISSN: 1756-2228. [Google Scholar] [CrossRef]
- Reske, J.J.; Wilson, M.R.; Holladay, J.; Siwicki, R.A.; Skalski, H.; Harkins, S.; Adams, M.; Risinger, J.I.; Hostetter, G.; Lin, K.; et al. Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet. 2021, 17, e1009986. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rzewuska, A.M.; Żybowska, M.; Sajkiewicz, I.; Spiechowicz, I.; Żak, K.; Abramiuk, M.; Kułak, K.; Tarkowski, R. Gonadotropin-Releasing Hormone Antagonists—A New Hope in Endometriosis Treatment? J. Clin. Med. 2023, 12, 1008. [Google Scholar] [CrossRef]
- Bahall, V.; De Barry, L.; Harry, S.S. Gross Ascites Secondary to Endometriosis: A Rare Presentation in Pre-Menopausal Women. Cureus 2021, 13, e17048. [Google Scholar] [CrossRef]
- Gu, Z.Y.; Jia, S.Z.; Liu, S.; Leng, J.H. Endometrial Organoids: A New Model for the Research of Endometrial-Related Diseases. Biol. Reprod. 2020, 103, 918–926. [Google Scholar] [CrossRef]
- Rao, S.; Kapurubandara, S.; Anpalagan, A. Elevated CA 125 in a case of leaking endometrioma. Case Rep. Obstet. Gynecol. 2018, 2018, 2385048. [Google Scholar] [CrossRef]
- Karimi-Zarchi, M.; Dehshiri-Zadeh, N.; Sekhavat, L.; Nosouhi, F. Correlation of CA-125 serum level and clinico-pathological characteristic of patients with endometriosis. Int. J. Reprod. Biomed. 2016, 14, 713–718. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Fu, X.; Wu, T.; Yang, L.; Hu, C.; Wu, R. Role of Interleukin-6 and Its Receptor in Endometriosis. Med. Sci. Monit. 2017, 23, 3801–3807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anastasiu, C.V.; Moga, M.A.; Elena Neculau, A.; Bălan, A.; Scârneciu, I.; Dragomir, R.M.; Dull, A.-M.; Chicea, L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020, 21, 1750. [Google Scholar] [CrossRef] [PubMed]
- Sheta, M.; Taha, E.A.; Lu, Y.; Eguchi, T. Extracellular Vesicles: New Classification and Tumor Immunosuppression. Biology 2023, 12, 110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, M.A.; Baba, S.K.; Sadida, H.Q. Extracellular vesicles as tools and targets in therapy for diseases. Sig. Transduct. Target. Ther. 2024, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Hou, M.; Li, Y.; Zhang, Q.; Wang, S.; Ma, J. Extracellular vesicles in endometriosis: Role and potential. Front. Endocrinol. 2024, 15, 1365327. [Google Scholar] [CrossRef]
- Abudula, M.; Fan, X.; Zhang, J.; Li, J.; Zhou, X.; Chen, Y. Ectopic endometrial cell-derived exosomal moesin induces eutopic endometrial cell migration, enhances angiogenesis and cytosolic inflammation in lesions contributes to endometriosis progression. Front. Cell Dev. Biol. 2022, 10, 824075. [Google Scholar] [CrossRef]
- Zhang, L.; Li, H.; Yuan, M.; Li, D.; Sun, C.; Wang, G. Serum exosomal microRNAs as potential circulating biomarkers for endometriosis. Dis. Markers 2020, 2020, 2456340. [Google Scholar] [CrossRef]
- Pérez-Prieto, I.; Vargas, E.; Salas-Espejo, E. Gut microbiome in endometriosis: A cohort study on 1000 individuals. BMC Med. 2024, 22, 294. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chiang, A.J.; Lai, M.T.; Yan, M.J.; Tseng, C.C.; Lo, L.C.; Wan, L.; Li, C.J.; Tsui, K.H.; Chen, C.M. A more diverse cervical microbiome associates with better clinical outcomes in patients with endometriosis: A pilot study. Biomedicines 2022, 10, 174. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Naik, S.K.; Popli, P. Gut microbiota and microbiota-derived metabolites promotes endometriosis. Cell Death Discov. 2023, 9, 28. [Google Scholar] [CrossRef]
- Garvey, M. Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis. Antibiotics 2024, 13, 877. [Google Scholar] [CrossRef]
- Pemathilaka, R.L.; Caplin, J.D.; Aykar, S.S.; Montazami, R.; Hashemi, N.N. Placenta-on-a-Chip: In vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob. Chall. 2019, 3, 1800112. [Google Scholar] [CrossRef]
- Deng, Z.M.; Dai, F.F.; Wang, R.Q. Organ-on-a-chip: Future of female reproductive pathophysiological models. J. Nanobiotechnol. 2024, 22, 455. [Google Scholar] [CrossRef]
