Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease
Abstract
:1. Introduction
2. Results
2.1. Cohort Characteristics
2.2. Presenting Symptoms
2.2.1. Infantile Cohort
2.2.2. Juvenile Cohort
2.3. Genetic Landscape
2.3.1. Diagnostic Yield and Inheritance Pattern
2.3.2. Disease-Causing Pathogenic Genetic Variants
2.3.3. Genes Identified with Pathogenic Variants that Account for Non-Syndromic IRDs
2.3.4. Genes Identified with Pathogenic Variants that Account for Syndromic IRDs
2.4. Revision of Initial Clinical Diagnosis
2.4.1. Infantile Group
2.4.2. Juvenile Cohort, 7–17 Years
3. Discussion
4. Materials and Methods
4.1. Patient Recruitment and Phenotypic Data Collection
4.2. Clinical Examination and Genetic Testing Pathway
4.3. Molecular Genetic Analysis and Classification of Cases and Variants
4.4. Statistical Analysis
4.5. Consent and Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liew, G.; Michaelides, M.; Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014, 4, e004015. [Google Scholar] [CrossRef] [PubMed]
- Weisschuh, N.; Obermaier, C.D.; Battke, F.; Bernd, A.; Kuehlewein, L.; Nasser, F.; Zobor, D.; Zrenner, E.; Weber, E.; Wissinger, B.; et al. Genetic architecture of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over a 9-year period. Hum. Mutat. 2020, 41, 1514–1527. [Google Scholar] [CrossRef] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef] [PubMed]
- Dryja, T.P.; McGee, T.L.; Reichel, E.; Hahn, L.B.; Cowley, G.S.; Yandell, D.W.; Sandberg, M.A.; Berson, E.L. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 1990, 343, 364–366. [Google Scholar] [CrossRef]
- De Silva, S.R.; Arno, G.; Robson, A.G.; Fakin, A.; Pontikos, N.; Mohamed, M.D.; Bird, A.C.; Moore, A.T.; Michaelides, M.; Webster, A.R.; et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog. Retin. Eye Res. 2021, 82, 100898. [Google Scholar] [CrossRef]
- Hanany, M.; Rivolta, C.; Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. USA 2020, 117, 2710–2716. [Google Scholar] [CrossRef]
- Perea-Romero, I.; Gordo, G.; Iancu, I.F.; Del Pozo-Valero, M.; Almoguera, B.; Blanco-Kelly, F.; Carreno, E.; Jimenez-Rolando, B.; Lopez-Rodriguez, R.; Lorda-Sanchez, I.; et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci. Rep. 2021, 11, 1526. [Google Scholar] [CrossRef]
- Gerhardt, M.J.; Priglinger, C.S.; Rudolph, G.; Hufendiek, K.; Framme, C.; Jagle, H.; Salchow, D.J.; Anschutz, A.; Michalakis, S.; Priglinger, S.G. Gene Therapy with Voretigene Neparvovec Improves Vision and Partially Restores Electrophysiological Function in Pre-School Children with Leber Congenital Amaurosis. Biomedicines 2022, 11, 103. [Google Scholar] [CrossRef]
- Testa, F.; Melillo, P.; Di Iorio, V.; Iovino, C.; Farinaro, F.; Karali, M.; Banfi, S.; Rossi, S.; Della Corte, M.; Simonelli, F. Visual function and retinal changes after voretigene neparvovec treatment in children with biallelic RPE65-related inherited retinal dystrophy. Sci. Rep. 2022, 12, 17637. [Google Scholar] [CrossRef]
- Pontikos, N.; Arno, G.; Jurkute, N.; Schiff, E.; Ba-Abbad, R.; Malka, S.; Gimenez, A.; Georgiou, M.; Wright, G.; Armengol, M.; et al. Genetic Basis of Inherited Retinal Disease in a Molecularly Characterized Cohort of More Than 3000 Families from the United Kingdom. Ophthalmology 2020, 127, 1384–1394. [Google Scholar] [CrossRef]
