Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower
Abstract
:1. Introduction
2. Mast Cells in Upper Airways
2.1. Allergic Rhinitis
Role of the Mast Cells in Pathophysiology of Allergic Rhinitis
2.2. Non-Allergic Rhinitis (NAR)
Role of the Mast Cells in the Pathophysiology of Non-Allergic Rhinitis
2.3. Chronic Rhinosinusitis with Nasal Polyps
Role of the Mast Cells in Pathophysiology of Chronic Rhinosinusitis with Nasal Polyps
3. Treatment of Rhinopaties Focusing on Mast-Cell Centered Therapies
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ehrlich, P. Beiträge zur Theorie und Praxis der histologischen Färbung. Collect. Pap. Paul Ehrlich 2013, 4, 29–64. [Google Scholar] [CrossRef]
- Meiners, J.; Reitz, M.; Rüdiger, N.; Turner, J.E.; Heepmann, L.; Rudolf, L.; Hartmann, W.; McSorley, H.J.; Breloer, M. IL-33 facilitates rapid expulsion of the parasitic nematode Strongyloides ratti from the intestine via ILC2- And IL-9-driven mast cell activation. PLoS Pathog. 2020, 16, e1009121. [Google Scholar] [CrossRef] [PubMed]
- Piliponsky, A.M.; Romani, L. The contribution of mast cells to bacterial and fungal infection immunity. Immunol. Rev. 2018, 282, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Levi-Schaffer, F.; Gibbs, B.F.; Hallgren, J.; Pucillo, C.; Redegeld, F.; Siebenhaar, F.; Vitte, J.; Mezouar, S.; Michel, M.; Puzzovio, P.G.; et al. Selected recent advances in understanding the role of human mast cells in health and disease. J. Allergy Clin. Immunol. 2022, 149, 1833–1844. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Maurer, M.; Metcalfe, D.D.; Pejler, G.; Sagi-Eisenberg, R.; Nilsson, G. The ingenious mast cell: Contemporary insights into mast cell behavior and function. Allergy Eur. J. Allergy Clin. Immunol. 2022, 77, 83–99. [Google Scholar] [CrossRef]
- Kirshenbaum, A. Demostration that human mast cells arise from progenitor cell population that is CD44. J Immunol. 1991, 94, 2333–2342. [Google Scholar]
- Holt, P.G.; Jones, C.A. The development of the immune system during pregnancy and early life. Allergy Eur. J. Allergy Clin. Immunol. 2000, 55, 688–697. [Google Scholar] [CrossRef]
- Schuster, C.; Vaculik, C.; Prior, M.; Fiala, C.; Mildner, M.; Eppel, W.; Stingl, G.; Elbe-Bürger, A. Phenotypic characterization of leukocytes in prenatal human dermis. J. Investig. Dermatol. 2012, 132, 2581–2592. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Hallgren, J. Mast cell progenitors: Origin, development and migration to tissues. Mol. Immunol. 2015, 63, 9–17. [Google Scholar] [CrossRef]
- Murphy, R.C.; Hallstrand, T.S. Exploring the origin and regulatory role of mast cells in asthma. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 71–78. [Google Scholar] [CrossRef]
- Dahlin, J.S.; Ekoff, M.; Grootens, J.; Löf, L.; Amini, R.M.; Hagberg, H.; Ungerstedt, J.S.; Olsson-Strömberg, U.; Nilsson, G. KIT signaling is dispensable for human mast cell progenitor development. Blood 2017, 130, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Derakhshan, T.; Boyce, J.A.; Dwyer, D.F. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis. J. Allergy Clin. Immunol. 2022, 150, 739–747. [Google Scholar] [CrossRef] [PubMed]
- St. John, A.L.; Rathore, A.P.S.; Ginhoux, F. New perspectives on the origins and heterogeneity of mast cells. Nat. Rev. Immunol. 2023, 23, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Irani, A.M.; Craig, S.S.; DeBlois, G.; Elson, C.O.; Schechter, N.M.; Schwartz, L.B. Deficiency of the tryptase-positive, chymase-negative mast cell type in gastrointestinal mucosa of patients with defective T lymphocyte function. J. Immunol. 1987, 138, 4381–4386. [Google Scholar] [CrossRef]
- Trautmann, A.; Toksoy, A.; Engelhardt, E.; Bröcker, E.B.; Gillitzer, R. Mast cell involvement in normal human skin wound healing: Expression of monocyte chemoattractant protein-I is correlated with recruitment of mast cells which synthesize interleukin-4 in vivo. J. Pathol. 2000, 190, 100–106. [Google Scholar] [CrossRef]