- Xiao, S.; Coppeta, J.R.; Rogers, H.B.; Isenberg, B.C.; Zhu, J.; Olalekan, S.A.; McKinnon, K.E.; Dokic, D.; Rashedi, A.S.; Haisenleder, D.J.; et al. A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat. Commun. 2017, 8, 14584. [Google Scholar] [CrossRef]
- Chen, Z.; Dai, Y.; Dong, Z.; Li, M.; Mu, X.; Zhang, R.; Jiang, X. Co-cultured endometrial stromal cells and peritoneal mesothelial cells for an in vitro model of endometriosis. Integr. Biol. 2012, 4, 1090–1095. [Google Scholar] [CrossRef]
- Tantengco, O.A.G.; Richardson, L.S.; Radnaa, E.; Kammala, A.K.; Kim, S.; Medina, P.M.B.; Han, A.; Menon, R. Modeling ascending Ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J. 2022, 36, e22551. [Google Scholar] [CrossRef]
- Ahn, J.; Yoon, M.J.; Hong, S.H.; Cha, H.; Lee, D.; Koo, H.S.; Ko, J.E.; Lee, J.; Oh, S.; Jeon, N.L.; et al. Three-dimensional microengineered vascularised endometrium-on-a-chip. Hum. Reprod. 2021, 36, 2720–2731. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boretto, M.; Maenhoudt, N.; Luo, X. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 2019, 21, 1041–1051. [Google Scholar] [CrossRef]
- Esfandiari, F.; Favaedi, R.; Heidari-Khoei, H. Insight into epigenetics of human endometriosis organoids: DNA methylation analysis of HOX genes and their cofactors. Fertil. Steril. 2021, 115, 125–137. [Google Scholar] [CrossRef]
- Gnecco, J.S.; Brown, A.; Buttrey, K.; Ives, C.; Goods, B.A.; Baugh, L.; Hernandez-Gordillo, V.; Loring, M.; Isaacson, K.B.; Griffith, L.G. Organoid co-culture model of the human endometrium in a fully synthetic extracellular matrix enables the study of epithelial-stromal crosstalk. Med 2023, 4, 554–579.e9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fitzgerald, H.C.; Dhakal, P.; Behura, S.K.; Schust, D.J.; Spencer, T.E. Self-renewing endometrial epithelial organoids of the human uterus. Proc. Natl. Acad. Sci. USA 2019, 116, 23132–23142. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/en/human-regulatory-overview/advanced-therapy-medicinal-products-overview (accessed on 23 October 2024).
- Meade, E.; Rowan, N.; Garvey, M. Bioprocessing and the Production of Antiviral Biologics in the Prevention and Treatment of Viral Infectious Disease. Vaccines 2023, 11, 992. [Google Scholar] [CrossRef]
- Warreth, S.; Harris, E. The Regulatory Landscape for ATMPs in the EU and US: A Comparison. Level 3 2020, 15, 5. [Google Scholar] [CrossRef]
- García-Izquierdo, L.; Marín-Sánchez, P.; García-Peñarrubia, P.; Martínez-Esparza, M. New Potential Pharmacological Options for Endometriosis Associated Pain. Int. J. Mol. Sci. 2024, 25, 7068. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mehakar, S.; More, A.; Dutta, S. Case Report: Implication of antiangiogenic therapy (bevacizumab) along with dichloroacetate therapy on endometriosis patient seeking infertility treatment [version 1; peer review: 1 approved with reservations]. F1000Research 2023, 12, 1169. [Google Scholar] [CrossRef]
- Alagoz, M.; Kherad, N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int. J. Mol. Med. 2020, 46, 521–534. [Google Scholar] [CrossRef]
- Peng, S.; Cai, J.; Bao, S. CMBs carrying PTX and CRISPR/Cas9 targeting C-erbB-2 plasmids interfere with endometrial cancer cells. Mol. Med. Rep. 2021, 24, 830. [Google Scholar] [CrossRef]
- Wieser, F.; Schneeberger, C.; Tong, D.; Tempfer, C.; Huber, J.C.; Wenzl, R. PROGINS receptor gene polymorphism is associated with endometriosis. Fertil. Steril. 2002, 77, 309–312. [Google Scholar] [CrossRef]
- Wang, H.; Tang, Z.; Li, T.; Liu, M.; Li, Y.; Xing, B. CRISPR/Cas9-Mediated Gene Knockout of ARID1A Promotes Primary Progesterone Resistance by Downregulating Progesterone Receptor B in Endometrial Cancer Cells. Oncol. Res. 2019, 27, 1051–1060. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Balasubramanian, V.; Saravanan, R.; Balamurugan, S.S.S.; Rajendran, S.; Joseph, L.D.; Dev, B.; Srinivasan, B.; Balunathan, N.; Shanmugasundaram, G.; Gopisetty, G.; et al. Genetic alteration of mRNA editing enzyme APOBEC3B in the pathogenesis of ovarian endometriosis. Reprod. BioMed. Online 2024, 49, 104111, ISSN 1472-6483. [Google Scholar] [CrossRef]