- Taylor, R.L.; Parry, N.R.A.; Barton, S.J.; Campbell, C.; Delaney, C.M.; Ellingford, J.M.; Hall, G.; Hardcastle, C.; Morarji, J.; Nichol, E.J.; et al. Panel-Based Clinical Genetic Testing in 85 Children with Inherited Retinal Disease. Ophthalmology 2017, 124, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.O. Phenotype-Guided Genetic Testing of Pediatric Inherited Retinal Disease in the United Arab Emirates. Retina 2020, 40, 1829–1837. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.X.; Buckingham, K.J.; Jhangiani, S.N.; Boehm, C.; Sobreira, N.; Smith, J.D.; Harrell, T.M.; McMillin, M.J.; Wiszniewski, W.; Gambin, T.; et al. The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am. J. Hum. Genet. 2015, 97, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Prokofyeva, E.; Wilke, R.; Lotz, G.; Troeger, E.; Strasser, T.; Zrenner, E. An epidemiological approach for the estimation of disease onset in Central Europe in central and peripheral monogenic retinal dystrophies. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 885–894. [Google Scholar] [CrossRef]
- Grover, S.; Fishman, G.A.; Alexander, K.R.; Anderson, R.J.; Derlacki, D.J. Visual acuity impairment in patients with retinitis pigmentosa. Ophthalmology 1996, 103, 1593–1600. [Google Scholar] [CrossRef]
- Prokofyeva, E.; Troeger, E.; Wilke, R.; Zrenner, E. Early visual symptom patterns in inherited retinal dystrophies. Ophthalmologica 2011, 226, 151–156. [Google Scholar] [CrossRef]
- Fincham, G.S.; Pasea, L.; Carroll, C.; McNinch, A.M.; Poulson, A.V.; Richards, A.J.; Scott, J.D.; Snead, M.P. Prevention of retinal detachment in Stickler syndrome: The Cambridge prophylactic cryotherapy protocol. Ophthalmology 2014, 121, 1588–1597. [Google Scholar] [CrossRef]
- Snead, M.P.; Yates, J.R. Clinical and Molecular genetics of Stickler syndrome. J. Med. Genet. 1999, 36, 353–359. [Google Scholar] [CrossRef]
- Dockery, A.; Stephenson, K.; Keegan, D.; Wynne, N.; Silvestri, G.; Humphries, P.; Kenna, P.F.; Carrigan, M.; Farrar, G.J. Target 5000: Target Capture Sequencing for Inherited Retinal Degenerations. Genes 2017, 8, 304. [Google Scholar] [CrossRef]
- Lin, S.; Vermeirsch, S.; Pontikos, N.; Martin-Gutierrez, M.P.; Daich Varela, M.; Malka, S.; Schiff, E.; Knight, H.M.; Wright, G.; Jurkute, N.; et al. Spectrum of Genetic Variants in the Most Common Genes Causing Inherited Retinal Disease in a Large Molecularly Characterized United Kingdom Cohort. Ophthalmol. Retin. 2024, 8, 699–709. [Google Scholar] [CrossRef]
- Holtan, J.P.; Selmer, K.K.; Heimdal, K.R.; Bragadottir, R. Inherited retinal disease in Norway—A characterization of current clinical and genetic knowledge. Acta Ophthalmol. 2020, 98, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Cortinhal, T.; Santos, C.; Vaz-Pereira, S.; Marta, A.; Duarte, L.; Miranda, V.; Costa, J.; Sousa, A.B.; Peter, V.G.; Kaminska, K.; et al. Genetic profile of syndromic retinitis pigmentosa in Portugal. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 1883–1897. [Google Scholar] [CrossRef] [PubMed]