- Agier, J.; Pastwińska, J.; Brzezińska-Błaszczyk, E. An overview of mast cell pattern recognition receptors. Inflamm. Res. 2018, 67, 737–746. [Google Scholar] [CrossRef]
- Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.R.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-Activating Factor, PAF Acetylhydrolase, and Severe Anaphylaxis. N. Engl. J. Med. 2008, 358, 28–35. [Google Scholar] [CrossRef]
- Lyons, D.O.; Pullen, N.A. Beyond IgE: Alternative mast cell activation across different disease states. Int. J. Mol. Sci. 2020, 21, 1498. [Google Scholar] [CrossRef]
- Roy, S.; Chompunud Na Ayudhya, C.; Thapaliya, M.; Deepak, V.; Ali, H. Multifaceted MRGPRX2: New insight into the role of mast cells in health and disease. J. Allergy Clin. Immunol. 2021, 148, 293–308. [Google Scholar] [CrossRef]
- McNeil, B.D. MRGPRX2 and Adverse Drug Reactions. Front. Immunol. 2021, 12, 676354. [Google Scholar] [CrossRef]
- Ogasawara, H.; Noguchi, M. Therapeutic potential of MRGPRX2 inhibitors on mast cells. Cells 2021, 10, 2906. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.A.; Bastan, R.; Peirce, M.J.; Munday, M.R.; Peachell, P.T. Role of calcineurin in the regulation of human lung mast cell and basophil function by cyclosporine and FK506. Br. J. Pharmacol. 2007, 150, 509–518. [Google Scholar] [CrossRef] [PubMed]
- West, P.W.; Bahri, R.; Garcia-Rodriguez, K.M.; Sweetland, G.; Wileman, G.; Shah, R.; Montero, A.; Rapley, L.; Bulfone-Paus, S. Interleukin-33 Amplifies Human Mast Cell Activities Induced by Complement Anaphylatoxins. Front. Immunol. 2021, 11, 615236. [Google Scholar] [CrossRef] [PubMed]
- Sumbayev, V.V.; Yasinska, I.; Oniku, A.E.; Streatfield, C.L.; Gibbs, B.F. Involvement of hypoxia-inducible factor-1 in the inflammatory responses of human LAD2 mast cells and basophils. PLoS ONE 2012, 7, e34259. [Google Scholar] [CrossRef]
- Parikh, S.A.; Cho, S.H.; Oh, C.K. Preformed enzymes in mast cell granules and their potential role in allergic rhinitis. Curr. Allergy Asthma Rep. 2003, 3, 266–272. [Google Scholar] [CrossRef]
- Ohtsu, H. Progress in allergy signal research on mast cells: The role of histamine in immunological and cardiovascular disease and the transporting system of histamine in the cell. J. Pharmacol. Sci. 2008, 106, 347–353. [Google Scholar] [CrossRef]
- Banafea, G.H.; Bakhashab, S.; Alshaibi, H.F.; Natesan Pushparaj, P.; Rasool, M. The role of human mast cells in allergy and asthma. Bioengineered 2022, 13, 7049–7064. [Google Scholar] [CrossRef]
- Bradding, P.; Arthur, G. Mast cells in asthma—State of the art. Clin. Exp. Allergy 2016, 46, 194–263. [Google Scholar] [CrossRef]
- Bradding, P.; Walls, A.F.; Holgate, S.T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 2006, 117, 1277–1284. [Google Scholar] [CrossRef]
- Watts, A.M.; Cripps, A.W.; West, N.P.; Cox, A.J. Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents. Front. Pharmacol. 2019, 10, 294. [Google Scholar] [CrossRef]
- Varricchi, G.; Rossi, F.W.; Galdiero, M.R.; Granata, F.; Criscuolo, G.; Spadaro, G.; De Paulis, A.; Marone, G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int. Arch. Allergy Immunol. 2019, 179, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Ramu, S.; Akbarshahi, H.; Mogren, S.; Berlin, F.; Cerps, S.; Menzel, M.; Hvidtfeldt, M.; Porsbjerg, C.; Uller, L.; Andersson, C.K. Direct effects of mast cell proteases, tryptase and chymase, on bronchial epithelial integrity proteins and anti-viral responses. BMC Immunol. 2021, 22, 35. [Google Scholar] [CrossRef] [PubMed]
