The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Searching of Data
2.2. Selection Criteria
2.3. Research Screening and Data Extraction
3. Results and Discussion
3.1. Study Layout
3.2. Dosage of CBD-Enriched Cannabis
3.3. Measuring Parameters
3.4. Potential Improvements and Adverse Effects
3.5. Evaluation of CBD Efficacy and Challenges in ASD Treatment
3.6. Regulatory and Ethical Obstacles in Conducting CBD Research for ASD
3.7. Limitations and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASD | Autism spectrum disorder |
FDA | Food and Drug Administration |
ECS | Endocannabinoid system |
eCBs | Endocannabinoids |
AEA | Anandamide |
2-AG | 2-arachidonoylglycerol |
THC | Δ9-tetrahydrocannabinol |
CBD | Cannabidiol |
CB | Cannabinoid receptor |
RCTs | Randomized controlled trials |
FAAH | Fatty acid amide hydrolase |
TRPV | Transient receptor potential cation channel subfamily V member |
GABA | γ aminobutyric acid |
GPR55 | G protein coupled receptor 55 |
PPARγ | Peroxisome proliferator activated receptor gamma |
5-HT | Serotonin 5HT receptor |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
- Courchesne, E.; Pramparo, T.; Gazestani, V.H.; Lombardo, M.V.; Pierce, K.; Lewis, N.E. The ASD Living Biology: From cell proliferation to clinical phenotype. Mol. Psychiatry 2019, 24, 88–107. [Google Scholar] [CrossRef] [PubMed]
- Parker, W.; Hornik, C.D.; Bilbo, S.; Holzknecht, Z.E.; Gentry, L.; Rao, R.; Lin, S.S.; Herbert, M.R.; Nevison, C.D. The role of oxidative stress, inflammation and acetaminophen exposure from birth to early childhood in the induction of autism. J. Int. Med. Res. 2017, 45, 407–438. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Scattoni, M.L.; Fatta, L.M.; Micai, M.; Sali, M.E.; Bellomo, M.; Salvitti, T.; Fulceri, F.; Castellano, A.; Molteni, M.; Gambino, G.; et al. Autism spectrum disorder prevalence in Italy: A nationwide study promoted by the Ministry of Health. Child Adolesc. Psychiatry Ment. Health 2023, 17, 125. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, M.O.; Lu, F.; Macklin, E.A.; Handen, B.L. Factors associated with DSM-5 severity level ratings for autism spectrum disorder. Autism 2019, 23, 468–476. [Google Scholar] [CrossRef]
- Hyman, S.L.; Levy, S.E.; Myers, S.M. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef]
- Malow, B.A.; Katz, T.; Reynolds, A.M.; Shui, A.; Carno, M.; Connolly, H.V.; Coury, D.; Bennett, A.E. Sleep difficulties and medications in children with autism spectrum disorders: A registry study. Pediatrics 2016, 137 (Suppl. 2), S98–S104. [Google Scholar] [CrossRef]
- Touw, M. The religious and medicinal uses of Cannabis in China, India and Tibet. J. Psychoact. Drugs 1981, 13, 23–34. [Google Scholar] [CrossRef]
- Prenderville, J.A.; Kelly, Á.M.; Downer, E.J. The role of cannabinoids in adult neurogenesis. Br. J. Pharmacol. 2015, 172, 3950–3963. [Google Scholar] [CrossRef]
- Zamberletti, E.; Gabaglio, M.; Parolaro, D. The endocannabinoid system and autism spectrum disorders: Insights from animal models. Int. J. Mol. Sci. 2017, 18, 1916. [Google Scholar] [CrossRef]
- Fusar-Poli, L.; Cavone, V.; Tinacci, S.; Concas, I.; Petralia, A.; Signorelli, M.S.; Díaz-Caneja, C.M.; Aguglia, E. Cannabinoids for people with ASD: A systematic review of published and ongoing studies. Brain Sci. 2020, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Makkar, R.; Sehgal, A.; Singh, S.; Makeen, H.A.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Bungau, S. Exploration of multiverse activities of endocannabinoids in biological systems. Int. J. Mol. Sci. 2022, 23, 5734. [Google Scholar] [CrossRef]