- Robson, A.G.; Frishman, L.J.; Grigg, J.; Hamilton, R.; Jeffrey, B.G.; Kondo, M.; Li, S.; McCulloch, D.L. ISCEV Standard for full-field clinical electroretinography (2022 update). Doc. Ophthalmol. 2022, 144, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, S.; Gerhardt, M.; Rudolph, G.; Priglinger, S.; Priglinger, C. Gene Therapy for Inherited Retinal Disorders: Update on Clinical Trials. Klin. Monatsblätter Augenheilkd. 2021, 238, 272–281. [Google Scholar] [CrossRef]
- Michalakis, S.; Gerhardt, M.; Rudolph, G.; Priglinger, S.; Priglinger, C. Achromatopsia: Genetics and Gene Therapy. Mol. Diagn. Ther. 2022, 26, 51–59. [Google Scholar] [CrossRef]
- Jacobson, S.G.; Cideciyan, A.V.; Ratnakaram, R.; Heon, E.; Schwartz, S.B.; Roman, A.J.; Peden, M.C.; Aleman, T.S.; Boye, S.L.; Sumaroka, A.; et al. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: Safety and efficacy in 15 children and adults followed up to 3 years. Arch. Ophthalmol. 2012, 130, 9–24. [Google Scholar] [CrossRef]
- Russell, S.R.; Drack, A.V.; Cideciyan, A.V.; Jacobson, S.G.; Leroy, B.P.; Van Cauwenbergh, C.; Ho, A.C.; Dumitrescu, A.V.; Han, I.C.; Martin, M.; et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: A phase 1b/2 trial. Nat. Med. 2022, 28, 1014–1021. [Google Scholar] [CrossRef]
- MacLaren, R.E.; Groppe, M.; Barnard, A.R.; Cottriall, C.L.; Tolmachova, T.; Seymour, L.; Clark, K.R.; During, M.J.; Cremers, F.P.; Black, G.C.; et al. Retinal gene therapy in patients with choroideremia: Initial findings from a phase 1/2 clinical trial. Lancet 2014, 383, 1129–1137. [Google Scholar] [CrossRef]
- Cukras, C.; Wiley, H.E.; Jeffrey, B.G.; Sen, H.N.; Turriff, A.; Zeng, Y.; Vijayasarathy, C.; Marangoni, D.; Ziccardi, L.; Kjellstrom, S.; et al. Retinal AAV8-RS1 Gene Therapy for X-Linked Retinoschisis: Initial Findings from a Phase I/IIa Trial by Intravitreal Delivery. Mol. Ther. 2018, 26, 2282–2294. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; Martinez-Fernandez de la Camara, C.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
Infantile Cohort (0–6 y) | Juvenile Cohort (7–17 y) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Whole Infantile Cohort | Isolated | Syndromic | Whole Juvenile Cohort | Isolated | Syndromic | |||||||
%+ | n | % | n | % | n | %+ | n | % | n | % | n | |
Nystagmus | 26.2 | 32 | 34.3 | 23 | 16.4 | 9 | 10.6 | 16 | 10.6 | 12 | 10.5 | 4 |
No visual interest | 18.0 | 22 | 20.9 | 14 | 14.5 | 8 | 4.6 | 7 | 2.7 | 3 | 10.5 | 4 |
Nyctalopia | 13.9 | 17 | 22.4 | 15 | 3.6 ** | 2 | 11.3 | 17 | 10.6 | 12 | 13.2 | 5 |
Declining VA | 12.3 | 15 | 17.9 | 12 | 5.5 | 3 | 28.5 | 43 | 31.0 | 35 | 21.1 | 8 |
Photophobia | 9.0 | 11 | 11.9 | 8 | 5.5 | 3 | 3.3 | 5 | 4.4 | 5 | 0 | 0 |
High myopia | 8.2 | 10 | 6.0 | 4 | 10.9 | 6 | 7.3 | 11 | 5.3 | 6 | 13.2 | 5 |
High hyperopia | 7.4 | 9 | 13.4 | 9 | 0 ** | 0 | 1 | 2 | 1,8 | 2 | 0 | 0 |
Strabism | 7.4 | 9 | 9.0 | 6 | 5.5 | 3 | 4,0 | 6 | 4.4 | 5 | 2.6 | 1 |
Suspected IRD | 7.4 | 9 | 3.0 | 2 | 12.7 | 7 | 9.9 | 15 | 10.6 | 12 | 7.9 | 3 |
Suspected MD | 1.6 | 2 | 3.0 | 2 | 0 | 0 | 21.2 | 32 | 25.7 | 29 | 7.9 * | 3 |
Visual field defects | 2.5 | 3 | 3.0 | 2 | 1.8 | 1 | 3,3 | 5 | 1.8 | 2 | 1.8 | 1 |