- Sahid, M.N.A.; Kiyoi, T. Mast cell activation markers for in vitro study. J. Immunoass. Immunochem. 2020, 41, 778–816. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, G.; Costanzo, G.A.M.L.; Del Moro, L.; Nappi, E.; Pelaia, C.; Puggioni, F.; Canonica, G.W.; Heffler, E.; Paoletti, G. Mast Cells in Upper and Lower Airway Diseases: Sentinels in the Front Line. Int. J. Mol. Sci. 2023, 24, 9771. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, M.; Giancaspro, R.; Cassano, M.; Ribatti, D. The Underestimated Role of Mast Cells in the Pathogenesis of Rhinopathies. Int. Arch. Allergy Immunol. 2022, 183, 153–159. [Google Scholar] [CrossRef]
- Dwyer, D.F.; Ordovas-Montanes, J.; Allon, S.J.; Buchheit, K.M.; Vukovic, M.; Derakhshan, T.; Feng, C.; Lai, J.; Hughes, T.K.; Nyquist, S.K.; et al. Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Sci. Immunol. 2021, 6, eabb7221. [Google Scholar] [CrossRef]
- Maun, H.R.; Jackman, J.K.; Choy, D.F.; Loyet, K.M.; Staton, T.L.; Jia, G.; Dressen, A.; Hackney, J.A.; Bremer, M.; Walters, B.T.; et al. An Allosteric Anti-tryptase Antibody for the Treatment of Mast Cell-Mediated Severe Asthma. Cell 2019, 179, 417–431.e19. [Google Scholar] [CrossRef]
- Ribatti, D.; Crivellato, E. Mast cells, angiogenesis, and tumour growth. Biochim. Biophys. Acta Mol. Basis Dis. 2012, 1822, 2–8. [Google Scholar] [CrossRef]
- da Silva, E.Z.M.; Jamur, M.C.; Oliver, C. Mast Cell Function: A New Vision of an Old Cell. J. Histochem. Cytochem. 2014, 62, 698–738. [Google Scholar] [CrossRef]
- Zoabi, Y.; Levi-Schaffer, F.; Eliashar, R. Allergic Rhinitis: Pathophysiology and Treatment Focusing on Mast Cells. Biomedicines 2022, 10, 2486. [Google Scholar] [CrossRef]
- Settipane, R.A.; Charnock, D.R. Epidemiology of rhinitis: Allergic and nonallergic. Clin. Allergy Immunol. 2007, 19, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Schuler IV, C.F.; Montejo, J.M. Allergic Rhinitis in Children and Adolescents. Pediatr. Clin. N. Am. 2019, 66, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Steelant, B.; Seys, S.F.; Van Gerven, L.; Van Woensel, M.; Farré, R.; Wawrzyniak, P.; Kortekaas Krohn, I.; Bullens, D.M.; Talavera, K.; Raap, U.; et al. Histamine and T helper cytokine–driven epithelial barrier dysfunction in allergic rhinitis. J. Allergy Clin. Immunol. 2018, 141, 951–963.e8. [Google Scholar] [CrossRef] [PubMed]
- Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef]
- Dykewicz, M.S.; Wallace, D.V.; Amrol, D.J.; Baroody, F.M.; Bernstein, J.A.; Craig, T.J.; Dinakar, C.; Ellis, A.K.; Finegold, I.; Golden, D.B.K.; et al. Rhinitis 2020: A practice parameter update. J. Allergy Clin. Immunol. 2020, 146, 721–767. [Google Scholar] [CrossRef]
- Eifan, A.O.; Durham, S.R. Pathogenesis of rhinitis. Clin. Exp. Allergy 2016, 46, 1139–1151. [Google Scholar] [CrossRef]
- Ciofalo, A.; Cavaliere, C.; Incorvaia, C.; Plath, M.; Ridolo, E.; Pucciarini, F.; Altissimi, G.; Greco, A.; de Vincentiis, M.; Masieri, S. Diagnostic performance of nasal cytology. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 2451–2455. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Godthelp, T.; Holm, A.F.; Blom, H.; Mulder, P.G.H.; Vroom, T.M.; Rijntjes, E. Dynamics of mast cells in the nasal mucosa of patients with allergic rhinitis and non-allergic controls: A biopsy study. Clin. Exp. Allergy 1992, 22, 701–710. [Google Scholar] [CrossRef]
- Kilinc, N.; Cureoglu, S.; Oktay, F. Examination of the distribution of mast cells in the nasal mucosa of patients with seasonal allergic rhinitis. Saudi Med. J. 2004, 25, 621–624. [Google Scholar]
- Kato, A. Immunopathology of chronic rhinosinusitis. Allergol. Int. 2015, 64, 121–130. [Google Scholar] [CrossRef]
- Davies, R.J. Mast cells and allergic rhinitis. Clin. Exp. Allergy Suppl. 1991, 21, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Pawankar, R. Mast Cells in Allergic Airway Disease and Chronic Rhinosinusitis. In Mast Cells in Allergic Diseases; KARGER: Basel, Switzerland, 2005; pp. 111–129. [Google Scholar]