- Chiorean, D.M.; Mitranovici, M.-I.; Toru, H.S.; Cotoi, T.C.; Tomuț, A.N.; Turdean, S.G.; Cotoi, O.S. New Insights into Genetics of Endometriosis—A Comprehensive Literature Review. Diagnostics 2023, 13, 2265. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, J.; Gu, Z. Mesenchymal stromal cell therapies: Immunomodulatory properties and clinical progress. Stem Cell Res. Ther. 2020, 11, 345. [Google Scholar] [CrossRef]
- Sémont, A.; Mouiseddine, M.; François, A.; Demarquay, C.; Mathieu, N.; Chapel, A.; Saché, A.; Thierry, D.; Laloi, P.; Gourmelon, P. Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ. 2010, 17, 952–961. [Google Scholar] [CrossRef]
- Huang, R.; Chen, T.; Wang, S. Mesenchymal Stem Cells for Prophylaxis of Chronic Graft-vs-Host Disease After Haploidentical Hematopoietic Stem Cell Transplant: An Open-Label Randomized Clinical Trial. JAMA Oncol. 2024, 10, 220–226. [Google Scholar] [CrossRef]
- Abomaray, F.; Wagner, A.K.; Chrobok, M.; Ekblad-Nordberg, Å.; Gidlöf, S.; Alici, E.; Götherström, C. The Effect of Mesenchymal Stromal Cells Derived From Endometriotic Lesions on Natural Killer Cell Function. Front. Cell Dev. Biol. 2021, 9, 612714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krampera, M.; Le Blanc, K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021, 28, 1708–1725. [Google Scholar] [CrossRef]
- Mohamed Rasheed, Z.B.; Nordin, F.; Wan Kamarul Zaman, W.S.; Tan, Y.-F.; Abd Aziz, N.H. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. Biology 2023, 12, 108. [Google Scholar] [CrossRef]
- Kao, A.P.; Wang, K.H.; Chang, C.C. Comparative study of human eutopic and ectopic endometrial mesenchymal stem cells and the development of an in vivo endometriotic invasion model. Fertil. Steril. 2011, 95, 1308–1315. [Google Scholar] [CrossRef]
- Moggio, A.; Pittatore, G.; Cassoni, P.; Marchino, G.L.; Revelli, A.; Bussolati, B. Sorafenib inhibits growth, migration, and angiogenic potential of ectopic endometrial mesenchymal stem cells derived from patients with endometriosis. Fertil. Steril. 2012, 98, 1521–1530. [Google Scholar] [CrossRef]
- Chatzianagnosti, S.; Dermitzakis, I.; Theotokis, P.; Kousta, E.; Mastorakos, G.; Manthou, M.E. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life 2024, 14, 1161. [Google Scholar] [CrossRef]
- Kong, Y.; Shao, Y.; Ren, C. Endometrial stem/progenitor cells and their roles in immunity, clinical application, and endometriosis. Stem Cell Res. Ther. 2021, 12, 474. [Google Scholar] [CrossRef]
- Xu, S.; Chan, R.W.; Ng, E.H.; Yeung, W.S. Spatial and Temporal Characterization of Endometrial Mesenchymal Stem-like Cells Activity during the Menstrual Cycle. Exp. Cell Res. 2017, 350, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Musina, R.A.; Belyavski, A.V.; Tarusova, O.V.; Solovyova, E.V.; Sukhikh, G.T. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull. Exp. Biol. Med. 2008, 145, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, X.; Wu, Y.; Wang, Y.; Li, Y.; Xiang, C. Transplantation of human menstrual blood-derived mesenchymal stem cells alleviates Alzheimer’s disease-like pathology in APP/PS1 transgenic mice. Front. Mol. Neurosci. 2018, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Phuc, P.V.; Lam, D.H.; Ngoc, V.B.; Thu, D.T.; Nguyet, N.T.; Ngoc, P.K. Production of functional dendritic cells from menstrual blood: A new dendritic cell source for immune therapy. Vitro Cell Dev. Biol. Anim. 2011, 47, 368–375. [Google Scholar] [CrossRef]
- Flamant, S.; Loinard, C.; Tamarat, R. MSC beneficial effects and limitations, and MSC-derived extracellular vesicles as a new cell-free therapy for tissue regeneration in irradiated condition. Environ. Adv. 2023, 13, 100408, ISSN 2666-7657. [Google Scholar] [CrossRef]
- Durand, N.; Zubair, A.Z. Autologous versus allogeneic mesenchymal stem cell therapy: The pros and cons. Surgery 2022, 171, 1440–1442. [Google Scholar] [CrossRef]