Suspected Chorioretinitis | 0 | 0 | 0 | 0 | 0 | 0 | 2.6 | 4 | 2.7 | 3 | 2.6 | 1 |
Hamartoma, retinal detachment, and others | 7.4 | 9 | 6.0 | 4 | 9.0 | 5 | 3.3 | 5 | 3.5 | 4 | 2.6 | 1 |
Infantile Cohort (0–6 y) | Juvenile Cohort (7–17 y) | |||
---|---|---|---|---|
% of Cases | n Cases | % of Cases | n Cases | |
Developmental delay | 23.4 | 13 | 15.8 | 6 |
Hearing loss | 16.4 | 9 | 21.1 | 8 |
Skeletal anomalies | 7.3 | 4 | 5.3 | 2 |
Kidney anomalies | 7.3 | 4 | 5.3 | 2 |
Polydactyly | 5.5 | 3 | 23.7 | 9 |
Cardiac anomalies | 5.5 | 3 | 7.9 | 3 |
Microcephaly | 5.5 | 3 | 5.3 | 2 |
Cerebral anomalies (other) | 3.6 | 2 | 2.6 | 1 |
Palatine cleft | 3.6 | 2 | 5.3 | 2 |
Ptosis | 1.8 | 1 | 5.3 | 2 |
Epilepsia | 1.8 | 1 | 2.6 | 1 |
Obesity | 0 | 0 | 1.8 | 1 |
Age Group: 0–6 Years | Age Group: 7–17 Years | |||||
---|---|---|---|---|---|---|
Clinical Diagnosis | % | n | Associated Genes (n Cases) | % | n | Associated Genes (n Cases) |
LCA | 32.4 | 24 | RPE65 (8), CEP290 (6), NMNAT (3), CRB1 (2), RDH12 (2), LRAT, GUCY2D, RPGRIP1 (1) | 8.5 | 11 | CEP290 (4), GUCY2D (2), RDH12 (2), CREB1, RD3, RPE65 |
Albinism | 14.9 | 11 | TYR (4), GPR143 (3), OCA2 (2), SLC45A2, TYRP1 (1) | 3.1 | 4 | TYR (3), TRPM1 |
MD and Cone–Rod Dystrophy | 10.8 | 8 | ABCA4 (6), PRPH2, PROM1 (1) | 41.3 | 52 | ABCA4 (43), ADAM9 (3) PROM1 (3), PRPH2, RP1L1, ELVOLF4 |
Achromatopsia | 8.2 | 6 | CNGB3 (4), CNGA3 (2) | 5.4 | 7 | CNGB3 (6), CNGA3 (1) |
CSNB | 8.2 | 6 | CACNAF1 (5), NYX (1) | 4.6 | 6 | CACNAF1 (5), NYX (1) |
Rod–Cone Dystrophy | 8.2 | 6 | RPB3 (2), RPGR (2), RP2 (1), PDE6A (1), | 10.3 | 13 | RP2 (5), PRPF3 (3), RPGR (3), IMPG2 (2), PDE6B (2), CNGA1, MFRP, RP1 |
Best’s Disease | 4.1 | 3 | BEST1 (3) | 10.3 | 13 | BEST1 (13) |
CHM | 2.7 | 2 | CHM (2) | 3.1 | 4 | CHM (4) |
X-linked Retinoschisis | 4.1 | 2 | RS1 (3) | 6.2 | 8 | RS1 (8) |
FEVR | 2.7 | 2 | LRP5 (2) | 3.1 | 4 | FZD4 (3), TSPAN12 |
Cone Dystrophies | 2.7 | 2 | IRXB, KCNV2 | 0.7 | 1 | IRXB |
Age Group: 0–6 Years | Age Group: 7–17 Years | |||||
---|---|---|---|---|---|---|
Clinical Diagnosis | % | n | Associated Genes (n Cases) | % | n | Associated Genes (n Cases) |
Ciliopathies (Usher syndromes excluded) | 25.9 | 15 | CEP290 (3), c5orf43 (1), IQCB1 (1), BBS1 (2), BBS2 (1), BBS10 (2), ALMS1 (2), SLCT1 (2) | 25.4 | 13 | CEP290 (2), CEP120 (1), IQCB1 (1), WDR19 (1), BBS12 (1), BBS10 (4), ALMS1 (2) |
Usher syndrome type 2 | 5.6 | 3 | USH2A (3) | 11.8 | 6 | USH2A (6) |
Usher syndrome type 1 | 5.6 | 3 | CDH23 (2), PCDH15 (1) | 7.8 | 4 | CDH23 (2), CLRN1 (1) |
Stickler syndromes | 14.8 | 8 | COL2A1 (5), COL11A1 (3) | 11.8 | 6 | COL2A1 (5), COL18A1 (1) |
Vitreoretinal disorders/malformations (syndromic) | 14.8 | 8 | NDP (3), LAMA1 (1), KIF11 (1), RNU4ATAC (1), PACS2 (1), CTNNB1 (1) | 11.8 | 6 | KIF11 (5), KMT2D (1) |
Syndromic albinism | 5.6 | 3 | LYST (1), HPS5 (1), HPS6 (1) | 3.9 | 2 | HPS6 (2) |
Macular dystrophy and cone–rod dystrophy (syndromic) | 3.7 | 2 | CLN2 (1), GLB1 (1) | 7.8 | 4 | CLN3 (2), CDH3 (2) |
Rod–cone dystrophy * | 3.7 | 2 | COH1 (1), CNNM4 (1) | 5.9 | 3 | COH1 (1), HGSNAT (1), CNNM4 (1) |
Cone dystrophy (syndr.) | 0 | 0 | 3.9 | 2 | NBAS (2) | |
Mitochondriopathies | 3.7 | 2 | Pearson (1), SCO1 (1) | 7.8 | 4 | KSS (2), MT-TL1 (1), Pearson (1) |