- Parrella, N.-F.; Hill, A.T.; Enticott, P.G.; Barhoun, P.; Bower, I.S.; Ford, T.C. A systematic review of cannabidiol trials in neurodevelopmental disorders. Pharmacol. Biochem. Behav. 2023, 230, 173607. [Google Scholar] [CrossRef] [PubMed]
- Nezgovorova, V.; Ferretti, C.; Taylor, B.; Shanahan, E.; Uzunova, G.; Hong, K.; Devinsky, O.; Hollander, E. Potential of cannabinoids as treatments for autism spectrum disorders. J. Psychiatr. Res. 2021, 137, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Robinson-Agramonte, M.d.L.A.; García, E.N.; Guerra, J.F.; Hurtado, Y.V.; Antonucci, N.; Semprún-Hernández, N.; Schultz, S.; Siniscalco, D. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int. J. Mol. Sci. 2022, 23, 3033. [Google Scholar] [CrossRef]
- Erbescu, A.; Papuc, S.M.; Budisteanu, M.; Arghir, A.; Neagu, M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front. Psychiatry 2022, 13, 1006612. [Google Scholar] [CrossRef]
- Su, T.; Yan, Y.; Li, Q.; Ye, J.; Pei, L. Endocannabinoid system unlocks the puzzle of autism treatment via microglia. Front. Psychiatry 2021, 12, 734837. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Liu, Y.; Xie, S.; Wang, L.; Li, D.; Li, L.; Wang, F.; Zhang, Y.; Xia, W.; Sun, C.; et al. Alterations of the endocannabinoid system and its therapeutic potential in autism spectrum disorder. Open Biol. 2021, 11, 200306. [Google Scholar] [CrossRef]
- Mock, E.D.; Gagestein, B.; van der Stelt, M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog. Lipid Res. 2023, 89, 101194. [Google Scholar] [CrossRef]
- Ibarra-Lecue, I.; Pilar-Cuéllar, F.; Muguruza, C.; Florensa-Zanuy, E.; Díaz, Á.; Urigüen, L.; Castro, E.; Pazos, A.; Callado, L.F. The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem. Pharmacol. 2018, 157, 97–107. [Google Scholar] [CrossRef]
- Schultz, S.; Siniscalco, D. Endocannabinoid system involvement in autism spectrum disorder: An overview with potential therapeutic applications. AIMS Mol. Sci. 2019, 6, 27–37. [Google Scholar] [CrossRef]
- Aishworiya, R.; Valica, T.; Hagerman, R.; Restrepo, B. An update on psychopharmacological treatment of autism spectrum disorder. Neurotherapeutics 2023, 19, 248–262. [Google Scholar] [CrossRef]
- Pietropaolo, S.; Bellocchio, L.; Bouzón-Arnáiz, I.; Yee, B.K. The role of the endocannabinoid system in autism spectrum disorders: Evidence from mouse studies. Prog. Mol. Biol. Transl. Sci. 2020, 173, 183–208. [Google Scholar] [PubMed]
- Hill, M.N.; Haney, M.; Hillard, C.J.; Karhson, D.S.; Vecchiarelli, H.A. The endocannabinoid system as a putative target for the development of novel drugs for the treatment of psychiatric illnesses. Psychol. Med. 2023, 53, 7006–7024. [Google Scholar] [CrossRef] [PubMed]
- Karhson, D.S.; Krasinska, K.M.; Dallaire, J.A.; Libove, R.A.; Phillips, J.M.; Chien, A.S.; Garner, J.P.; Hardan, A.Y.; Parker, K.J. Plasma anandamide concentrations are lower in children with autism spectrum disorder. Mol. Autism 2018, 9, 18. [Google Scholar] [CrossRef]
- Aran, A.; Eylon, M.; Harel, M.; Polianski, L.; Nemirovski, A.; Tepper, S.; Schnapp, A.; Cassuto, H.; Wattad, N.; Tam, J. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol. Autism 2019, 10, 2. [Google Scholar] [CrossRef]