- Artemova, D.; Vishnyakova, P.; Elchaninov, A.; Gantsova, E.; Sukhikh, G.; Fatkhudinov, T. M1 macrophages as promising agents for cell therapy of endometriosis. Heliyon 2024, 10, e36340. [Google Scholar] [CrossRef]
- Bendifallah, S.; Suisse, S.; Puchar, A.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Bouteiller, D.; Touboul, C.; et al. Salivary MicroRNA Signature for Diagnosis of Endometriosis. J. Clin. Med. 2022, 11, 612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Stage | Characteristics |
---|---|
I—minimal | Few superficial implants, mild adhesions. Score: 1 to 5 points |
II—mild | Deeper implants and more adhesions than in stage I. Score: 6 to 15 points |
III—moderate | Many deep endometrial implants, cysts in at least one of the ovaries; filmy adhesions may be present. Score: 16 to 40 points |
IV—severe | A large number of cysts, severe adhesions, infertility. Score: >40 points |
Type | Area Affected | Symptoms | Prevalence | Treatment and Clinical Significance |
---|---|---|---|---|
Peritoneal or superficial endometriosis | Found mainly on the pelvic peritoneum | Dysmenorrhea, chronic pelvic pain, dyschezia | 15–50% of endometriosis patients [33] | Pharmacological, involving oral contraceptives and analgesics and/or surgical treatment to remove ectopic tissue; 33% of patients are not responsive to progestin therapy [34], 20% of patients show no improvement post-surgery. Post-surgery recurrence rate of 30% to 50% [33], with some studies suggesting recurrence as high as 67% [9]. |
Ovarian endometriosis | Ovaries, fallopian tubes | Ovarian endometriomas/pseudocysts, or chocolate cysts (cystic lesions filled with dark endometrial fluid) [2], infertility, ovarian cancer [21] | 17–44% of endometriosis patients [2] | |
Deep infiltrating endometriosis | Uterosacral and cardinal ligaments, pouch of Douglas, posterior vaginal fornix, bowel and bladder [11]; tissue penetration > 5 mm, fibrosis and adhesions, extra-pelvic lesions [16] | Dyspareunia, dysmenorrhea, chronic pelvic pain, bladder and urinary symptoms, haematuria dyschezia, diarrhoea, constipation, intestinal cramping and bloating [4], infertility | 20% of endometriosis patients [11] |
Advantages | Limitations |
---|---|
Can replicate the in vivo environment, with multiple cell types interacting. | May not allow for accurate hormonal alterations present in the female reproductive system [106]. |
Additional cells, such as immune cells, can be added for disease-specific studies. | Hormone heterogeneity among individuals with or without endometriosis. |
Allows for therapeutic efficacy studies and personalised medicine. | Limited access to sources of renewable cells, i.e., primary cells. |
Provides a highly controllable research environment [106]. | Cell culture environment constraints. |
Can be analysed using various techniques [104]. | Limitations associated with the material used to produce the platforms [105]. |
Can assess metabolic processes, cytokine biomarkers, inflammation, and membrane degradation [13]. | Currently, there is a lack of universal criteria for determining microfluidic platforms. |
Standardization of systems is possible [105]. | Difficult to grow endometrial tissue long-term. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvey, M. Endometriosis: Future Biological Perspectives for Diagnosis and Treatment. Int. J. Mol. Sci. 2024, 25, 12242. https://doi.org/10.3390/ijms252212242
Garvey M. Endometriosis: Future Biological Perspectives for Diagnosis and Treatment. International Journal of Molecular Sciences. 2024; 25(22):12242. https://doi.org/10.3390/ijms252212242
Chicago/Turabian StyleGarvey, Mary. 2024. "Endometriosis: Future Biological Perspectives for Diagnosis and Treatment" International Journal of Molecular Sciences 25, no. 22: 12242. https://doi.org/10.3390/ijms252212242
APA StyleGarvey, M. (2024). Endometriosis: Future Biological Perspectives for Diagnosis and Treatment. International Journal of Molecular Sciences, 25(22), 12242. https://doi.org/10.3390/ijms252212242