Phakomatoses and others | 3.6 | 2 | TSC1 (1), NF1 (1) | 3.9 | 2 | NF1(1), GRIN2A (1) |
Metabolic | 9.4 | 5 | OAT (1), GLB1 (1), MMAHCD (1), PMM2 (1), HADHA (1) | 3.9 | 2 | OAT (1), HADHA (1) |
Infantile Cohort (0–6 Years) | Juvenile Cohort (7–17 Years) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Phenotype in Infantile Group * | Isolated IRD After Genetic Testing | Syndromic IRD After Genetic Testing | Clinical Phenotype in Juvenile Cohort * | Isolated IRD After Genetic Testing | Syndromic IRD After Genetic Testing | |||||||
% * | n * | % | n | % | n | %* | n * | % | n | % | n | |
Achromatopsia | 6.3 | 8 | 75.0 | 6 | 25.0 | 2 | 4.7 | 8 | 75.0 | 6 | 25 | 2 |
Albinism | 12.6 | 6 | 81.3 | 3 | 18.8 | 3 | 2.9 | 5 | 60.0 | 3 | 40 | 2 |
Bardet–Biedl syndrome | 3.9 | 5 | 100 | 5 | 3.5 | 6 | 100 | 6 | ||||
Morbus Best | 1.6 | 2 | 100 | 2 | 7.6 | 13 | 100 | 13 | ||||
Choroideremia | 1.6 | 2 | 100 | 2 | 2.3 | 4 | 100 | 4 | ||||
CSNB | 3.1 | 4 | 100 | 4 | 2.9 | 5 | 100 | 5 | ||||
LCA | 25.2 | 32 | 75.0 | 24 | 21.9 | 7 | 7.6 | 13 | 92.3 | 12 | 7.7 | 1 |
FEVR | 1.6 | 2 | 100 | 2 | 2.3 | 4 | 100 | 4 | ||||
Stickler syndromes | 7.1 | 9 | 100 | 9 | 3.5 | 6 | 100 | 6 | ||||
Macula dystrophy (other than Stargardt and Best) | 2.4 | 3 | 100 | 3 | 7.6 | 13 | 69.2 | 9 | 30.8 | 4 | ||
Rod–cone dystrophy | 4.7 | 6 | 66.7 | 4 | 33.3 | 2 | 7.6 | 13 | 69.2 | 9 | 30.8 | 4 |
Retinitis pigmentosa | 1.6 | 2 | 100 | 2 | 12.8 | 22 | 54.5 | 12 | 45.5 | 10 | ||
X-linked Retinoschisis | 1.6 | 2 | 150 | 3 | 0.0 | 4.7 | 8 | 100 | 8 | |||
Stargardt’s disease | 3.1 | 4 | 100 | 0 | 0 | 11.6 | 20 | 100 | 20 | |||
Cone dystrophy | 0.8 | 1 | 100 | 1 | 0.0 | 2.9 | 5 | 60.0 | 3 | 40.0 | 2 | |
Cone–rod dystrophy | 3.1 | 4 | 50.0 | 2 | 50.0 | 2 | 10.5 | 18 | 94.4 | 17 | 5.6 | 1 |
Others | 8.7 | 11 | 18.2 | 2 | 81.8 | 9 | 5.2 | 9 | 100 | 9 | ||
Presymptomatic | 11.8 | 15 | 46.7 | 7 | 53.3 | 8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priglinger, C.S.; Gerhardt, M.J.; Priglinger, S.G.; Schaumberger, M.; Neuhann, T.M.; Bolz, H.J.; Mehraein, Y.; Rudolph, G. Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease. Int. J. Mol. Sci. 2024, 25, 12259. https://doi.org/10.3390/ijms252212259
Priglinger CS, Gerhardt MJ, Priglinger SG, Schaumberger M, Neuhann TM, Bolz HJ, Mehraein Y, Rudolph G. Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease. International Journal of Molecular Sciences. 2024; 25(22):12259. https://doi.org/10.3390/ijms252212259
Chicago/Turabian StylePriglinger, Claudia S., Maximilian J. Gerhardt, Siegfried G. Priglinger, Markus Schaumberger, Teresa M. Neuhann, Hanno J. Bolz, Yasmin Mehraein, and Guenther Rudolph. 2024. "Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease" International Journal of Molecular Sciences 25, no. 22: 12259. https://doi.org/10.3390/ijms252212259
APA StylePriglinger, C. S., Gerhardt, M. J., Priglinger, S. G., Schaumberger, M., Neuhann, T. M., Bolz, H. J., Mehraein, Y., & Rudolph, G. (2024). Phenotypic and Genetic Spectrum in 309 Consecutive Pediatric Patients with Inherited Retinal Disease. International Journal of Molecular Sciences, 25(22), 12259. https://doi.org/10.3390/ijms252212259