- Hohmann, U.; Pelzer, M.; Kleine, J.; Hohmann, T.; Ghadban, C.; Dehghani, F. Opposite effects of neuroprotective cannabinoids, palmitoylethanolamide, and 2-arachidonoylglycerol on function and morphology of microglia. Front. Neurosci. 2019, 13, 1180. [Google Scholar] [CrossRef]
- Boleti, A.P.d.A.; Frihling, B.E.F.; e Silva, P.S.; Cardoso, P.H.d.O.; de Moraes, L.F.R.; Rodrigues, T.A.A.; Biembengute, M.E.F.; Koolen, H.H.F.; Migliolo, L. Biochemical aspects and therapeutic mechanisms of cannabidiol in epilepsy. Neurosci. Biobehav. Rev. 2022, 132, 1214–1228. [Google Scholar] [CrossRef]
- Liu, S.; He, Z.; Li, J. Long-term efficacy and adverse effects of cannabidiol in adjuvant treatment of drug-resistant epilepsy: A systematic review and meta-analysis. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231207755. [Google Scholar] [CrossRef]
- Malabadi, R.B.; Kolkar, K.P.; Chalannavar, R.K. Medical Cannabis sativa (Marijuana or Drug type); The story of discovery of Δ9-Tetrahydrocannabinol (THC). Int. J. Innov. Sci. Res. Rev. 2023, 5, 4134–4143. [Google Scholar]
- Wei, D.; Dinh, D.; Lee, D.; Li, D.; Anguren, A.; Moreno-Sanz, G.; Gall, C.M.; Piomelli, D. Enhancement of anandamide-mediated endocannabinoid signaling corrects autism-related social impairment. Cannabis Cannabinoid Res. 2016, 1, 81–89. [Google Scholar] [CrossRef]
- Manduca, A.; Carbone, E.; Schiavi, S.; Cacchione, C.; Buzzelli, V.; Campolongo, P.; Trezza, V. The neurochemistry of social reward during development: What have we learned from rodent models? J. Neurochem. 2021, 157, 1408–1435. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzi, J.F.C.; Ferreira, F.R.; Silva-Amaral, D.; Lima, D.A.; Hallak, J.E.C.; Zuardi, A.W.; Del-Bel, E.A.; Guimarães, F.S.; Costa, K.C.M.; Campos, A.C.; et al. Cannabidiol for the treatment of autism spectrum disorder: Hope or hype? Psychopharmacology 2022, 239, 2713–2734. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.; Pawliuk, C.; Ip, A.; Huh, L.; Rassekh, S.R.; Oberlander, T.F.; Siden, H. Medicinal cannabis in children and adolescents with autism spectrum disorder: A scoping review. Child Care Health Dev. 2022, 48, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Silva Junior, E.A.; Medeiros, W.M.; Torro, N.; Sousa, J.M.; Almeida, I.B.; Costa, F.B.; Pontes, K.M.; Nunes, E.L.; Rosa, M.D.; Albuquerque, K.L. Cannabis and cannabinoid use in autism spectrum disorder: A systematic review. Trends Psychiatry Psychother. 2021, 44, e20200149. [Google Scholar] [CrossRef] [PubMed]
- Hudson, R.; Renard, J.; Norris, C.; Rushlow, W.J.; Laviolette, S.R. Cannabidiol counteracts the psychotropic side-effects of δ-9-tetrahydrocannabinol in the ventral hippocampus through bidirectional control of erk1–2 phosphorylation. J. Neurosci. 2019, 39, 8762–8777. [Google Scholar] [CrossRef]
- Englund, A.; Oliver, D.; Chesney, E.; Chester, L.; Wilson, J.; Sovi, S.; De Micheli, A.; Hodsoll, J.; Fusar-Poli, P.; Strang, J.; et al. Does cannabidiol make cannabis safer? A randomised, double-blind, cross-over trial of cannabis with four different CBD: THC ratios. Neuropsychopharmacology 2023, 48, 869–876. [Google Scholar] [CrossRef]
- Di Marzo, V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders. Dialogues Clin. Neurosci. 2020, 22, 259–269. [Google Scholar] [CrossRef]
- Cristino, L.; Bisogno, T.; Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020, 16, 9–29. [Google Scholar] [CrossRef]
- Bridgeman, M.B.; Abazia, D.T. Medicinal cannabis: History, pharmacology, and implications for the acute care setting. Pharm. Ther. 2017, 42, 180–188. [Google Scholar]