- Pawankar, R.; Yamagishi, S.; Yagi, T. Revisiting the Roles of Mast Cells in Allergic Rhinitis and its Relation to Local IgE Synthesis. Am. J. Rhinol. 2000, 14, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Hellings, P.W.; Klimek, L.; Cingi, C.; Agache, I.; Akdis, C.; Bachert, C.; Bousquet, J.; Demoly, P.; Gevaert, P.; Hox, V.; et al. Non-allergic rhinitis: Position paper of the European Academy of Allergy and Clinical Immunology. Allergy Eur. J. Allergy Clin. Immunol. 2017, 72, 1657–1665. [Google Scholar] [CrossRef]
- Burns, P.; Powe, D.G.; Jones, N.S. Idiopathic rhinitis. Curr. Opin. Otolaryngol. Head Neck Surg. 2012, 20, 1–8. [Google Scholar] [CrossRef]
- Kaliner, M.A. Classification of Nonallergic Rhinitis Syndromes With a Focus on Vasomotor Rhinitis, Proposed to be Known henceforth as Nonallergic Rhinopathy. World Allergy Organ. J. 2009, 2, 98–101. [Google Scholar] [CrossRef]
- Bachert, C. Persistent rhinitis—Allergic or nonallergic? Allergy Eur. J. Allergy Clin. Immunol. Suppl. 2004, 59, 11–15. [Google Scholar] [CrossRef]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic rhinitis. Lancet 2011, 378, 2112–2122. [Google Scholar] [CrossRef]
- Gelardi, M. “Overlapped” rhinitis: A real trap for rhinoallergologists. Eur. Ann. Allergy Clin. Immunol. 2014, 46, 234–236. [Google Scholar]
- Bernstein, J.A. Allergic and mixed rhinitis: Epidemiology and natural history. Allergy Asthma Proc. 2010, 31, 365–369. [Google Scholar] [CrossRef]
- Bousquet, J.; Fokkens, W.; Burney, P.; Durham, S.R.; Bachert, C.; Akdis, C.A.; Canonica, G.W.; Dahlen, S.E.; Zuberbier, T.; Bieber, T.; et al. Important research questions in allergy and related diseases: Nonallergic rhinitis: A GA2LEN paper. Allergy Eur. J. Allergy Clin. Immunol. 2008, 63, 842–853. [Google Scholar] [CrossRef]
- Lindberg, S.; Malm, L. Comparison of allergic rhinitis and vasomotor rhinitis patients on the basis of a computer questionnaire. Allergy 1993, 48, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Settipane, R.A.; Lieberman, P. Update on nonallergic rhinitis. Ann. Allergy, Asthma Immunol. 2001, 86, 494–508. [Google Scholar] [CrossRef]
- Powe, D.G.; Jagger, C.; Kleinjan, A.; Carney, A.S.; Jenkins, D.; Jones, N.S. “Entopy”: Localized mucosal allergic disease in the absence of systemic responses for atopy. Clin. Exp. Allergy 2003, 33, 1374–1379. [Google Scholar] [CrossRef]
- Campo, P.; Rondón, C.; Gould, H.J.; Barrionuevo, E.; Gevaert, P.; Blanca, M. Local IgE in non-allergic rhinitis. Clin. Exp. Allergy 2015, 45, 872–881. [Google Scholar] [CrossRef]
- Rondón, C.; Campo, P.; Herrera, R.; Blanca-Lopez, N.; Melendez, L.; Canto, G.; Torres, M.J.; Blanca, M. Nasal allergen provocation test with multiple aeroallergens detects polysensitization in local allergic rhinitis. J. Allergy Clin. Immunol. 2011, 128, 1192–1197. [Google Scholar] [CrossRef]
- Melone, G.; Giorgis, V.; Di Pino, M.; Pelaia, C.; Nappi, E.; Heffler, E.; Landi, M.; Gelardi, M.; Paoletti, G. Local Allergic Rhinitis: Lights and Shadows of a Mysterious Entity. Int. Arch. Allergy Immunol. 2023, 184, 12–20. [Google Scholar] [CrossRef]
- Powe, D.G.; Jones, N.S. Local mucosal immunoglobulin E production: Does allergy exist in non-allergic rhinitis? Clin. Exp. Allergy 2006, 36, 1367–1372. [Google Scholar] [CrossRef]
- Cai, J.; Guan, S.; Mai, Z.; Zhang, S. Analysis of the level and significance of IL-16 and IL-17 in nasal secretion and in serum of patients with allergic rhinitis and non-allergic rhinitis. Lin Chung. Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2014, 28, 821–823. [Google Scholar]
- Branicka, O.; Jura-Szołtys, E.; Rogala, B.; Glück, J. sCD48 is elevated in non-allergic but not in allergic persistent rhinitis. Immunopharmacol. Immunotoxicol. 2021, 43, 724–730. [Google Scholar] [CrossRef]