- Henson, J.D.; Vitetta, L.; Hall, S. Tetrahydrocannabinol and cannabidiol medicines for chronic pain and mental health conditions. Inflammopharmacology 2022, 30, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 10, 372. [Google Scholar] [CrossRef]
- Bilge, S.; Ekici, B. CBD-enriched cannabis for autism spectrum disorder: An experience of a single center in Turkey and reviews of the literature. J. Cannabis Res. 2021, 3, 53. [Google Scholar] [CrossRef] [PubMed]
- Hacohen, M.; Stolar, O.E.; Berkovitch, M.; Elkana, O.; Kohn, E.; Hazan, A.; Heyman, E.; Sobol, Y.; Waissengreen, D.; Gal, E.; et al. Children and adolescents with ASD treated with CBD-rich cannabis exhibit significant improvements particularly in social symptoms: An open label study. Transl. Psychiatry 2022, 12, 375. [Google Scholar] [CrossRef] [PubMed]
- Aran, A.; Harel, M.; Cassuto, H.; Polyansky, L.; Schnapp, A.; Wattad, N.; Shmueli, D.; Golan, D.; Castellanos, F.X. Cannabinoid treatment for autism: A proof-of-concept randomized trial. Mol. Autism 2021, 12, 6. [Google Scholar] [CrossRef]
- Silva Junior, E.A.; Medeiros, W.M.; Santos, J.P.; Sousa, J.M.; Costa, F.B.; Pontes, K.M.; Borges, T.C.; Neto Segundo, C.E.; Andrade e Silva, A.H.; Nunes, E.L.; et al. Evaluation of the efficacy and safety of cannabidiol-rich cannabis extract in children with autism spectrum disorder: Randomized, double-blind and controlled placebo clinical trial. Trends Psychiatry Psychother. 2022, 26, 44. [Google Scholar] [CrossRef]
- Schleider, L.B.-L.; Mechoulam, R.; Sikorin, I.; Naftali, T.; Novack, V. Adherence, safety, and effectiveness of medical cannabis and epidemiological characteristics of the patient population: A prospective study. Front. Med. 2022, 9, 827849. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef]
- Berman, P.; Futoran, K.; Lewitus, G.M.; Mukha, D.; Benami, M.; Shlomi, T.; Meiri, D. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci. Rep. 2018, 8, 14280. [Google Scholar] [CrossRef]
- Campos, A.C.; Fogaça, M.V.; Scarante, F.F.; Joca, S.R.L.; Sales, A.J.; Gomes, F.V.; Sonego, A.B.; Rodrigues, N.S.; Galve-Roperh, I.; Guimarães, F.S. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders. Front. Pharmacol. 2017, 8, 269. [Google Scholar] [CrossRef]
- Cifelli, P.; Ruffolo, G.; De Felice, E.; Alfano, V.; van Vliet, E.A.; Aronica, E.; Palma, E. Phytocannabinoids in neurological diseases: Could they restore a physiological GABAergic transmission? Int. J. Mol. Sci. 2020, 21, 723. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Lynskey, M.T. Candidate genes for cannabis use disorders: Findings, challenges and directions. Addiction 2009, 104, 518–532. [Google Scholar] [CrossRef]
- Babayeva, M.; Loewy, Z.G. Cannabis pharmacogenomics: A path to personalized medicine. Curr. Issues Mol. Biol. 2023, 45, 3479–3514. [Google Scholar] [CrossRef] [PubMed]
- Holdman, R.; Vigil, D.; Robinson, K.; Shah, P.; Contreras, A.E. Safety and efficacy of medical cannabis in autism spectrum disorder compared with commonly used medications. Cannabis Cannabinoid Res. 2022, 7, 451–463. [Google Scholar] [CrossRef]
- Balachandran, P.; Elsohly, M.; Hill, K.P. Cannabidiol Interactions with Medications, Illicit Substances, and Alcohol: A Comprehensive Review. J. Gen. Intern. Med. 2021, 36, 2074–2084. [Google Scholar] [CrossRef]