- Tomljenovic, D.; Baudoin, T.; Megla, Z.B.; Geber, G.; Scadding, G.; Kalogjera, L. Females have stronger neurogenic response than males after non-specific nasal challenge in patients with seasonal allergic rhinitis. Med. Hypotheses 2018, 116, 114–118. [Google Scholar] [CrossRef]
- Bachert, C.; Van Cauwenberge, P.; Olbrecht, J.; Van Schoor, J. Prevalence, classification and perception of allergic and nonallergic rhinitis in Belgium. Allergy 2006, 61, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, M.; Russo, C.; Fiorella, M.L.; Fiorella, R.; Canonica, G.W.; Passalacqua, G. When allergic rhinitis is not only allergic. Am. J. Rhinol. Allergy 2009, 23, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; Goldberg, A.; Ophir, D. The inferior turbinate mast cell population of patients with perennial allergic and nonallergic rhinitis. Am. J. Rhinol. 1997, 11, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Powe, D.G.; Huskisson, R.S.; Carney, A.S.; Jenkins, D.; Jones, N.S. Evidence for an inflammatory pathophysiology in idiopathic rhinitis. Clin. Exp. Allergy 2001, 31, 864–872. [Google Scholar] [CrossRef]
- Powe, D.G.; Bonnin, A.J.; Jones, N.S. ‘Entopy’: Local allergy paradigm. Clin. Exp. Allergy 2010, 40, 987–997. [Google Scholar] [CrossRef]
- Jacobs, R.L.; Freedman, P.M.; Boswell, R.N. Nonallergic rhinitis with eosinophilia (NARES syndrome). Clinical and immunologic presentation. J. Allergy Clin. Immunol. 1981, 67, 253–262. [Google Scholar] [CrossRef]
- Ellis, A.K.; Keith, P.K. Nonallergic rhinitis with eosinophilia syndrome. Curr. Allergy Asthma Rep. 2006, 6, 215–220. [Google Scholar] [CrossRef]
- Gelardi, M.; Del Giudice, A.M.; Fiorella, M.L.; Fiorella, R.; Russo, C.; Soleti, P.; Di Gioacchino, M.; Ciprandi, G. Non-Allergic Rhinitis with Eosinophils and Mast Cells Constitutes a New Severe Nasal Disorder. Int. J. Immunopathol. Pharmacol. 2008, 21, 325–331. [Google Scholar] [CrossRef]
- Heffler, E.; Landi, M.; Caruso, C.; Fichera, S.; Gani, F.; Guida, G.; Liuzzo, M.T.; Pistorio, M.P.; Pizzimenti, S.; Riccio, A.M.; et al. Nasal cytology: Methodology with application to clinical practice and research. Clin. Exp. Allergy 2018, 48, 1092–1106. [Google Scholar] [CrossRef]
- Gelardi, M.; Iannuzzi, L.; Quaranta, N.; Landi, M.; Passalacqua, G. NASAL cytology: Practical aspects and clinical relevance. Clin. Exp. Allergy 2016, 46, 785–792. [Google Scholar] [CrossRef]
- Paoletti, G.; Malvezzi, L.; Riccio, A.M.; Descalzi, D.; Pirola, F.; Russo, E.; De Ferrari, L.; Racca, F.; Ferri, S.; Messina, M.R.; et al. Nasal cytology as a reliable non-invasive procedure to phenotype patients with type 2 chronic rhinosinusitis with nasal polyps. World Allergy Organ. J. 2022, 15, 100700. [Google Scholar] [CrossRef] [PubMed]
- Gelardi, M.; Fiorella, M.L.; Leo, G.; Incorvaia, C. Cytology in the diagnosis of rhinosinusitis. Pediatr. Allergy Immunol. 2007, 18, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Piliponsky, A.M.; Acharya, M.; Shubin, N.J. Mast cells in viral, bacterial, and fungal infection immunity. Int. J. Mol. Sci. 2019, 20, 2851. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.N.; Messina, J.C.; Biletch, R.; Grosel, K.; Mahmoud, R.A. A cross-sectional, population-based survey of U.S. adults with symptoms of chronic rhinosinusitis. Allergy Asthma Proc. 2018, 40, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Åkerlund, A.; Holmberg, K.; Melén, I.; Bende, M. Prevalence of nasal polyps in adults: The Skövde population-based study. Ann. Otol. Rhinol. Laryngol. 2003, 112, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Heffler, E.; Malvezzi, L.; Boita, M.; Brussino, L.; De Virgilio, A.; Ferrando, M.; Puggioni, F.; Racca, F.; Stomeo, N.; Spriano, G.; et al. Immunological mechanisms underlying chronic rhinosinusitis with nasal polyps. Expert Rev. Clin. Immunol. 2018, 14, 731–737. [Google Scholar] [CrossRef]