- Bansal, S.; Zamarripa, C.A.; Spindle, T.R.; Weerts, E.M.; Thummel, K.E.; Vandrey, R.; Paine, M.F.; Unadkat, J.D. Evaluation of Cytochrome P450-Mediated Cannabinoid-Drug Interactions in Healthy Adult Participants. Clin. Pharmacol. Ther. 2023, 114, 693–703. [Google Scholar] [CrossRef]
- Huddart, R.; Hicks, J.K.; Ramsey, L.B.; Strawn, J.R.; Smith, D.M.; Babilonia, M.B.; Altman, R.B.; Klein, T.E. PharmGKB summary: Sertraline pathway, pharmacokinetics. Pharmacogenetics Genom. 2020, 30, 26–33. [Google Scholar] [CrossRef]
- Anciones, C.; Gil-Nagel, A. Adverse effects of cannabinoids. Epileptic Disord. Int. Epilepsy J. Videotape 2020, 22 (Suppl. S1), 29–32. [Google Scholar] [CrossRef]
- Bhaskar, A.; Bell, A.; Boivin, M.; Briques, W.; Brown, M.; Clarke, H.; Cyr, C.; Eisenberg, E.; Silva, R.F.d.O.; Frohlich, E.; et al. Consensus recommendations on dosing and administration of medical cannabis to treat chronic pain: Results of a modified Delphi process. J. Cannabis Res. 2021, 3, 22. [Google Scholar] [CrossRef]
- Saleska, J.L.; Pauli, E.K.; Rezvan, P.; Cobb, O.; Chen, J.; Thorogood, P.; Backonja, M.; Colwell, C.S.; Loewy, D.; Russo, E.; et al. The safety and effectiveness of commercially available cannabidiol products for health and well-being: A randomized, multi-arm, open-label waitlist-controlled trial. Integr. Med. Rep. 2022, 1, 215–226. [Google Scholar] [CrossRef]
- Lopez, H.L.; Cesareo, K.R.; Raub, B.; Kedia, A.W.; Sandrock, J.E.; Kerksick, C.M.; Ziegenfuss, T.N. Effects of hemp extract on markers of wellness, stress resilience, recovery and clinical biomarkers of safety in overweight, but otherwise healthy subjects. J. Diet. Suppl. 2020, 17, 561–586. [Google Scholar] [CrossRef] [PubMed]
- Purcell, J.M.; Passley, T.M.; Leheste, J.R. The cannabidiol and marijuana research expansion act: Promotion of scientific knowledge to prevent a national health crisis. Lancet Reg. Health—Am. 2022, 14, 100325. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Erridge, S.; Salazar, O.; Mangal, N.; Couch, D.; Pacchetti, B.; Sodergren, M.H. Real world evidence in medical cannabis research. Ther. Innov. Regul. Sci. 2022, 56, 8–14. [Google Scholar] [CrossRef] [PubMed]
- McGregor, I.S.; Cairns, E.A.; Abelev, S.; Cohen, R.; Henderson, M.; Couch, D.; Arnold, J.C.; Gauld, N. Access to cannabidiol without a prescription: A cross-country comparison and analysis. Int. J. Drug Policy 2020, 85, 102935. [Google Scholar] [CrossRef] [PubMed]
- Gidal, B.E.; Vandrey, R.; Wallin, C.; Callan, S.; Sutton, A.; Saurer, T.B.; Triemstra, J.L. Product labeling accuracy and contamination analysis of commercially available cannabidiol product samples. Front. Pharmacol. 2024, 15, 1335441. [Google Scholar] [CrossRef]
- Goodman, S.; Wadsworth, E.; Schauer, G.; Hammond, D. Use and perceptions of cannabidiol products in Canada and in the United States. Cannabis Cannabinoid Res. 2022, 7, 355–364. [Google Scholar] [CrossRef]
- Brunetti, P.; Faro, A.F.L.; Pirani, F.; Berretta, P.; Pacifici, R.; Pichini, S.; Busardo, F.P. Pharmacology and legal status of cannabidiol. Ann. Dell’istituto Super. Sanità 2020, 56, 285–291. [Google Scholar] [CrossRef]
- Li, J.; Carvajal, R.; Bruner, L.; Kaminski, N.E. The current understanding of the benefits, safety, and regulation of cannabidiol in consumer products. Food Chem. Toxicol. 2021, 157, 112600. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Cannabis and Cannabis-Derived Compounds: Quality Considerations for Clinical Research-Guidance for Industry; Food and Drug Administration Center for Drug Evaluation Research (CDER): Silver Spring, MD, USA, 2020.