- Jacobsen, E.A.; Jackson, D.J.; Heffler, E.; Mathur, S.K.; Bredenoord, A.J.; Pavord, I.D.; Akuthota, P.; Roufosse, F.; Rothenberg, M.E. Eosinophil Knockout Humans: Uncovering the Role of Eosinophils through Eosinophil-Directed Biological Therapies. Annu. Rev. Immunol. 2021, 39, 719–757. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Hamilos, D.L.; Hadley, J.A.; Lanza, D.C.; Marple, B.F.; Nicklas, R.A.; Bachert, C.; Baraniuk, J.; Baroody, F.M.; Benninger, M.S.; et al. Rhinosinusitis: Establishing definitions for clinical research and patient care. J. Allergy Clin. Immunol. 2004, 114, 155–212. [Google Scholar] [CrossRef]
- Okano, M.; Kondo, K.; Takeuchi, M.; Taguchi, Y.; Fujita, H. Health-related quality of life and drug treatment satisfaction were low and correlated negatively with symptoms in patients having severe refractory chronic rhinosinusitis with nasal polyps. Allergol. Int. 2021, 70, 370–372. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Mullol, J.; Bachert, C.; Alobid, I.; Baroody, F.; Cohen, N.; Cervin, A.; Douglas, R.; Gevaert, P.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol. Suppl. 2012, 23, 1–298. [Google Scholar]
- Canonica, G.W.; Malvezzi, L.; Blasi, F.; Paggiaro, P.; Mantero, M.; Senna, G.; Heffler, E.; Bonavia, M.; Caiaffa, P.; Calabrese, C.; et al. Chronic rhinosinusitis with nasal polyps impact in severe asthma patients: Evidences from the Severe Asthma Network Italy (SANI) registry. Respir. Med. 2020, 166, 105947. [Google Scholar] [CrossRef] [PubMed]
- Hulse, K.E.; Stevens, W.W.; Tan, B.K.; Schleimer, R.P. Pathogenesis of nasal polyposis. Clin. Exp. Allergy 2015, 45, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Takabayashi, T.; Kato, A.; Peters, A.T.; Suh, L.A.; Carter, R.; Norton, J.; Grammer, L.C.; Tan, B.K.; Chandra, R.K.; Conley, D.B.; et al. Glandular mast cells with distinct phenotype are highly elevated in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2012, 130, 410–420.e5. [Google Scholar] [CrossRef] [PubMed]
- Le, D.D.; Schmit, D.; Heck, S.; Omlor, A.J.; Sester, M.; Herr, C.; Schick, B.; Daubeuf, F.; Fähndrich, S.; Bals, R.; et al. Increase of Mast Cell-Nerve Association and Neuropeptide Receptor Expression on Mast Cells in Perennial Allergic Rhinitis. Neuroimmunomodulation 2017, 23, 261–270. [Google Scholar] [CrossRef]
- Belsky, M.A.; Corredera, E.; Banerjee, H.; Moore, J.; Wang, L.; Kane, L.P.; Lee, S.E. Association of Mast Cell Burden and TIM-3 Expression with Recalcitrant Chronic Rhinosinusitis with Nasal Polyps. Ann. Otol. Rhinol. Laryngol. 2021, 130, 1069–1077. [Google Scholar] [CrossRef]
- Baba, S.; Kondo, K.; Suzukawa, M.; Ohta, K.; Yamasoba, T. Distribution, subtype population, and IgE positivity of mast cells in chronic rhinosinusitis with nasal polyps. Ann. Allergy, Asthma Immunol. 2017, 119, 120–128. [Google Scholar] [CrossRef]
- Gelardi, M.; Giancaspro, R.; Cassano, M. Chronic rhinosinusitis with nasal polyps recurrence: Not only eosinophils and neutrophils. Am. J. Otolaryngol. Head Neck Med. Surg. 2022, 43, 103447. [Google Scholar] [CrossRef]
- Gelardi, M.; Russo, C.; Fiorella, M.L.; Fiorella, R.; Ciprandi, G. Inflammatory cell types in nasal polyps. Cytopathology 2010, 21, 201–203. [Google Scholar] [CrossRef]
- Gelardi, M.; Porro, G.; Quaranta, V.; Quaranta, N.; Cassano, M.; Ciprandi, G.; Alonzi, L.; Caruso, A.A.; Barbara, F.; Barbara, M.; et al. Clinical-cytological-grading and phenotyping in patients with chronic rhinosinusitis with nasal polyps: The relevance in clinical practice. Monaldi Arch. Chest Dis. 2020, 90, 348–352. [Google Scholar] [CrossRef]
- Gelardi, M.; Giancaspro, R.; Duda, L.; Quaranta, V.N.; Pizzulli, C.; Maiorano, E.; Di Canio, F.M.; Ruzza, A.; Iannuzzi, L.; Quaranta, N.A.A.; et al. Eosinophil-mast cell pattern of intraepithelial infiltration as a marker of severity in CRSwNP. Sci. Rep. 2023, 13, 12101. [Google Scholar] [CrossRef]