- Martin, J.H.; Hill, C.; Walsh, A.; Efron, D.; Taylor, K.; Kennedy, M.; Galettis, R.; Lightfoot, P.; Hanson, J.; Irving, H.; et al. Clinical trials with cannabis medicines—Guidance for ethics committees, governance officers and researchers to streamline ethics applications and ensuring patient safety: Considerations from the Australian experience. Trials 2020, 21, 932. [Google Scholar] [CrossRef]
- Giannouli, V. Violence in severe mental illness: Is cognition missing in the associations with ethnicity, cannabis and alcohol? Australas. Psychiatry 2017, 25, 633. [Google Scholar] [CrossRef]
Author | Study Methodology | Population Size | Age | Dose Details | Measuring Parameters | Findings | Summary |
---|---|---|---|---|---|---|---|
Aran et al., 2021 [46] | Randomized, double-blind, placebo-controlled crossover comparison of whole plant extract, pure cannabinoids, or placebo solution consisting of two 12 week treatment periods. | 150 children and adolescents with ASD underwent treatment, with 12% attrition overall | 5–21 years | During both treatment periods, the study participants received in drops either (1) whole plant extract CBD and THC at a ratio of 20:1 or (2) pure cannabinoids at a ratio of 20:1. The maximum daily intake was 420 mg of CBD and 21 mg of THC. Initial dosage: 0.05 mg/kg/d THC and 1 mg/kg/d CBD. Orally administered in three split doses, the daily total was titrated every other day based on body weight (20–40 kg: 0.5 mg/kg/d of THC and up to 10 mg/kg body weight of CBD per day; over 40 kg: 0.375 mg/kg/d of THC per day and 7.5 mg/kg body weight of CBD). | Baseline: ADOS-2, VABS, CARS2-ST Primary: HSQ-ASD, CG-I Secondary: SRS-2, APSI, adverse events |
| According to this study, cannabinoid treatment, particularly whole plant extract, may be able to benefit people with ASD by improving their primary symptoms and minimizing disruptive behaviors in a way that is tolerable. |
Bilge & Ekici 2021 [44] | Retrospective analysis of CBD-enriched oral drops, with average treatment duration of 6.5 months in long observational study. | 33 children with ASD (27 males and 6 females) underwent treatment, and 31 participants completed the study | Mean age in years = 7.7 ± 5.5 | Two CBD-enriched cannabis brands were used with full-spectrum CBD and trace THC (less than 3%). Average daily dose of CBD-enriched cannabis was 0.7 mg/kg (0.3–2 mg/kg). The maximum dose of CBD was not higher than 40 mg/day. | Outcomes were assessed both before and after therapy based on clinical interviews and parental reports conducted during follow-up visits. | As per parents’ reports, the main improvements were a decrease in behavioral problems (n = 10, 32.2%), increase in expressive language (n = 7, 22.5%), improvement in cognition (n = 4, 12.9%), increase in social interaction (n = 3, 9.6%), and decrease in stereotypes (n = 1, 3.2%), with no change in daily life activity reported in 6 patients (19.35%). Adverse events reported were restlessness (n = 7, 22%), increased stereotypes (n = 1, 3%), and generalized seizures (n = 1, 3%). | This study on CBD-enriched cannabis treatment for autism spectrum disorder found that using lower doses of CBD and trace THC showed potential in treating behavioral issues related to autism without causing severe negative effects. |