- Tomooka, L.T.; Murphy, C.; Davidson, T.M. Clinical study and literature review of nasal irrigation. Laryngoscope 2000, 110, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Heffler, E.; Brussino, L.; Del Giacco, S.; Paoletti, G.; Minciullo, P.L.; Varricchi, G.; Scadding, G.; Malvezzi, L.; De Virgilio, A.; Spriano, G.; et al. New drugs in early-stage clinical trials for allergic rhinitis. Expert Opin. Investig. Drugs 2019, 28, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, E.O. The Role of Nasal Corticosteroids in the Treatment of Rhinitis. Immunol. Allergy Clin. N. Am. 2011, 31, 545–560. [Google Scholar] [CrossRef]
- Zhang, T.; Finn, D.F.; Barlow, J.W.; Walsh, J.J. Mast cell stabilisers. Eur. J. Pharmacol. 2016, 778, 158–168. [Google Scholar] [CrossRef]
- Puzzovio, P.G.; Brüggemann, T.R.; Pahima, H.; Mankuta, D.; Levy, B.D.; Levi-Schaffer, F. Cromolyn Sodium differentially regulates human mast cell and mouse leukocyte responses to control allergic inflammation. Pharmacol. Res. 2022, 178, 106172. [Google Scholar] [CrossRef]
- Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The role of leukotrienes as potential therapeutic targets in allergic disorders. Int. J. Mol. Sci. 2019, 20, 3580. [Google Scholar] [CrossRef]
- Bousquet, J.; Lockey, R.; Malling, H. Allergen immunotherapy: Therapeutic vaccines for allergic diseases A WHO position paper. J. Allergy Clin. Immunol. 1998, 102, 558–562. [Google Scholar] [CrossRef]
- Ridolo, E.; Incorvaia, C.; Heffler, E.; Cavaliere, C.; Paoletti, G.; Canonica, G.W. The Present and Future of Allergen Immunotherapy in Personalized Medicine. J. Pers. Med. 2022, 12, 774. [Google Scholar] [CrossRef]
- Shamji, M.H.; Durham, S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol. 2017, 140, 1485–1498. [Google Scholar] [CrossRef]
- Akdis, M.; Akdis, C.A. Mechanisms of allergen-specific immunotherapy: Multiple suppressor factors at work in immune tolerance to allergens. J. Allergy Clin. Immunol. 2014, 133, 621–631. [Google Scholar] [CrossRef]
- Sun, X.; Xu, Y.; Zhou, J. DPP4 Inhibitor Sitagliptin Reduces Inflammatory Responses and Mast Cell Activation in Allergic Rhinitis. Pharmacology 2023, 108, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shao, L.; Li, Y.; Dai, M.; Liu, H.; Xiang, N.; Chen, H. Tanshinone IIA alleviates ovalbumin-induced allergic rhinitis symptoms by inhibiting Th2 cytokine production and mast cell histamine release in mice. Pharm. Biol. 2022, 60, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, Y.; Wang, Y.; Huang, Y.; Gao, J.; Tian, X.; Ma, T.; Zhang, T. Anti-inflammatory effect of dictamnine on allergic rhinitis via suppression of the LYN kinase-mediated molecular signaling pathway during mast cell activation. Phyther. Res. 2023, 37, 4236–4250. [Google Scholar] [CrossRef]
- Al Hamwi, G.; Riedel, Y.K.; Clemens, S.; Namasivayam, V.; Thimm, D.; Müller, C.E. Mas-Related G Protein-Coupled Receptors X (MRGPRX): Orphan GPCRs with Potential as Targets for Future Drugs. SSRN Electron. J. 2022, 238, 108259. [Google Scholar] [CrossRef]
- Senturk, E.; Yildirim, Y.S.; Dogan, R.; Ozturan, O.; Guler, E.M.; Aydin, M.S.; Kocyigit, A.; Esrefoglu, M.; Kocak, I. Assessment of the effectiveness of cyclosporine nasal spray in an animal model of allergic rhinitis. Eur. Arch. Oto-Rhino-Laryngol. 2018, 275, 117–124. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernalsprekelsen, M.; Mullol, J. Executive summary of EPOS 2020 including integrated care pathways. Rhinology 2020, 58, 82–111. [Google Scholar] [CrossRef]
- Bachert, C.; Han, J.K.; Wagenmann, M.; Hosemann, W.; Lee, S.E.; Backer, V.; Mullol, J.; Gevaert, P.; Klimek, L.; Prokopakis, E.; et al. EUFOREA expert board meeting on uncontrolled severe chronic rhinosinusitis with nasal polyps (CRSwNP) and biologics: Definitions and management. J. Allergy Clin. Immunol. 2021, 147, 29–36. [Google Scholar] [CrossRef]