Hacohen et al., 2022 [45] | A prospective open-label study on whole plant extract drops for a period of 6 months. | 110 participants with ASD (65 males) underwent treatment, and 82 participants completed the study | 5–25 years | Cannabis whole plant extract in oil with CBD:THC ratio of 20:1. Initially one drop daily (drop contained 0.3 mg THC and 5.7 mg CBD) with gradual increase in dosage per response. Maximum dose of CBD was 10 mg/kg/day (or a total of 400 mg/day), and that for THC was 0.5 mg/kg/day (or a total of 20 mg/day). | Baseline and after 6 months: ADOS-2, age-appropriate Wechsler test, Vineland-3 scales, and SRS-2 |
| This study indicates that treatment with CBD-rich cannabis in children and adolescents with ASD may lead to enhancements, especially in social communication skills, as observed through standardized clinical assessments. |
Silva et al., 2022 [47] | Randomized, double-blind, placebo-controlled trial comparing treatment with CBD-rich cannabis extract and a control placebo for 12 weeks. | 60 participants with ASD underwent treatment with CBD-rich cannabis extract (n = 31, male = 25) or a placebo (n = 29, male = 27) | 5–11 years | Concentration of CBD-rich cannabis extract was 0.5% (5 mg/mL) with a CBD:THC ratio of 9:1. Three drops was the daily dose, gradually increasing by 2 drops twice in a week per day in line with improvement, with a maximum of up to 70 drops for the daily dose. The average number of drops being taken was 47.42 ± 15.22 (treatment group). | The outcomes were assessed using a semi-structured interview questionnaire from the caregivers both before and after the clinical trial. | Significant improvement found in CBD-rich cannabis extract treatment group (n = 31) for social interaction (p = 0.0002), anxiety (p = 0.016), psychomotor agitation (p = 0.0029), number of meals per day (p = 0.04), and concentration (significant in mild ASD cases; p = 0.01), while 3 children (9.7%) had mild adverse effects like colic, weight gain, dizziness, and insomnia. | Study findings suggest that CBD-rich cannabis extract might be a promising therapeutic for children with ASD, being found to significantly improve social interaction and emphasizing the need for further research to confirm these results and determine the optimal dosage and treatment duration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawed, B.; Esposito, J.E.; Pulcini, R.; Zakir, S.K.; Botteghi, M.; Gaudio, F.; Savio, D.; Martinotti, C.; Martinotti, S.; Toniato, E. The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 12453. https://doi.org/10.3390/ijms252212453
Jawed B, Esposito JE, Pulcini R, Zakir SK, Botteghi M, Gaudio F, Savio D, Martinotti C, Martinotti S, Toniato E. The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(22):12453. https://doi.org/10.3390/ijms252212453
Chicago/Turabian StyleJawed, Bilal, Jessica Elisabetta Esposito, Riccardo Pulcini, Syed Khuram Zakir, Matteo Botteghi, Francesco Gaudio, Daniele Savio, Caterina Martinotti, Stefano Martinotti, and Elena Toniato. 2024. "The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review" International Journal of Molecular Sciences 25, no. 22: 12453. https://doi.org/10.3390/ijms252212453
APA StyleJawed, B., Esposito, J. E., Pulcini, R., Zakir, S. K., Botteghi, M., Gaudio, F., Savio, D., Martinotti, C., Martinotti, S., & Toniato, E. (2024). The Evolving Role of Cannabidiol-Rich Cannabis in People with Autism Spectrum Disorder: A Systematic Review. International Journal of Molecular Sciences, 25(22), 12453. https://doi.org/10.3390/ijms252212453