- Pirola, F.; Pace, G.M.; Giombi, F.; Heffler, E.; Paoletti, G.; Nappi, E.; Sanità, W.; Giulietti, G.; Giunta, G.; Ferreli, F.; et al. Outcomes of Non-Mucosa Sparing Endoscopic Sinus Surgery (Partial Reboot) in Refractory Chronic Rhinosinusitis with Nasal Polyposis: An Academic Hospital Experience. Laryngoscope 2023, 133, 1584–1589. [Google Scholar] [CrossRef]
- Amedee, R.G. Prevalence of polyp recurrence after endoscopic sinus surgery for chronic rhinosinusitis with nasal polyposis. Am. J. Rhinol. Allergy 2017, 31, 278. [Google Scholar] [CrossRef]
- Favier, V.; Daveau, C.; Carsuzaa, F.; Fieux, M.; Vandersteen, C.; Castillo, L.; Papon, J.F.; De Gabory, L.; Saroul, N.; Verillaud, B.; et al. Study protocol: The biologics in severe chronic rhinosinusitis with nasal polyps survey. BMJ Open 2024, 14, e083112. [Google Scholar] [CrossRef]
- Tsabouri, S. Omalizumab for the treatment of allergic rhinitis: A systematic review and meta-analysis*. Rhinology 2021, 59, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, K.M.; Lewis, E.; Gakpo, D.; Hacker, J.; Sohail, A.; Taliaferro, F.; Berreondo Giron, E.; Asare, C.; Vukovic, M.; Bensko, J.C.; et al. Mepolizumab targets multiple immune cells in aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2021, 148, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Kirtsreesakul, V.; Hararuk, K.; Leelapong, J.; Ruttanaphol, S. Clinical efficacy of nasal steroids on nonallergic rhinitis and the associated inflammatory cell phenotypes. Am. J. Rhinol. Allergy 2015, 29, 343–349. [Google Scholar] [CrossRef]
- Segboer, C.; Gevorgyan, A.; Avdeeva, K.; Chusakul, S.; Kanjanaumporn, J.; Aeumjaturapat, S.; Reeskamp, L.F.; Snidvongs, K.; Fokkens, W. Intranasal corticosteroids for non-allergic rhinitis. Cochrane Database Syst. Rev. 2019, 2019, CD010592. [Google Scholar] [CrossRef]
- Kannen, V.; Grant, D.M.; Matthews, J. The mast cell-T lymphocyte axis impacts cancer: Friend or foe? Cancer Lett. 2024, 588, 216805. [Google Scholar] [CrossRef]
- Aller, M.A.; Arias, A.; Arias, J.I.; Arias, J. Carcinogenesis: The cancer cell–mast cell connection. Inflamm. Res. 2019, 68, 103–116. [Google Scholar] [CrossRef]
- Brown, M.; O’Reilly, S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 2019, 195, 310–321. [Google Scholar] [CrossRef]
- Cahill, K.N.; Katz, H.R.; Cui, J.; Lai, J.; Kazani, S.; Crosby-Thompson, A.; Garofalo, D.; Castro, M.; Jarjour, N.; DiMango, E.; et al. KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma. N. Engl. J. Med. 2017, 376, 1911–1920. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costanzo, G.; Marchetti, M.; Ledda, A.G.; Sambugaro, G.; Bullita, M.; Paoletti, G.; Heffler, E.; Firinu, D.; Costanzo, G.A.M.L. Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. Int. J. Mol. Sci. 2024, 25, 12615. https://doi.org/10.3390/ijms252312615
Costanzo G, Marchetti M, Ledda AG, Sambugaro G, Bullita M, Paoletti G, Heffler E, Firinu D, Costanzo GAML. Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. International Journal of Molecular Sciences. 2024; 25(23):12615. https://doi.org/10.3390/ijms252312615
Chicago/Turabian StyleCostanzo, Giovanni, Marta Marchetti, Andrea Giovanni Ledda, Giada Sambugaro, Martina Bullita, Giovanni Paoletti, Enrico Heffler, Davide Firinu, and Giulia Anna Maria Luigia Costanzo. 2024. "Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower" International Journal of Molecular Sciences 25, no. 23: 12615. https://doi.org/10.3390/ijms252312615
APA StyleCostanzo, G., Marchetti, M., Ledda, A. G., Sambugaro, G., Bullita, M., Paoletti, G., Heffler, E., Firinu, D., & Costanzo, G. A. M. L. (2024). Mast Cells in Allergic and Non-Allergic Upper Airways Diseases: Sentinel in the Watchtower. International Journal of Molecular Sciences, 25(23), 12615. https://doi.org/10.3390/ijms252312615